Kontaktujte nás | Jazyk: čeština English
dc.title | Ethyl({[acryloyl(furan-2-ylmethyl)amino]acetyl}amino)acetate | en |
dc.contributor.author | Shimoga Dinesh, Ganesh | |
dc.contributor.author | Saha, Nabanita | |
dc.contributor.author | Zuckermann, Ronald N. | |
dc.contributor.author | Sáha, Petr | |
dc.relation.ispartof | MolBank | |
dc.identifier.issn | 1422-8599 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.volume | 2017 | |
utb.relation.issue | 1 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI AG | |
dc.identifier.doi | 10.3390/M925 | |
dc.relation.uri | http://www.mdpi.com/1422-8599/2017/1/M925 | |
dc.subject | FTIR | en |
dc.subject | NMR | en |
dc.subject | peptides | en |
dc.subject | peptoids | en |
dc.subject | Ugi reaction | en |
dc.description.abstract | Ethyl({[acryloyl(furan-2-ylmethyl)amino]acetyl}amino)acetate was synthesized via Ugi four component (4C) reaction at ambient temperature. The protocol employs a reaction between formaldehyde, furfurylamine, acrylic acid, and ethyl 2-isocyanoacetate. The course of the reaction was found to be high yielding, and the resulting glycine ester derivative was well characterized by elemental analysis, FTIR, NMR spectroscopy, and mass spectrometric techniques. © 2017 by the authors; licensee MDPI, Basel, Switzerland. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1006899 | |
utb.identifier.obdid | 43877202 | |
utb.identifier.scopus | 2-s2.0-85009730038 | |
utb.identifier.wok | 000418113500004 | |
utb.source | j-scopus | |
dc.date.accessioned | 2017-06-27T08:13:10Z | |
dc.date.available | 2017-06-27T08:13:10Z | |
dc.description.sponsorship | DE-AC02-05CH11231, DOE, U.S. Department of Energy; MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy | |
dc.description.sponsorship | MSMT CR-USA Kontakt II [LH14050]; Molecular Foundry, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministry of Education, Youth and Sports of the Czech Republic - NPU Program I [LO1504] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Shimoga Dinesh, Ganesh | |
utb.contributor.internalauthor | Saha, Nabanita | |
utb.contributor.internalauthor | Sáha, Petr | |
utb.fulltext.affiliation | Shimoga D. Ganesh 1 , Nabanita Saha 1, *, Ronald N. Zuckermann 2 and Petr Sáha 1 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, 760 01, Zlin, Czech Republic; [email protected] (S.D.G.); [email protected] (P.S.) 2 Biological Nanostructures Facility, Molecular Foundry, Lawrence Berkeley National Laboratory1 Cyclotron Rd., Berkeley, CA 94720, USA; [email protected] * Correspondence: [email protected]; Tel.: +420-576-038-156 | |
utb.fulltext.dates | Received: 21 September 2016 Accepted: 4 January 2017 Published: 9 January 2017 | |
utb.fulltext.references | 1. Gutteridge, A.; Thornton, J.M. Understanding nature’s catalytic toolkit. Trends Biochem. Sci. 2005, 30, 622–629. [CrossRef] [PubMed] 2. Reddington, S.C.; Howarth, M. Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr. Opin. Chem. Biol. 2015, 29, 94–99. [CrossRef] [PubMed] 3. Simon, R.J.; Kania, R.S.; Zuckermann, R.N.; Huebner, V.D.; Jewell, D.A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe, C.K.; et al. Peptoids: A modular approach to drug discovery. Proc. Natl. Acad. Sci. USA 1992, 89, 9367–9371. [CrossRef] [PubMed] 4. Zuckermann, R.N. Peptoid Origins. Biopolymers (PeptSci) 2011, 96, 545–555. [CrossRef] [PubMed] 5. Zuckermann, R.N.; Kodadek, T. Peptoids as potential therapeutics. Curr. Opin. Mol. Ther. 2009, 11, 299–307. [PubMed] 6. Fosgerau, K.; Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 2015, 20, 122–128. [CrossRef] [PubMed] 7. Mangunuru, H.P.R.; Yang, H.; Wang, G. Synthesis of peptoid based small molecular gelators by a multiple component reaction. Chem. Commun. 2013, 49, 4489–4491. [CrossRef] [PubMed] 8. Mitra, R.N.; Das, D.; Roy, S.; Das, P.K. Structure and Properties of Low Molecular Weight Amphiphilic Peptide Hydrogelators. J. Phys. Chem. B 2007, 111, 14107–14113. [CrossRef] [PubMed] 9. Worthington, P.; Pochan, D.J.; Langhans, S.A. Peptide Hydrogels—Versatile Matrices for 3D Cell Culture in Cancer Medicine. Front. Oncol. 2015, 5, 92. [CrossRef] [PubMed] 10. Tibbitt, M.W.; Anseth, K.S. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Biotechnol. Bioeng. 2009, 103, 655–663. [CrossRef] [PubMed] 11. Biswas, G.; Moon, H.J.; Boraty ´nski, P.; Jeong, B.; Kwon, Y.-U. Structural sensitivity of peptoid-based low molecular mass organogelator. Mater. Des. 2016, 108, 659–665. [CrossRef] 12. Nigam, M.; Rush, B.; Patel, J.; Castillo, R.; Dhar, P. Aza-Michael Reaction for an Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2016, 93, 753–756. [CrossRef] | |
utb.fulltext.sponsorship | The work is supported by MŠMT CR-USA Kontakt II (LH14050) and the Molecular Foundry, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research is also supported in part by a grant from the Ministry of Education, Youth and Sports of the Czech Republic - NPU Program I (LO1504). We also acknowledge Pavel Kucharczyk, Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, 760 01, Zlin, Czech Republic, for LCMS measurement. | |
utb.wos.affiliation | [Ganesh, Shimoga D.; Saha, Nabanita; Saha, Petr] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic; [Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Biol Nanostruct Facil Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA | |
utb.fulltext.projects | LH14050 | |
utb.fulltext.projects | DE-AC02-05CH11231 | |
utb.fulltext.projects | LO1504 |