Publikace UTB
Repozitář publikační činnosti UTB

Ethyl({[acryloyl(furan-2-ylmethyl)amino]acetyl}amino)acetate

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Ethyl({[acryloyl(furan-2-ylmethyl)amino]acetyl}amino)acetate en
dc.contributor.author Shimoga Dinesh, Ganesh
dc.contributor.author Saha, Nabanita
dc.contributor.author Zuckermann, Ronald N.
dc.contributor.author Sáha, Petr
dc.relation.ispartof MolBank
dc.identifier.issn 1422-8599 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 2017
utb.relation.issue 1
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/M925
dc.relation.uri http://www.mdpi.com/1422-8599/2017/1/M925
dc.subject FTIR en
dc.subject NMR en
dc.subject peptides en
dc.subject peptoids en
dc.subject Ugi reaction en
dc.description.abstract Ethyl({[acryloyl(furan-2-ylmethyl)amino]acetyl}amino)acetate was synthesized via Ugi four component (4C) reaction at ambient temperature. The protocol employs a reaction between formaldehyde, furfurylamine, acrylic acid, and ethyl 2-isocyanoacetate. The course of the reaction was found to be high yielding, and the resulting glycine ester derivative was well characterized by elemental analysis, FTIR, NMR spectroscopy, and mass spectrometric techniques. © 2017 by the authors; licensee MDPI, Basel, Switzerland. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1006899
utb.identifier.obdid 43877202
utb.identifier.scopus 2-s2.0-85009730038
utb.identifier.wok 000418113500004
utb.source j-scopus
dc.date.accessioned 2017-06-27T08:13:10Z
dc.date.available 2017-06-27T08:13:10Z
dc.description.sponsorship DE-AC02-05CH11231, DOE, U.S. Department of Energy; MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy
dc.description.sponsorship MSMT CR-USA Kontakt II [LH14050]; Molecular Foundry, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministry of Education, Youth and Sports of the Czech Republic - NPU Program I [LO1504]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Shimoga Dinesh, Ganesh
utb.contributor.internalauthor Saha, Nabanita
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Shimoga D. Ganesh 1 , Nabanita Saha 1, *, Ronald N. Zuckermann 2 and Petr Sáha 1 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, 760 01, Zlin, Czech Republic; [email protected] (S.D.G.); [email protected] (P.S.) 2 Biological Nanostructures Facility, Molecular Foundry, Lawrence Berkeley National Laboratory1 Cyclotron Rd., Berkeley, CA 94720, USA; [email protected] * Correspondence: [email protected]; Tel.: +420-576-038-156
utb.fulltext.dates Received: 21 September 2016 Accepted: 4 January 2017 Published: 9 January 2017
utb.fulltext.references 1. Gutteridge, A.; Thornton, J.M. Understanding nature’s catalytic toolkit. Trends Biochem. Sci. 2005, 30, 622–629. [CrossRef] [PubMed] 2. Reddington, S.C.; Howarth, M. Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr. Opin. Chem. Biol. 2015, 29, 94–99. [CrossRef] [PubMed] 3. Simon, R.J.; Kania, R.S.; Zuckermann, R.N.; Huebner, V.D.; Jewell, D.A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe, C.K.; et al. Peptoids: A modular approach to drug discovery. Proc. Natl. Acad. Sci. USA 1992, 89, 9367–9371. [CrossRef] [PubMed] 4. Zuckermann, R.N. Peptoid Origins. Biopolymers (PeptSci) 2011, 96, 545–555. [CrossRef] [PubMed] 5. Zuckermann, R.N.; Kodadek, T. Peptoids as potential therapeutics. Curr. Opin. Mol. Ther. 2009, 11, 299–307. [PubMed] 6. Fosgerau, K.; Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 2015, 20, 122–128. [CrossRef] [PubMed] 7. Mangunuru, H.P.R.; Yang, H.; Wang, G. Synthesis of peptoid based small molecular gelators by a multiple component reaction. Chem. Commun. 2013, 49, 4489–4491. [CrossRef] [PubMed] 8. Mitra, R.N.; Das, D.; Roy, S.; Das, P.K. Structure and Properties of Low Molecular Weight Amphiphilic Peptide Hydrogelators. J. Phys. Chem. B 2007, 111, 14107–14113. [CrossRef] [PubMed] 9. Worthington, P.; Pochan, D.J.; Langhans, S.A. Peptide Hydrogels—Versatile Matrices for 3D Cell Culture in Cancer Medicine. Front. Oncol. 2015, 5, 92. [CrossRef] [PubMed] 10. Tibbitt, M.W.; Anseth, K.S. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Biotechnol. Bioeng. 2009, 103, 655–663. [CrossRef] [PubMed] 11. Biswas, G.; Moon, H.J.; Boraty ´nski, P.; Jeong, B.; Kwon, Y.-U. Structural sensitivity of peptoid-based low molecular mass organogelator. Mater. Des. 2016, 108, 659–665. [CrossRef] 12. Nigam, M.; Rush, B.; Patel, J.; Castillo, R.; Dhar, P. Aza-Michael Reaction for an Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2016, 93, 753–756. [CrossRef]
utb.fulltext.sponsorship The work is supported by MŠMT CR-USA Kontakt II (LH14050) and the Molecular Foundry, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research is also supported in part by a grant from the Ministry of Education, Youth and Sports of the Czech Republic - NPU Program I (LO1504). We also acknowledge Pavel Kucharczyk, Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, 760 01, Zlin, Czech Republic, for LCMS measurement.
utb.wos.affiliation [Ganesh, Shimoga D.; Saha, Nabanita; Saha, Petr] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic; [Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Biol Nanostruct Facil Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA
utb.fulltext.projects LH14050
utb.fulltext.projects DE-AC02-05CH11231
utb.fulltext.projects LO1504
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International