Kontaktujte nás | Jazyk: čeština English
dc.title | Verification of robust properties of digital control closed-loop systems | en |
dc.contributor.author | Bobál, Vladimír | |
dc.contributor.author | Spaček, Ľuboš | |
dc.contributor.author | Hornák, Peter | |
dc.relation.ispartof | Proceedings - 31st European Conference on Modelling and Simulation, ECMS 2017 | |
dc.identifier.isbn | 978-0-9932440-4-9 | |
dc.date.issued | 2017 | |
dc.citation.spage | 348 | |
dc.citation.epage | 354 | |
dc.event.title | 31st European Conference on Modelling and Simulation, ECMS 2017 | |
dc.event.location | Budapest | |
utb.event.state-en | Hungary | |
utb.event.state-cs | Maďarsko | |
dc.event.sdate | 2017-05-23 | |
dc.event.edate | 2017-05-26 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | European Council for Modelling and Simulation | |
dc.identifier.doi | 10.7148/2017-0348 | |
dc.relation.uri | http://www.scs-europe.net/dlib/2017/2017-0348.htm | |
dc.relation.uri | http://www.scs-europe.net/dlib/2017/ecms2017acceptedpapers/0348-mct_ECMS2017_0018.pdf | |
dc.subject | Digital Control | en |
dc.subject | Polynomial Methods | en |
dc.subject | Robustness | en |
dc.subject | Robustness Margins | en |
dc.subject | LQ Method | en |
dc.subject | Simulation of Control Loop Systems | en |
dc.description.abstract | Robustness is specific property of closed-loop systems when the designed controller guarantees control not only for one nominal controlled system but also for all predefined class of systems (perturbed models). The robust theory is mainly exploited for design of the continuous-time systems. This paper deals with an experimental simulation investigation of robust properties of digital control closed-loop systems. Minimization of the Linear Quadratic (LQ) criterion was used for the design of control algorithm. Polynomial approach is based on the structure of the controller with two degrees of freedom (2DOF). Four types of process models (stable, non-minimum phase, unstable and integrating) were used for controller design. The Nyquist plot based characteristics of the open-loop transfer function (gain margin, phase margin and modulus margin) served as robustness indicators. The influence of change of process gain was chosen as a parametric uncertainty. The experimental results demonstrated that a robustness of examined digital control closed-loop systems could be improved by addition of user-defined poles (UDP). © ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi,Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors). | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1007250 | |
utb.identifier.obdid | 43876911 | |
utb.identifier.scopus | 2-s2.0-85021844060 | |
utb.identifier.wok | 000404420000052 | |
utb.source | d-scopus | |
dc.date.accessioned | 2017-09-03T21:40:05Z | |
dc.date.available | 2017-09-03T21:40:05Z | |
utb.contributor.internalauthor | Bobál, Vladimír | |
utb.contributor.internalauthor | Spaček, Ľuboš | |
utb.contributor.internalauthor | Hornák, Peter | |
utb.fulltext.affiliation | Vladimír Bobál, Ľuboš Spaček and Peter Hornák Tomas Bata University in Zlín Faculty of Applied Informatics Nad Stráněmi 4511 760 05 Zlín Czech Republic E-mail: [email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.references | Bobál, V., Böhm, J., Fessl, J. and J. Macháček. 2005. Digital Self-tuning Controllers: Algorithms, Implementation and Applications. Springer-Verlag, London. Doyle, J., Francis, B. and A. Tannenbaum. 1990. Feedback Control Theory. 1990. Macmillan Publishing. Horowitz, I., M. 1963. Synthesis of Fedback Systems. Academia Press. Kučera, V. 1991. Analysis and Design of Discrete Linear Control Systems. Prentice-Hall, Englewood Cliffs, NJ. Kučera, V. 1993. “Diophantine equations in control – a survey”. Automatica 29, 1361-1375. Kučera, V. 1991. Analysis and Design of Discrete Linear Control Systems. Prentice-Hall, Englewood Cliffs, NJ. Kwakernaak, H. 1993. „Robust control and H∞ optimization – Tutorial paper”. Automatica 29, 255-273. Landau, I. D. 1998. “The R-S-T digital controller design and applications”. Control Engineering Practice 7,155-165. Landau, I. D. 1999. “From robust control to adaptive control,” Control Engineering Practice 7, 1113-1124. Landau, I. D. and G. Zito. 2006. Digital Control Systems. Springer-Verlag, London. Landau, I. D., Lozano, R., M’Saad, M. and A. Karimi. 2011. Adaptive Control, Algorithms. Analysis and Applications. Springer-Verlag, London. Matušů, R. 2014. “Robust stability analysis of discrete-time systems with parametric uncertainty,” International Journal of Mathematical Models and Methods 8, 95-102. Matušů, R. and R. Prokop. 2011. “Graphical analysis of robust stability for systems with parametric uncertainty: an overview,” Transactions of the Institute of Measurement and Control 33, 274-290. Messner, B. and D. Tilbury. 2011. Control Tutorials for MATLAB and Simulink. MathWorks, Natick, MA, USA. Morari, M. and E. Zafiriou. 1989. Robust Process Control. Prentice-Hall, Englewood Cliffs, NJ. Sánches-Peňa, R. S. and M. Szainer. 1998. Robust Systems. Theory and Application. J. Willey & Sons, New York. Šebek, M. Polynomial Toolbox for MATLAB, Version 3.0. 2014. PolyX, Prague, Czech Republic. Šebek, M. and M. Hromčík. 2007. “Polynomial design methods,” International Journal of Robust and Nonlinear Control 17, 679-681. Skogestad, S. and I. Postletwaithe. 2005. Multivariable Feedback Control – Analyses and Design. J. Wiley & Sons, Chichester. | |
utb.fulltext.sponsorship | - | |
utb.scopus.affiliation | Tomas Bata University in Zlín, Faculty of Applied Informatics, Nad Stráněmi 4511, Zlín, Czech Republic | |
utb.fulltext.projects | - |