Kontaktujte nás | Jazyk: čeština English
dc.title | Smart composites based on controllably grafted graphene oxide particles and elastomeric matrix with sensing capability | en |
dc.contributor.author | Mrlík, Miroslav | |
dc.contributor.author | Osička, Josef | |
dc.contributor.author | Ilčíková, Markéta | |
dc.contributor.author | Pavlínek, Vladimír | |
dc.contributor.author | Mosnáček, Jaroslav | |
dc.relation.ispartof | Proceedings of SPIE - The International Society for Optical Engineering | |
dc.identifier.issn | 0277-786X Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-1-5106-0813-9 | |
dc.date.issued | 2017 | |
utb.relation.volume | 10164 | |
dc.event.title | Active and Passive Smart Structures and Integrated Systems 2017 | |
dc.event.location | Portland, OR | |
utb.event.state-en | United States | |
utb.event.state-cs | Spojené státy americké | |
dc.event.sdate | 2017-03-26 | |
dc.event.edate | 2017-03-29 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | International Society for Optical Engineering (SPIE) | |
dc.identifier.doi | 10.1117/12.2260126 | |
dc.relation.uri | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10164/1/Smart-composites-based-on-controllably-grafted-graphene-oxide-particles-and/10.1117/12.2260126.short | |
dc.subject | Elastomers | en |
dc.subject | Graphene oxide | en |
dc.subject | Light-induced actuation | en |
dc.subject | PBMA | en |
dc.subject | PVDF-co-HFP | en |
dc.subject | Sensing | en |
dc.subject | Stimuliresponsive | en |
dc.description.abstract | This study utilize the simple fabrication method for graphene oxide (GO) sheet preparation, their controllable modification using surface initiated atom transfer radical polymerization (SI-ATRP) technique and thus suitable interaction with elastomeric matrix for final enhancement and controlling of the sensing capability upon light stimulus. GO particles and their grafted analogues were characterized by Fourier transform infrared spectroscopy, Thermogravimetric analysis and Raman spectroscopy to properly see the controllable coating as well as reduction of GO during the single-step synthesis. The composites containing various amounts of GO, controllably modified GO and elastomeric matrix poly(vinylidene-co-hexafluoropropylene) elastomer were characterized by dynamic mechanical analysis and thermal conductivity. The phenomenon how the GO and modified GO particles influence the mobility of the polymer chains and thermal conductivity will be investigated. The impact on change of the material properties with respect to the light-responsive and sensing capabilities is discussed. © 2017 SPIE. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007303 | |
utb.identifier.obdid | 43876495 | |
utb.identifier.scopus | 2-s2.0-85025164778 | |
utb.identifier.wok | 000417372100029 | |
utb.identifier.coden | PSISD | |
utb.source | d-scopus | |
dc.date.accessioned | 2017-09-03T21:40:10Z | |
dc.date.available | 2017-09-03T21:40:10Z | |
dc.description.sponsorship | Grant Agency of the Czech Republic [16-20361Y]; Ministry of Education, Youth and Sports of the Czech Republic - program NPU I [LO1504] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Mrlík, Miroslav | |
utb.contributor.internalauthor | Osička, Josef | |
utb.contributor.internalauthor | Pavlínek, Vladimír | |
utb.fulltext.affiliation | Miroslav Mrlik 1* , Josef Osicka 1 , Marketa Ilcikova 2 , Vladimir Pavlinek 1 , Jaroslav Mosnacek 2 , 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic 2 Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 45, Bratislava 45, Slovakia *[email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.references | [1] Mrlik, M., Ilcikova, M., Plachy, T., Pavlinek, V., Spitalsky, Z., Mosnacek, J., "Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties" Chem. Eng. J., 283, 717-720 (2016). http://dx.doi.org/10.1016/j.cej.2015.08.013 [2] Cvek, M., Mrlik, M., Ilcikova, M., Plachy, T., Sedlacik, M., Mosnacek, J., Pavlinek, V., " A facile controllable coating of carbonyl iron particles with poly(glycidyl methacrylate): a tool for adjusting MR response and stability properties, " . J. Mater. Chem. C 3(18), 4646-4656 (2015). http://dx.doi.org/10.1039/c5tc00319a [3] Davaran, S., Ghamkhari, A., Alizadeh, E., Massoumi, B., Jaymand, M.,"Novel dual stimuli-responsive ABC triblock copolymer: Raft synthesis, "schizophrenic" micellization, and its performance as a an anticancer drug delivery nanosystem" J. Colloid. Inter. Sci. 488, 282-293 (2017). http://dx.doi.org/10.1016/j.jcis.2016.11.002 [4] Antoniraj, M. G., Kumar, C. S., Kumari, H. L. J., Natesan, S., Kandasamy, R., "Atrial natriuretic peptide-cojugated chitosan-hydrazone-mPEG copolymer nanoparticles as pH-responsive carriers for intracellular delivery of prednisone" Cabrohyd. Polym. 157, 1667-1686 (2017). http://dx.doi.org/10.1016/j.carbpol.2016.11.049 [5] Ilcikova, M., Mrlik, M., Sedlacek, T., Doroshenko, M., Koynov, K., Danko, M., Mosnacek, J., "Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes," Polymer 72, 368-377 (2015). http://dx.doi.org/10.1016/j.polymer.2015.03.060 [6] Koerner, H., Price, G., Pearce, N.A., Alexander, M., Vaia, A., "Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers," Nat. Mater. 3, 115-122 (2004). http://dx.doi.org/ 10.1038/nmat1059 [7] Bian K, Liu, H. G., Tai, G. A., Zhu, K. J., Xiong, K., " Enhanced actuation response of nafion-based ionic polymer metal composites by doping BaTiO3 nanoparticles" J. Phys. Chem. C 120, 12377-12384 (2016). http://dx.doi.org/ 10.1021/acs.jpcc.6b03273 [8] Wie, J. J., Wang, D. H., Tandiglia, V. P., Tabiryan, N. V., Vergara-Toloza, R. O., Tan, L. S., White, T. J., " Photopiezoelectric Composites of Azobenzene Functionalized Polyimides and Polyvinylidene Fluoride" Macromol. Rapid Commun. 35, 2050-2056 (2014). http://dx.doi.org/ 10.1002/marc.201400455 [9] Czanikova, K., Torras, N., Esteve, J., Krupa, I., Kasak, P., Pavlova, E. ;Racko, D., Chodak, I. Omastova, M., "Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes," Sensor Actuat. B-Chem. 186, 701-710 (2013). http://dx.doi.org/ 10.1016/j.snb.2013.06.054 [10] Ansari, S., Rahima, C., Muralidharan, M. N., " Photomechanical characteristics of Thermally reduced grapehe oxide - polydimethylsiloxane Nanocomposites" Polym.-palst. Tehcnol. Eng. 52, 1604-1610 (2013). http://dx.doi.org/ 10.1080/03602559.2013.828232 [11] Hu, Y., Li, Z., Lan, T., Chen, W., "Photoactuators for direct optical-to-mechanical energy conversion: From nanocomponent assembly to macroscopic deformation" Adv. Mater. 28, 10548-10556 (2016). http://dx.doi.org/ 10.1002/adma.201602685 [12] Hu, Y., Wu, G., Lan, T:, Zhao, j. J., Liu, Y., Chen, W., " A graphene-based bimorph structure for design of high performance photoactuators" Adv. Mater. 27, 7867-7873 (2015). http://dx.doi.org/10.1002/adma.201502777 [13] Yang, Y. K., Zhan, W. J., Peng, R. G., He, G. G., Pang, X. C., Shi, D., Jiang, T., Lin, Y. Q., "Graphene-enabled superior and tunable photomechanical actuation in liquid crysalline elastomer nanocomposite" Adv. Mater. 27, 6376-6381 (2015). http://dx.doi.org/10.1002/adma.201503680 [14] Ahir, S.V., Terentjev, E.M., "Photomechanical actuation in polymer–nanotube composites," Nat. Mater. 4, 491-495 (2005). http://dx.doi.org/ 10.1038/nmat1391 [15] Ilcikova, M., Mrlik, M., Sedlacek, T., Chorvat, D., Krupa, I., Slouf, M., Koynov, K., Mosnacek, J. "Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer" Polymer 55, 211-218 (2014). http://dx.doi.org/10.1016/j.polymer.2013.11.031 [16] Ilcikova, M., Mrlik, M., Sedlacek, T., Slouf, M., Zhigunov, A., Koynov, K., Mosnacek, J. "Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes," ACS Macro Let. 3(10), 999-1003 (2014). http://dx.doi.org/ 10.1021/mz500444m [17] Torras, N., Zinoviev, K. E., Camargo, C. J., Campo, E. M., Camanella, H., Esteve, J., Marshall, J. E., Terentjev, E. M., Omastova, M., Krupa, I., Teplicky, P., Mamojka, B., Bruns, OP., Reoder, B., Vallribera, M., Malet, R., Zuffanelli, S., Soler, V., Roig, J., Walker, N., Wenn, D., Vossen, F., Crompvoets, F. M. H., "Tactile device based on opto-mechanical actuation of liquid crystal elastomers" 208, 104-112 (2014). http://dx.doi.org/10.1016/j.sna.2014.01.012 [18] Ilcikova, M., Mrlik, M., Spitalsky, Z., Micusik, M., Csomoro (va, K., Sasinkova, V., Kleinova, A., Mosnacek, J., "A tertiary amine in two competitive processes: reduction of graphene oxide vs. catalysis of atom transfer radical polymerization" RSC Adv., 5(5), 3370-3376 (2015). http://dx.doi.org/10.1039/c4ra12915f [19] Shao, P., Fang, J., Wang, H. X., Lin, T., "Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats" 5, 14345-14350 (2015). http://dx.doi.org/ 10.1039/c4ra16360e [20] Cvek, M., Mrlik, M., Ilcikova, M., Mosnacek, M., Munster, L., Pavlinek. V.,"Synthesis of Silicone Elastomers Containing Silyl-based Polymer-Grafted Carbonyl Iron Particles: An efficient Way To Improve Magnetorheological, Damping, and Sensing Performances" Macromolecules" (2017) http://dx.doi.org/10.1021/acs.macromol.6b02041. | |
utb.fulltext.sponsorship | Authors gratefully thanks to the Grant Agency of the Czech Republic (no. 16-20361Y) for financial support. This work was also supported by the Ministry of Education, Youth and Sports of the Czech Republic – program NPU I (LO1504). | |
utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, Czech Republic; Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 45, Slovakia | |
utb.fulltext.projects | 16-20361Y | |
utb.fulltext.projects | LO1504 |