Publikace UTB
Repozitář publikační činnosti UTB

Multiset languages accepted by deterministic multiset finite automata with detection as a specific kind of semilinear languages

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Multiset languages accepted by deterministic multiset finite automata with detection as a specific kind of semilinear languages en
dc.contributor.author Martinek, Pavel
dc.relation.ispartof AIP Conference Proceedings
dc.identifier.issn 0094-243X Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-0-7354-1538-6
dc.date.issued 2017
utb.relation.volume 1863
dc.event.title International Conference of Numerical Analysis and Applied Mathematics 2016, ICNAAM 2016
dc.event.location Rhodes
utb.event.state-en Greece
utb.event.state-cs Řecko
dc.event.sdate 2016-09-19
dc.event.edate 2016-09-25
dc.type conferenceObject
dc.language.iso en
dc.publisher American Institute of Physics (AIP)
dc.identifier.doi 10.1063/1.4992717
dc.relation.uri http://aip.scitation.org/doi/pdf/10.1063/1.4992717
dc.description.abstract The class of multiset languages accepted by deterministic multiset finite automata with detection is strictly included in the class of multiset regular languages. Since multiset regular languages coincide with semilinear languages, the strict inclusion means that some restrictive conditions imposed to semilinear languages can narrow them appropriately. The paper provides a condition which is expressed with help of semilinear languages and which is necessary for the multiset languages accepted by deterministic multiset finite automata with detection. © 2017 Author(s). en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007298
utb.identifier.obdid 43876781
utb.identifier.scopus 2-s2.0-85026681297
utb.identifier.wok 000410159800527
utb.source d-scopus
dc.date.accessioned 2017-09-03T21:40:09Z
dc.date.available 2017-09-03T21:40:09Z
utb.contributor.internalauthor Martinek, Pavel
utb.fulltext.affiliation Pavel Martinek Department of Mathematics, Tomas Bata University in Zlin, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic [email protected]
utb.fulltext.dates -
utb.fulltext.references [1] J. P. Banâtre, A. Coutant, and D. Le Metayer, “A parallel machine for multiset transformation and its programming style,” Future Generation Computer Systems, vol. 4, no. 2, pp. 133–144, 1988. [2] G. Berry, G. Boudol, “The chemical abstract machine,” Theor. Comp. Sci., vol. 96, pp. 217–248, 1992. [3] W. D. Blizard, “Multiset theory,” Notre Dame J. Form. Log., vol. 30, no. 1, pp. 36–66, 1989. [4] W. D. Blizard, “The development of multiset theory,” Mod. Log., vol. 1, no. 4, pp. 319–352, 1991. [5] E. Csuhaj-Varjú, C. Martín-Vide, and V. Mitrana, “Multiset automata,” in Multiset processing — mathematical, computer science, and molecular computing points of view, C. S. Calude, G. Păun, G. Rozenberg, and A. Salomaa, Eds., Lecture notes in computer science, vol. 2235, Berlin: Springer, 2001, pp. 69–83. [6] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, 2nd ed., Upper Saddle River: Pearson Addison Wesley, 2003. [7] M. Kudlek, C. Martín-Vide, and G. Păun, “Toward a formal macroset theory,” in Multiset processing — mathematical, computer science, and molecular computing points of view, C. S. Calude, G. Păun, G. Rozenberg, and A. Salomaa, Eds., Lecture notes in computer science, vol. 2235, Berlin: Springer, 2001, pp. 123–133. [8] M. Kudlek, P. Totzke, and G. Zetsche, “Multiset pushdown automata,” Fund. Inf., vol. 93, pp. 221–233, 2009. [9] M. Kudlek, P. Totzke, and G. Zetsche, “Properties of Multiset language classes defined by multiset pushdown automata,” Fund. Inf., vol. 93, pp. 235–244, 2009. [10] P. Martinek: “Fuzzy multiset finite automata: Determinism, languages, and pumping lemma,” in: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015. Zhangjiajie, China, 2015, pp. 60–64. [11] G. Păun, G. Rozenberg, and A. Salomaa, DNA Computing. New computing paradigms, Springer-Verlag, Berlin, 1998. [12] M. Sipser, Introduction to the Theory of Computation, 2nd ed., Boston: Thomson Course Technology, 2006.
utb.fulltext.sponsorship -
utb.scopus.affiliation Department of Mathematics, Tomas Bata University in Zlin, Nám. T. G. Masaryka 5555, Zlín, Czech Republic
utb.fulltext.projects -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam