Kontaktujte nás | Jazyk: čeština English
dc.title | Acceleration of polylactide degradation under biotic and abiotic conditions through utilization of a new, experimental, highly compatible additive | en |
dc.contributor.author | Stloukal, Petr | |
dc.contributor.author | Kucharczyk, Pavel | |
dc.relation.ispartof | Polymer Degradation and Stability | |
dc.identifier.issn | 0141-3910 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.volume | 142 | |
dc.citation.spage | 217 | |
dc.citation.epage | 225 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.identifier.doi | 10.1016/j.polymdegradstab.2017.06.024 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S014139101730188X | |
dc.subject | acceleration of degradation | en |
dc.subject | biodegradation | en |
dc.subject | composting | en |
dc.subject | hydrolysis | en |
dc.subject | polylactide | en |
dc.description.abstract | This paper focuses on accelerating the biotic and abiotic degradation of polylactide by combining it with a newly developed experimental additive. Said additive is based on a highly carboxylic-functionalized poly(lactic acid) copolymer that possesses a comb-like architecture. Samples were prepared by melt blending, and analysis was carried out prior to degradation on changes in molecular weight and mechanical and rheological properties. Degradation studies were performed in compost and pH 7 water buffer environments. Such degradation was gauged by monitoring alteration in molecular weight, as well as in the content of carbon dissolved and CO2 evolved during composting. Furthermore, experimental data were treated by applying appropriate kinetic models. Results showed that the newly developed hydrolysis additive efficiently promoted biodegradation - even at a low dosage of 5% w/w, primarily due to reduction in the lag phase at the commencement of the process. © 2017 | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007209 | |
utb.identifier.obdid | 43876734 | |
utb.identifier.scopus | 2-s2.0-85022047569 | |
utb.identifier.wok | 000408183300023 | |
utb.identifier.coden | PDSTD | |
utb.source | j-scopus | |
dc.date.accessioned | 2017-09-03T21:40:01Z | |
dc.date.available | 2017-09-03T21:40:01Z | |
dc.description.sponsorship | 17-16928Y, GACR, Grantová Agentura České Republiky; LO1504, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy | |
dc.description.sponsorship | Czech Science Foundation [17-16928Y]; Ministry of Education, Youth and Sports of the Czech Republic within the NPU I programme [LO1504] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Stloukal, Petr | |
utb.contributor.internalauthor | Kucharczyk, Pavel | |
utb.fulltext.affiliation | Petr Stloukal * , Pavel Kucharczyk Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomas Bati 5678, 760 01 Zlin, Czech Republic * Corresponding author. E-mail address: [email protected] (P. Stloukal). | |
utb.fulltext.dates | Received 2 May 2017 Received in revised form 15 June 2017 Accepted 25 June 2017 Available online 27 June 2017 | |
utb.fulltext.references | [1] K.M. Nampoothiri, N.R. Nair, R.P. John, Biological degradation of plastics: a comprehensive review, Bioresour. Technol. 101 (2010) 8493e8501. [2] A. Gregorova, V. Sedlarik, M. Pastorek, H. Jachandra, F. Stelzer, Effect of compatibilizing agent on the properties of highly crystalline composites based on poly(lactic acid) and wood flour and/or mica, J. Polym. Environ. 19 (2011) 372e381. [3] G. Kale, R. Auras, S.P. Singh, R. Narayan, Biodegradability of polylactide bottles in real and simulated composting conditions, Polym. Test. 26 (8) (2007) 1049e1061. [4] R. Pantani, A. Sorrentino, Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions, Polym. Degrad. Stab. 98 (5) (2013) 1089e1096. [5] T. Kijchavengkul, G. Kale, R. Auras, Degradation of biodegradable polymers in real and simulated composting conditions, in: Polymer Degradation and Performance, Michigan State University, Michigan U.S, 2009. [6] J.H. Song, R.J. Murphy, R. Narayan, G.B.H. Davies, Biodegradable and compostable alternatives to conventional plastics, Philos. Trans. R. Soc. Lond. Ser. B 364 (1526) (2009) 2127e2139. [7] P. Stloukal, V. Verney, S. Commereuc, J. Rychly, L. Matisova-Rychlá, V. Pis, M. Koutny, Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering, Chemosphere 88 (10) (2012) 1214e1219. [8] P. Stloukal, S. Pekařová, A. Kalendova, H. Mattausch, S. Laske, C. Holzer, L. Chitu, S. Bodner, G. Maier, M. Slouf, M. Koutny, Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process, Waste Manage. Oxf. 42 (2015) 31e40. [9] S.P. Lyu, J. Schley, B. Loy, D. Lind, C. Hobot, R. Sparer, D. Untereker, Kinetics and time e temperature equivalence of polymer degradation, Biomacromolecules 8 (7) (2007) 2301e2310. [10] R.J. Mueller, Biological degradation of synthetic polyestersdenzymes as potential catalysts for polyester recycling, Process Biochem. 41 (10) (2006) 2124e2128. [11] Y. Nakayama, T. Inaba, Y. Toda, R. Tanaka, Z. Cai, T. Shiono, H. Shirahama, Ch Tsutsumi, Synthesis and properties of cationic ionomers from poly(ester-urethane)s based on polylactide, J. Polym. Sci. Part A Polym. Chem. 51 (20) (2013) 4423e4428. [12] A.V. Janorkar, A.T. Metters, D.E. Hirt, Modification of poly(lactic acid) Films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process, Macromolecules 37 (24) (2004) 151e9159. [13] F. Masmoudi, A. Bessadok, M. Dammak, M. Jaziri, E. Ammar, Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose, Environ. Sci. Pollut. Res. 23 (20) (2016) 20904e20914. [14] R. Lipsa, N. Tudorachi, R.N. Darie-Nita, L. Oprică, C. Vasile, A. Chiriac, Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma virid, Int. J. Biol. Macromol. 88 (2016) 515e526. [15] R. Renstad, S. Karlsson, A. Sandgren, A.C. Albertsson, Influence of processing additives on the degradation of melt-pressed films of poly(epsilon-caprolactone) and poly(lactic acid), J. Environ. Polym. Degr 6 (4) (1998) 209e221. [16] R. Pantani, A. Sorrentino, Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions, Polym. Degrad. Stab. 98 (5) (2013) 1089e1096. [17] H. Shinoda, Y. Asou, T. Kashima, T. Kato, Y. Tseng, T. Yagi, Amphiphilic biodegradable copolymer, poly(aspartic acid-co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(ε-caprolactone), Polym. Degrad. Stab. 80 (2) (2003) 241e250. [18] S.J. de Jong, E.R. Arias, D.T.S. Rijkers, C.F. van Nostrum, J.J. Kettenes-van den Bosch, W.E. Hennink, New insights into the hydrolytic degradation of poly(-lactic acid): participation of the alcohol terminus, Polymer 42 (7) (2001) 2795e2802. [19] J.R. Rocca-Smith, O. Whyte, C.-H. Brachais, D. Champion, F. Piasente, E. Marcuzzo, A. Sensidoni, F. Debeaufort, T. Karbowiak, Beyond biodegradability of poly(lactic acid): physical and chemical stability in humid environments, ACS Sustain. Chem. Eng. 5 (3) (2017) 2751e2762. [20] S.S. Ray, K. Yamada, M. Okamoto, K. Ueda, New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology, Polymer 44 (2003) 857e866. [21] K. Fukushima, D. Tabuani, M. Dottori, I. Armentano, J.M. Kenny, G. Camino, Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites, Polym. Degrad. Stab. 96 (12) (2011) 2120e2129. [22] P. Kucharczyk, J. Zednik, P. Humpolicek, Z. Capakova, V. Sedlarik, Versatile synthesis of comb-shaped poly(lactic acid) copolymers with poly(acrylic acid)-based backbones and carboxylic acid end groups, React. Funct. Polym. 111 (2017) 79e87. [23] D. Wu, L. Wu, M. Zhang, Y. Zhao, Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes, Polym. Degrad. Stab. 93 (8) (2008) 1577e1584. [24] V. Taubner, R. Shishoo, Influence of processing parameters on the degradation of Poly(L-lactide) during extrusion, J. Appl. Polym. Sci. 79 (12) (2001) 2128e2135. [25] F. Signori, M.B. Coltelli, S. Bronco, Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing, Polym. Degrad. Stab. 94 (1) (2009) 74e82. [26] P. Stloukal, G. Jandikova, M. Koutny, V. Sedlařík, Carbodiimide additive to control hydrolytic stability and biodegradability of PLA, Polym. Test. 54 (2016) 19e28. [27] H.T. Oyama, S. Abe, Stereocomplex poly(lactic acid) alloys with superb heat resistance and toughness, ACS Sustain. Chem. Eng. 3 (12) (2015) 3245e3252. [28] P. Kucharczyk, V. Sedlarik, N. Miskolczi, H. Szakacs, T. Kitano, Properties enhancement of partially biodegradable polyamide/polylactide blends through compatibilization with novel polyalkenyl-poly-maleic-anhydride-amide/imide-based additives, J. Reinf. Plast. Compos. 31 (3) (2012) 189e202. [29] L. Husárová, S. Pekarová, P. Stloukal, P. Kucharzcyk, V. Verney, S. Commereuc, A. Ramone, M. Koutny, Identification of important abiotic and biotic factors in thebiodegradation of poly(l-lactic acid), Int. J. Biolog. Macromol. 71 (2014) 155e162. [30] P. Stloukal, A. Kalendova, H. Mattausch, S. Laske, C. Holzer, M. Koutny, The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites, Polym. Test. 41 (2015) 124e132. [31] P. Kucharczyk, E. Hnatkova, Z. Dvorak, V. Sedlarik, Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour, Polym. Degrad. Stab. 98 (1) (2013) 150e157. | |
utb.fulltext.sponsorship | This work was financially supported by the Czech Science Foundation (Grant no. 17-16928Y) and by the Ministry of Education, Youth and Sports of the Czech Republic within the NPU I programme (Grant no. LO1504). | |
utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomas Bati 5678, Zlin, Czech Republic |