Kontaktujte nás | Jazyk: čeština English
dc.title | Multiset languages accepted by deterministic multiset finite automata with detection as a specific kind of semilinear languages | en |
dc.contributor.author | Martinek, Pavel | |
dc.relation.ispartof | AIP Conference Proceedings | |
dc.identifier.issn | 0094-243X Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-0-7354-1538-6 | |
dc.date.issued | 2017 | |
utb.relation.volume | 1863 | |
dc.event.title | International Conference of Numerical Analysis and Applied Mathematics 2016, ICNAAM 2016 | |
dc.event.location | Rhodes | |
utb.event.state-en | Greece | |
utb.event.state-cs | Řecko | |
dc.event.sdate | 2016-09-19 | |
dc.event.edate | 2016-09-25 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | American Institute of Physics (AIP) | |
dc.identifier.doi | 10.1063/1.4992717 | |
dc.relation.uri | http://aip.scitation.org/doi/pdf/10.1063/1.4992717 | |
dc.description.abstract | The class of multiset languages accepted by deterministic multiset finite automata with detection is strictly included in the class of multiset regular languages. Since multiset regular languages coincide with semilinear languages, the strict inclusion means that some restrictive conditions imposed to semilinear languages can narrow them appropriately. The paper provides a condition which is expressed with help of semilinear languages and which is necessary for the multiset languages accepted by deterministic multiset finite automata with detection. © 2017 Author(s). | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1007298 | |
utb.identifier.obdid | 43876781 | |
utb.identifier.scopus | 2-s2.0-85026681297 | |
utb.identifier.wok | 000410159800527 | |
utb.source | d-scopus | |
dc.date.accessioned | 2017-09-03T21:40:09Z | |
dc.date.available | 2017-09-03T21:40:09Z | |
utb.contributor.internalauthor | Martinek, Pavel | |
utb.fulltext.affiliation | Pavel Martinek Department of Mathematics, Tomas Bata University in Zlin, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic [email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.references | [1] J. P. Banâtre, A. Coutant, and D. Le Metayer, “A parallel machine for multiset transformation and its programming style,” Future Generation Computer Systems, vol. 4, no. 2, pp. 133–144, 1988. [2] G. Berry, G. Boudol, “The chemical abstract machine,” Theor. Comp. Sci., vol. 96, pp. 217–248, 1992. [3] W. D. Blizard, “Multiset theory,” Notre Dame J. Form. Log., vol. 30, no. 1, pp. 36–66, 1989. [4] W. D. Blizard, “The development of multiset theory,” Mod. Log., vol. 1, no. 4, pp. 319–352, 1991. [5] E. Csuhaj-Varjú, C. Martín-Vide, and V. Mitrana, “Multiset automata,” in Multiset processing — mathematical, computer science, and molecular computing points of view, C. S. Calude, G. Păun, G. Rozenberg, and A. Salomaa, Eds., Lecture notes in computer science, vol. 2235, Berlin: Springer, 2001, pp. 69–83. [6] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, 2nd ed., Upper Saddle River: Pearson Addison Wesley, 2003. [7] M. Kudlek, C. Martín-Vide, and G. Păun, “Toward a formal macroset theory,” in Multiset processing — mathematical, computer science, and molecular computing points of view, C. S. Calude, G. Păun, G. Rozenberg, and A. Salomaa, Eds., Lecture notes in computer science, vol. 2235, Berlin: Springer, 2001, pp. 123–133. [8] M. Kudlek, P. Totzke, and G. Zetsche, “Multiset pushdown automata,” Fund. Inf., vol. 93, pp. 221–233, 2009. [9] M. Kudlek, P. Totzke, and G. Zetsche, “Properties of Multiset language classes defined by multiset pushdown automata,” Fund. Inf., vol. 93, pp. 235–244, 2009. [10] P. Martinek: “Fuzzy multiset finite automata: Determinism, languages, and pumping lemma,” in: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015. Zhangjiajie, China, 2015, pp. 60–64. [11] G. Păun, G. Rozenberg, and A. Salomaa, DNA Computing. New computing paradigms, Springer-Verlag, Berlin, 1998. [12] M. Sipser, Introduction to the Theory of Computation, 2nd ed., Boston: Thomson Course Technology, 2006. | |
utb.fulltext.sponsorship | - | |
utb.scopus.affiliation | Department of Mathematics, Tomas Bata University in Zlin, Nám. T. G. Masaryka 5555, Zlín, Czech Republic | |
utb.fulltext.projects | - |