Publikace UTB
Repozitář publikační činnosti UTB

Nutritional potential of selected insect species reared on the island of Sumatra

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Nutritional potential of selected insect species reared on the island of Sumatra en
dc.contributor.author Adámková, Anna
dc.contributor.author Mlček, Jiří
dc.contributor.author Kouřimská, Lenka
dc.contributor.author Borkovcová, Marie
dc.contributor.author Bušina, Tomáš
dc.contributor.author Adámek, Martin
dc.contributor.author Bednářová, Martina
dc.contributor.author Krajsa, Jan
dc.relation.ispartof International Journal of Environmental Research and Public Health
dc.identifier.issn 1661-7827 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1660-4601 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 14
utb.relation.issue 5
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/ijerph14050521
dc.relation.uri http://www.mdpi.com/1660-4601/14/5/521/htm
dc.subject edible insect en
dc.subject Tenebrio molitor en
dc.subject Zophobas morio en
dc.subject Gryllus assimilis en
dc.subject crude protein en
dc.subject fats en
dc.subject amino acid profile en
dc.subject chitin en
dc.subject Indonesia en
dc.description.abstract Inhabitants of the Indonesian island of Sumatra are faced with the problem of insufficient food supplies and the consequent risk of undernourishment and health issues. Edible insects as a traditional and readily available food source could be part of the solution. The nutritional value of insects depends on many factors, e.g., species, developmental stage, sex, diet, and climatic conditions. However, edible insects bred in Sumatra for human consumption have never before been assessed with regard to their nutritional value. Our study involved analyses of crude protein, chitin, fat and selected fatty acid contents of giant mealworm larvae (Zophobas morio), larvae of the common mealworm (Tenebrio molitor) and nymphs of the field cricket (Gryllus assimilis). Crude protein content in the samples ranged from 46% to 56%. Highest (35%) and lowest (31%) amounts of fat were recorded in giant mealworm larvae and larvae of the common mealworm, respectively. Chitin amounts ranged from 6% to 13%. Based on these values, which are comparable to those known from other food insects reared in different regions of the world, the edible species bred in Sumatra could become food sources with a potential to help stave off hunger and undernourishment. © 2017 by the authors. Licensee MDPI, Basel, Switzerland. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007357
utb.identifier.obdid 43876689
utb.identifier.scopus 2-s2.0-85019173529
utb.identifier.wok 000404106400069
utb.source j-scopus
dc.date.accessioned 2017-09-08T12:14:44Z
dc.date.available 2017-09-08T12:14:44Z
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Mlček, Jiří
utb.fulltext.affiliation Anna Adámková 1, Jiří Mlček 2,*, Lenka Kouřimská 3, Marie Borkovcová 4, Tomáš Bušina 5, Martin Adámek 6, Martina Bednářová 7 and Jan Krajsa 8 1 Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic; [email protected] 2 Department of Food Analysis and Chemistry, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic 3 Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic; [email protected] 4 Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 613 00 Brno, Czech Republic; [email protected] 5 Department of Husbandry and Ethology of Animals, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic; [email protected] 6 Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00 Brno, Czech Republic; [email protected] 7 Department of Information Technology, Mendel University, 613 00 Brno, Czech Republic; [email protected] 8 Department of Forensic Medicine, Faculty of Medicine, Masaryk University, 601 77 Brno, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-57-603-3030 Academic Editor: Paul B. Tchounwou
utb.fulltext.dates Received: 13 April 2017 Accepted: 10 May 2017 Published: 12 May 2017
utb.fulltext.references 1. FAO. Regional Overview of Food Insecurity Asia and the Pacific, Towards a Food Secure Asia and the Pacific; FAO, Regional Office for Asia and the Pacific: Bangkok, Thailand, 2015. 2. UNICEF/WHO/WBG. Child Malnutrition Estimates; UNICEF/WHO/WBG, 2015. Available online: http://www.who.int/entity/nutgrowthdb/jme_master_2015.xlsx?ua=1 (accessed on 8 April 2017). 3. Lipoeto, N.I.; Wattanapenpaiboon, N.; Malik, A.; Wahlqvist, M.L. The nutrition transition in West Sumatra, Indonesia. Asia Pac. J. Clin. Nutr. 2004, 13, 312–316. [PubMed] 4. Defoliart, G.R. Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop Prot. 1992, 11, 395–399. [CrossRef] 5. Ramos-Elorduy, J.; Moreno, J.M.P.; Vázquez, A.I.; Landero, I.; Oliva-Rivera, H.; Camacho, V.H.M. Edible Lepidoptera in Mexico: Geographic distribution, ethnicity, economic and nutritional importance for rural people. J. Ethnobiol. Ethnomed. 2011, 7, 1–22. [CrossRef] [PubMed] 6. EFSA Scientific Committee. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 1–60. 7. Meyer-Rochow, V.B. Can insects help to ease the problem of world food shortage? Search 1975, 6, 261–262. 8. Ramos-Elorduy, J.; Gonzalez, E.A.; Hernandez, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002, 95, 214–220. [CrossRef] [PubMed] 9. Veldkamp, T.; van Duinkerken, G.; van Huis, A.; Iakemond, C.M.M.; Ottevanger, E.; Bosh, G.; van Boekel, M.A.J.S. Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets—A Feasibility Study, 1st ed.; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2012. 10. Chakravorty, J.; Ghosh, S.; Meyer-Rochow, V.B. Chemical composition of Aspongopus nepalensis Westwood 1837 (Hemiptera; Pentatomidae), a common food insect of tribal people in Arunachal Pradesh (India). Int. J. Vitam. Nutr. Res. 2011, 81, 49–56. [CrossRef] [PubMed] 11. Chakravorty, J.; Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of Chondacris rosea and Brachytrupes orientalis: Two common insects used as food by tribes of Arunachal Pradesh, India. J. Asia Pac. Entomol. 2014, 17, 407–415. [CrossRef] 12. Chakravorty, J.; Ghosh, S.; Megu, K.; Jung, C.; Meyer-Rochow, V.B. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. J. Asia Pac. Entomol. 2016, 19, 711–720. [CrossRef] 13. Fontaneto, D.; Tommaseo-Ponzetta, M.; Galli, C.; Risé, P.; Glew, R.H.; Paoletti, M.G. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecol. Food Nutr. 2011, 50, 351–367. [CrossRef] [PubMed] 14. ISO 1871:2009. Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method, 2nd ed.; ISO: Geneva, Switzerland, 2009. 15. Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes (The weight analysis of milk fat). Dingler’s Polytech. J. 1879, 232, 461–465. 16. Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Jiang, C.; Yang, Q. Extraction and characterization of chitin from the beetle Holotrichia parallela motschulsky. Molecules 2012, 17, 4604–4611. [CrossRef] [PubMed] 17. ISO 12966-2:2011. Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters, 1st ed.; ISO: Geneva, Switzerland, 2011. 18. Bednářová, M. Possibilities of Using Insects as Food in the Czech Republic. Doctoral’s Thesis, Mendel University, Brno, Czech Republic, 2013. 19. Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [CrossRef] 20. Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.-J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422, 193–201. [CrossRef] 21. Tzompa-Sosa, D.A.; Yi, L.; van Valenberg, H.J.F.; van Boekel, M.A.J.S.; Lakemond, C.M.M. Insect lipid profile: Aqaueous versus organic solvent-based extraction methods. Food Res. Int. 2014, 62, 1087–1094. [CrossRef] 22. Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [CrossRef] 23. Sánchez-Muros, M.J.; de Haro, C.; Sanz, A.; Trenzado, C.E.; Villareces, S.; Barroso, F.G. Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac Nutr 2016, 22, 943–955. [CrossRef] 24. Yi, L.; Lakemond, C.M.M.; Sagis, L.M.C.; Eisner-Schadler, V.; Huis, A.V.; Boekel, M.A.J.S.V. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [CrossRef] [PubMed] 25. Mariod, A.A.; Abdel-Wahab, S.I.; Ain, N.M. Proximate amino acid, fatty acid and mineral composition of two Sudanese edible pentatomid insects. Int. J. Trop. Insect Sci. 2011, 31, 145–153. [CrossRef] 26. Verkerk, M.C.; Tramper, J.; van Trijp, J.C.M.; Martens, D.E. Insect cells for human food. Biotechnol. Adv. 2007, 25, 198–202. [CrossRef] [PubMed] 27. Ramos-Elorduy, J.; Moreno, J.M.P.; Prado, E.E.; Perez, M.A.; Otero, J.L.; De Guevara, O.L. Nutritional value of edible insects from the state of Oaxaca, Mexico. J. Food Compost. Anal. 1997, 10, 142–157. [CrossRef] 28. Finke, M.D. Nutrient content of insects. In Encyclopedia of Entomology; Capinera, J.L., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 1563–1575. 29. Van Broekhoven, S.; Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [CrossRef] [PubMed] 30. Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [CrossRef] 31. Paul, A.; Frederich, M.; Caparros Megido, R.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G.; et al. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia Pac. Entomol. 2017, 20, 337–340. [CrossRef] 32. Ghosh, S.; Lee, S.M.; Jung, Ch.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. [CrossRef] 33. Pipek, P. Technologie Masa I. (Meat Technology I), 3rd ed.; VŠCHT: Praha, Czech Republic, 1995. 34. Steinhauser, L. Hygiena a Technologie Masa (Hygiene and Technology of Meat), 1st ed.; LAST: Brno, Czech Republic, 1995. 35. Raksakantong, P.; Meeso, N.; Kubola, J.; Siriamornpun, S. Fatty acids and proximate composition of eight Thai edible terricolous insects. Food. Res. Int. 2010, 43, 350–355. [CrossRef] 36. Kinyuru, J.N.; Konyole, S.O.; Roos, N.; Onyango, C.A.; Owino, V.O.; Owuor, B.O.; Estambale, B.B.; Friis, H.; Aagaard-Hansen, J.; Kenji, G.M. Nutrient composition of four species of winged termites consumed in western Kenya. J. Food Compost. Anal. 2013, 30, 120–124. [CrossRef] 37. Kinyuru, J.N.; Mogendi, J.B.; Riwa, C.H.A.; Ndung’u, N.W. Edible insects—A novel source of essential nutrients for human diet: Learning from traditional knowledge. Anim. Front. 2015, 5, 14–19. 38. Van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible insects: Future Prospects for Food and Feed Security, 1st ed.; Food and agriculture organization of the United Nations: Rome, Italy, 2013. 39. Paul, A.; Frederich, M.; Uyttenbroeck, R.; Malik, P.; Filocco, S.; Richel, A.; Heuskin, S.; Alabi, T.; Caparros Megido, R.; Franck, T.; et al. Nutritional composition and rearing potential of the meadow grasshopper (Chorthippus parallelus Zetterstedt). J. Asia Pac. Entomol. 2016, 19, 1111–1116. [CrossRef] 40. Paul, A.; Frederich, M.; Uyttenbroeck, R.; Hatt, S.; Malik, P.; Lebecque, S.; Hamaidia, M.; Miazek, K.; Goffin, D.; Willems, L.; et al. Grasshoppers as a food source? A review [Les criquets: Une nouvelle source d’aliments? (synthèse bibliographique)]. Biotechnol. Agron. Soc. 2016, 20, 337–352. 41. Adámková, A.; Kourimská, L.; Borkovcová, M.; Kulma, M.; Mlček, J. Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo 2016, 10, 663–671. [CrossRef] 42. Finke, M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [CrossRef] [PubMed] 43. Wang, D.; Bai, Y.; Li, J.; Zhang, C. Nutritional value of the field cricket (Gryllus testaceus Walker). Entomol. Sin. 2004, 11, 275–283. [CrossRef] 44. Paoletti, M.G.; Norberto, L.; Damini, R.; Musumeci, S. Human gastric juice contains chitinase that can degrade chitin. Ann. Nutr. Metab. 2007, 51, 244–251. [CrossRef] [PubMed] 45. Velíšek, J. Chemie Potravin (The Chemistry of Food), 2nd ed.; OSSIS: Tábor, Czech Republic, 2002. 46. Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [CrossRef] [PubMed] 47. Marono, S.; Piccolo, G.; Loponte, R.; Meo, C.D.; Attia, Y.A.; Nizza, A.; Bovera, F. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci. 2015, 14, 338–343. [CrossRef] 48. Finke, M.D. Complete Nutrient Content of Four Species of Feeder Insects. Zoo Biol. 2013, 32, 27–36. [CrossRef] [PubMed] 49. Goodman, W.G. Chitin: A Magic Bullet? Food Insects Newslett. 1989, 2, 6–7. 50. Akinnawo, O.; Ketiku, A.O. Chemical composition and fatty acid profile of edible larva of Cirina forda (Westwood). Afr. J. Biomed. Res. 2000, 3, 93–96. 51. Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [CrossRef] [PubMed]
utb.fulltext.sponsorship The authors would like to thank anonymous reviewers for their precious comments and suggestions to improve the manuscript.
utb.fulltext.projects -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International