Publikace UTB
Repozitář publikační činnosti UTB

Poly(vinyl alcohol): formulation of a polymer ink for the patterning of substrates with a drop-on-demand inkjet printer

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Poly(vinyl alcohol): formulation of a polymer ink for the patterning of substrates with a drop-on-demand inkjet printer en
dc.contributor.author Šuly, Pavol
dc.contributor.author Krčmář, Petr
dc.contributor.author Mašlík, Jan
dc.contributor.author Urbánek, Pavel
dc.contributor.author Kuřitka, Ivo
dc.relation.ispartof Materiali in Tehnologije
dc.identifier.issn 1580-2949 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 51
utb.relation.issue 1
dc.citation.spage 41
dc.citation.epage 48
dc.type article
dc.language.iso en
dc.publisher Institut za Kovinske Materiale in Tehnologije Ljubljana
dc.identifier.doi 10.17222/mit.2015.180
dc.relation.uri http://mit.imt.si/Revija/izvodi/mit171/suly.pdf
dc.subject inkjet ink en
dc.subject poly(vinyl alcohol) en
dc.subject printed patterns en
dc.subject viscosity en
dc.subject surface tension en
dc.description.abstract Nowadays, inkjet-printing technology is considered one of the most promising deposition techniques. It allows the highly precise deposition of functional materials to the required place on a substrate and a cost-saving printing process, especially when the drop-on-demand manner is used. Moreover, it represents the perfect technique for the controlled deposition of polymer material, especially for polymer solutions, because of their low viscosity and better process ability. Poly(vinyl alcohol) was chosen because of its versatile application potential; moreover, its compatibility with the human body only increases its usability in bio-applications. The main purpose of this research was to find the appropriate solvent system for poly(vinyl alcohol) and its printability. Solutions with the best properties were printed in pre-defined patterns and personally defined motifs and the printing conditions were optimized in order to obtain patterns with the best possible shape and resolution, which were analysed by optical microscopy. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007139
utb.identifier.obdid 43877026
utb.identifier.scopus 2-s2.0-85027458283
utb.identifier.wok 000396592900008
utb.source j-wok
dc.date.accessioned 2017-08-01T08:27:17Z
dc.date.available 2017-08-01T08:27:17Z
dc.description.sponsorship Ministry of Education; Youth and Sports of the Czech Republic - Program NPU I [LO1504]; Internal Grant Agency of Tomas Bata University in Zlin [IGA/CPS/2015/006]
dc.rights.uri http://mit.imt.si/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Šuly, Pavol
utb.contributor.internalauthor Krčmář, Petr
utb.contributor.internalauthor Mašlík, Jan
utb.contributor.internalauthor Urbánek, Pavel
utb.contributor.internalauthor Kuřitka, Ivo
utb.fulltext.affiliation Pavol Šuly, Petr Krčmář, Jan Mašlík, Pavel Urbánek, Ivo Kuřitka Tomas Bata University, Centre of Polymer Systems, Tr. Tomase Bati 5678, 760 01 Zlin, Czech Republic [email protected]
utb.fulltext.dates Prejem rokopisa – received: 2015-07-01; sprejem za objavo – accepted for publication: 2016-01-19
utb.fulltext.references 1 J. Li, F. Rossignol, J. Macdonald, Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing, Lab Chip, 15 (2015) 12, 2538–2558, doi:10.1039/C5LC00235D 2 A. Hudd, Inkjet Printing Technologies, The Chemistry of Inkjet Inks, S. Magdassi (Ed.), Singapore, World Scientific Publishing, 2010, 3–18 3 B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution, Annual Review of Materials Research, 40 (2010) 1, 395–414, doi:10.1146/annurev-matsci-070909-104502 4 M. Singh, H. M. Haverinen, P. Dhagat, G. E. Jabbour, Inkjet printing-process and its applications, Advanced Materials, 22 (2010) 6, 673–685, doi:10.1002/adma.200901141 5 Q. Zheng, J. Lu, H. Chen, L. Huang, J. Cai, and Z. Xu, Application of inkjet printing technique for biological material delivery and antimicrobial assays, Analytical Biochemistry, 410 (2011) 2, 171–176. doi:10.1016/j.ab.2010.10.024 6 C.-T. Chen, Inkjet Printing of Microcomponents: Theory, Design, Characteristics and Applications, Features of Liquid Crystal Display Materials and Processes, N. V. Kamanina, (Ed.), Rijeka, Croatia, InTech, 2011, 43–60 7 N. Perinka, C. H. Kim, M. Kaplanova, Y. Bonnassieux, Preparation and Characterization of Thin Conductive Polymer Films on the base of PEDOT:PSS by Ink-Jet Printing, Physics Procedia, 44 (2013), 120–129, doi:10.1016/j.phpro.2013.04.016 8 J. Tao: Effects of Molecular Weight and Solution Concentration on Electrospinning of PVA. M.S. thesis, Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, 2003 http://www.wpi.edu/Pubs/ETD/Available/etd-0613103-130015/unrestricted/jtao.pdf, 20.6.2015 9 H. J. Endres, A. Siebert-Raths, Engineering Biopolymers: Markets, Manufacturing, Properties and Applications, Carl Hanser Verlag, Munich, 2011, 149–224 10 J. Vohlídal, A. Julák, K. Štulík, Chemické a analytické tabulky, Praha: Grada Publishing, 1999, 177, 276, 369 11 T. Sochi, Flow of non-newtonian fluids in porous media, Journal of Polymer Science Part B: Polymer Physics, 48 (2010) 23, 2437–2767, doi:10.1002/polb.22144 12 X. Wang, W. W. Carr, D. G. Bucknall, J. F. Morris, High-shear-rate capillary viscometer for inkjet inks, Review of Scientific Instruments, 81 (2010) 6, 065106–, doi:10.1063/1.3449478 13 C. A. Lamont, T. M. Eggenhuisen, M. J. J. Coenen, T. W.L. Slaats, R. Andriessen, P. Groen, Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells, Organic Electronics, 17 (2015), 107–114, doi:10.1016/j.orgel.2014.10.052 14 X. Nie, H. Wang, J. Zou, Inkjet printing of silver citrate conductive ink on PET substrate, Applied Surface Science, 261 (2012), 554–560, doi:10.1016/j.apsusc.2012.08.054 15 H. Dakhil, A. Wierschem, Measuring low viscosities and high shear rates with a rotational rheometer in a thin-gap parallel-disk configuration, Applied Rheology, 24 (2014) 6, 63795–, doi:10.3933/ApplRheol-24-63795 16 L. Pan, P. E. Arratia, A high-shear, low Reynolds number microfluidic rheometer, Microfluidics and Nanofluidics, 14 (2013) 5, 885–894, doi:10.1007/s10404-012-1124-2 17 FUJIFILM Dimatix 2010, Fujifilm Dimatix Materials Printer DMP-2800 series: User Manual, Document no. PM000040 Rev. 05, http://www.lilliu.co.uk/resources/DMP/DMP2800GuideVersion2.0.pdf, 20.6.2015 18 I. S. Khattab, F. Bandarkar, M. A. A. Fakhree, A. Jouyban, Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323 K, Korean Journal of Chemical Engineering, 29 (2012) 6, 812–817, doi:10.1007/s11814-011-0239-6 19 Y. H. Yun, J. D. Kim, B. K. Lee, Y. W. Cho, H. Y. Lee, Polymer inkjet printing: construction of three-dimensional structures at micro-scale by repeated lamination, Macromolecular Research, 17(2009) 3, 197–202, doi:10.1007/BF0321867
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504). We also acknowledge the support of the Internal Grant Agency of Tomas Bata University in Zlín (number: IGA/CPS/2015/006).
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam