Publikace UTB
Repozitář publikační činnosti UTB

Evaluation of thermally induced degradation of branched polypropylene by using rheology and different constitutive equations

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Evaluation of thermally induced degradation of branched polypropylene by using rheology and different constitutive equations en
dc.contributor.author Drábek, Jiří
dc.contributor.author Zatloukal, Martin
dc.relation.ispartof Polymers
dc.identifier.issn 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2016
utb.relation.volume 8
utb.relation.issue 9
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/polym8090317
dc.relation.uri http://www.mdpi.com/2073-4360/8/9/317
dc.subject Branched polypropylene en
dc.subject Constitutive equations en
dc.subject Polymer melts en
dc.subject Thermal degradation en
dc.subject Uniaxial extensional viscosity en
dc.description.abstract In this work, virgin as well as thermally degraded branched polypropylenes were investigated by using rotational and Sentmanat extensional rheometers, gel permeation chromatography and different constitutive equations. Based on the obtained experimental data and theoretical analysis, it has been found that even if both chain scission and branching takes place during thermal degradation of the tested polypropylene, the melt strength (quantified via the level of extensional strain hardening) can increase at short degradation times. It was found that constitutive equations such as Generalized Newtonian law, modified White-Metzner model, Yao and Extended Yao models have the capability to describe and interpret the measured steady-state rheological data of the virgin as well as thermally degraded branched polypropylenes. Specific attention has been paid to understanding molecular changes during thermal degradation of branched polypropylene by using physical parameters of utilized constitutive equations. © 2016 by the authors; licensee MDPI, Basel, Switzerland. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1006746
utb.identifier.obdid 43875261
utb.identifier.scopus 2-s2.0-84990051436
utb.identifier.wok 000385533500007
utb.source j-scopus
dc.date.accessioned 2016-12-22T16:19:04Z
dc.date.available 2016-12-22T16:19:04Z
dc.description.sponsorship Grant Agency of the Czech Republic [16-05886S]; TBU - resources of specific university research [Zlin IGA/FT/2016/007]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Drábek, Jiří
utb.contributor.internalauthor Zatloukal, Martin
utb.fulltext.affiliation Jiri Drabek and Martin Zatloukal * Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-57-603-1320
utb.fulltext.dates Received: 27 June 2016; Accepted: 15 August 2016; Published: 24 August 2016
utb.fulltext.references 1. Lugão, A.B.; Otaguro, H.; Parra, D.F.; Yoshiga, A.; Lima, L.F.C.P.; Artel, B.W.H.; Liberman, S. Review on the production process and uses of controlled rheology polypropylene-Gamma radiation versus electron beam processing. Radiat. Phys. Chem. 2007, 76, 1688–1690. [CrossRef] 2. Abbas Mousavi, S.; Dadbin, S.; Frounchi, M.; Venerus, D.C.; Medina, T.G. Comparison of rheological behavior of branched polypropylene prepared by chemical modification and electron beam irradiation under air and N2. Radiat. Phys. Chem. 2010, 79, 1088–1094. [CrossRef] 3. Krause, B.; Voigt, D.; Lederer, A.; Auhl, D.; Münstedt, H. Determination of low amounts of long-chain branches in polypropylene using a combination of chromatographic and rheological methods. J. Chromatogr. A 2004, 1056, 217–222. [CrossRef] 4. Krause, B.; Stephan, M.; Volkland, S.; Voigt, D.; Häußler, L.; Dorschner, H. Long-chain branching of polypropylene by electron-beam irradiation in the molten state. J. Appl. Polym. Sci. 2006, 99, 260–265. [CrossRef] 5. Auhl, D.; Stadler, F.J.; Münstedt, H. Rheological properties of electron beam-irradiated polypropylenes with different molar masses. Rheol. Acta 2012, 51, 979–989. [CrossRef] 6. Rätzsch, M.; Arnold, M.; Borsig, E.; Bucka, H.; Reichelt, N. Radical reactions on polypropylene in the solid state. Prog. Polym. Sci. 2002, 27, 1195–1282. [CrossRef] 7. Yoshiga, A.; Otaguro, H.; Parra, D.F.; Lima, L.F.C.P.; Lugao, A.B. Controlled degradation and crosslinking of polypropylene induced by gamma radiation and acetylene. Polym. Bull. 2009, 63, 397–409. [CrossRef] 8. Lugão, A.B.; Hutzler, B.; Ojeda, T.; Tokumoto, S.; Siemens, R.; Makuuchi, K.; Villavicencio, A.-L.C.H. Reaction mechanism and rheological properties of polypropylene irradiated under various atmospheres. Radiat. Phys. Chem. 2000, 57, 389–392. [CrossRef] 9. He, G.; Tzoganakis, C. A UV-initiated reactive extrusion process for production of controlled-rheology polypropylene. Polym. Eng. Sci. 2011, 51, 151–157. [CrossRef] 10. Zamotaev, P.; Shibirin, E.; Nogellova, Z. Photocrosslinking of polypropylene: The effect of different photo-initiators and coagents. Polym. Degrad. Stab. 1995, 47, 93–107. [CrossRef] 11. Kukaleva, N.; Stoll, K.; Santi, M. Modified Olefin Polymers. U.S. Patent 20,110,136,931, 9 June 2011. 12. Amintowlieh, Y.; Tzoganakis, C.; Penlidis, A. The effect of depth and duration of UV radiation on polypropylene modification via photoinitiation. J. Appl. Polym. Sci. 2014, 131, 41021. [CrossRef] 13. Amintowlieh, Y.; Tzoganakis, C.; Hatzikiriakos, S.G.; Penlidis, A. Effects of processing variables on polypropylene degradation and long chain branching with UV irradiation. Polym. Degrad. Stab. 2014, 104, 1–10. [CrossRef] 14. Amintowlieh, Y.; Tzoganakis, C.; Penlidis, A. Continuous modification of polypropylene via photoinitiation. Polym. Eng. Sci. 2015, 55, 2423–2432. [CrossRef] 15. Amintowlieh, Y.; Tzoganakis, C.; Penlidis, A. Preparation and Characterization of Long Chain Branched Polypropylene through UV Irradiation and Coagent Use. Polym. Plast. Technol. Eng. 2015, 54, 1425–1438. [CrossRef] 16. Amintowlieh, Y.; Tzoganakis, C.; Penlidis, A. An Overview of the Potential of UV Modification of Polypropylene. Macromol. Symp. 2016, 360, 96–107. [CrossRef] 17. Parent, J.S.; Bodsworth, A.; Sengupta, S.S.; Kontopoulou, M.; Chaudhary, B.I.; Poche, D.; Cousteaux, S. Structure-rheology relationships of long-chain branched polypropylene: Comparative analysis of acrylic and allylic coagent chemistry. Polymer 2009, 50, 85–94. [CrossRef] 18. Gotsis, A.D.; Zeevenhoven, B.L.F.; Tsenoglou, C. Effect of long branches on the rheology of polypropylene. J. Rheol. 2004, 48, 895–914. [CrossRef] 19. Auhl, D.; Stange, J.; Münstedt, H.; Krause, B.; Voigt, D.; Lederer, A.; Lappan, U.; Lunkwitz, K. Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 2004, 37, 9465–9472. [CrossRef] 20. Lagendijk, R.P.; Hogt, A.H.; Buijtenhuijs, A.; Gotsis, A.D. Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer 2001, 42, 10035–10043. [CrossRef] 21. Wong, B.; Baker, W.E. Melt rheology of graft modified polypropylene. Polymer 1997, 38, 2781–2789. [CrossRef] 22. Yoshii, F.; Makuuchi, K.; Kikukawa, S.; Tanaka, T.; Saitoh, J.; Koyama, K. High-melt-strength polypropylene with electron beam irradiation in the presence of polyfunctional monomers. J. Appl. Polym. Sci. 1996, 60, 617–623. [CrossRef] 23. Hingmann, R.; Marczinke, B.L. Shear and elongational flow properties of polypropylene melts. J. Rheol. 1994, 38, 573–587. [CrossRef] 24. Münstedt, H.; Auhl, D. Rheological measuring techniques and their relevance for the molecular characterization of polymers. J. Non-Newton. Fluid Mech. 2005, 128, 62–69. [CrossRef] 25. Auhl, D.; Stadler, F.J.; Münstedt, H. Comparison of molecular structure and rheological properties of electron-beam and gamma-irradiated polypropylene. Macromolecules 2012, 45, 2057–2065. [CrossRef] 26. Münstedt, H. Rheological properties and molecular structure of polymer melts. Soft Matter 2011, 7, 2273–2283. [CrossRef] 27. Ahirwal, D.; Filipe, S.; Neuhaus, I.; Busch, M.; Schlatter, G.; Wilhelm, M. Large amplitude oscillatory shear and uniaxial extensional rheology of blends from linear and long-chain branched polyethylene and polypropylene. J. Rheol. 2014, 58, 635–658. [CrossRef] 28. Gabriel, C.; Münstedt, H. Strain hardening of various polyolefins in uniaxial elongational flow. J. Rheol. 2003, 47, 619–630. [CrossRef] 29. Koyama, K.; Sugimoto, M. Rheological properties and its processability of high-melt-strength polypropylene. In Proceedings of the XIIIth International Congress on Rheology, Cambridge, UK, 20–25 August 2000; pp. 409–410. 30. Park, C.B.; Cheung, L.K. A study of cell nucleation in the extrusion of polypropylene foams. Polym. Eng. Sci. 1997, 37, 1–10. [CrossRef] 31. Spitael, P.; Macosko, C.W. Strain hardening in polypropylenes and its role in extrusion foaming. Polym. Eng. Sci. 2004, 44, 2090–2100. [CrossRef] 32. Chikhalikar, K.; Banik, S.; Azad, L.B.; Jadhav, K.; Mahajan, S.; Ahmad, Z.; Kulkarni, S.; Gupta, S.; Doshi, P.; Pol, H.; et al. Extrusion film casting of long chain branched polypropylene. Polym. Eng. Sci. 2015, 55, 1977–1987. [CrossRef] 33. Kurzbeck, S.; Oster, F.; Münstedt, H.; Ngyuen, T.Q.; Gensler, R. Rheological properties of two polypropylenes with different molecular structure. J. Rheol. 1999, 43, 359–374. 34. Sugimoto, M.; Tanaka, T.; Masubuchi, Y.; Takimoto, J.-I.; Koyama, K. Effect of chain structure on the melt rheology of modified polypropylene. J. Appl. Polym. Sci. 1999, 73, 1493–1500. [CrossRef] 35. Connolly, R.; Bellesia, G.; Timoshenko, E.G.; Kuznetsov, Y.A.; Elli, S.; Ganazzoli, F. “Intrinsic” and “topological” stiffness in branched polymers. Macromolecules 2005, 38, 5288–5299. [CrossRef] 36. Yethiraj, A. A Monte Carlo simulation study of branched polymers. J. Chem. Phys. 2006, 125, 204901. [CrossRef] [PubMed] 37. Dolgushev, M.; Berezovska, G.; Blumen, A. Branched semiflexible polymers: Theoretical and simulation aspects. Macromol. Theory Simul. 2011, 20, 621–644. [CrossRef] 38. Sikorski, A. Monte Carlo study of the collapse transition of flexible and semiflexible star-branched polymers. Polymer 1993, 34, 1271–1281. [CrossRef] 39. McCrackin, F.L.; Mazur, J. Configuration properties of comb-branched polymers. Macromolecules 1981, 14, 1214–1220. [CrossRef] 40. Lipson, J.E.G.; Gaunt, D.S.; Wilkinson, M.K.; Whittington, S.G. Lattice models of branched polymers: Combs and brushes. Macromolecules 1987, 20, 186–190. [CrossRef] 41. Baig, C.; Alexiadis, O.; Mavrantzas, V.G. Advanced Monte Carlo algorithm for the atomistic simulation of short- and long-chain branched polymers: Implementation for model H-shaped, A 3AA3 multiarm (pom-pom), and short-chain branched polyethylene melts. Macromolecules 2010, 43, 986–1002. [CrossRef] 42. Tsukahara, Y.; Kohjiya, S.; Tsutsumi, K.; Okamoto, Y. On the intrinsic viscosity of poly(macromonomer)s. Macromolecules 1994, 27, 1662–1664. [CrossRef] 43. Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010, 110, 1857–1959. [CrossRef] [PubMed] 44. Schlüter, A.D.; Rabe, J.P. Dendronized polymers: Synthesis, characterization, assembly at interfaces, and manipulation. Angew. Chem. Int. Ed. Engl. 2000, 39, 864–883. [CrossRef] 45. Frauenrath, H. Dendronized polymers—Building a new bridge from molecules to nanoscopic objects. Prog. Polym. Sci. Oxf. 2005, 30, 325–384. [CrossRef] 46. Spakowitz, A.J. Semiflexible Polymers: Fundamental Theory and Applications in DNA Packaging. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2004. 47. Tzoganakis, C.; Vlachopoulos, J.; Hamielec, A.E. Production of controlled-rheology polypropylene resins by peroxide promoted degradation during extrusion. Polym. Eng. Sci. 1988, 28, 170–180. [CrossRef] 48. Tzoganakis, C.; Hamielec, A.E.; Tang, Y.; Vlachopoulos, J. Controlled degradation of polypropylene: A comprehensive experimental and theoretical investigation. Polym. Plast. Technol. Eng. 1989, 28, 319–350. [CrossRef] 49. Tzoganakis, C.; Vlachopoulos, J.; Hamielec, A.E.; Shinozaki, D.M. Effect of molecular weight distribution on the rheological and mechanical properties of polypropylene. Polym. Eng. Sci. 1989, 29, 390–396. [CrossRef] 50. Machado, A.V.; Covas, J.A.; van Duin, M. Monitoring polyolefin modification along the axis of a twin screw extruder. I. Effect of peroxide concentration. J. Appl. Polym. Sci. 2001, 81, 58–68. [CrossRef] 51. Van Duin, M.; Machado, A.V.; Covas, J. A look inside the extruder: Evolution of chemistry, morphology and rheology along the extruder axis during reactive processing and blending. Macromol. Symp. 2001, 170, 29–39. [CrossRef] 52. Machado, A.V.; Maia, J.M.; Canevarolo, S.V.; Covas, J.A. Evolution of peroxide-induced thermomechanical degradation of polypropylene along the extruder. J. Appl. Polym. Sci. 2004, 91, 2711–2720. [CrossRef] 53. Berzin, F.; Vergnes, B.; Canevarolo, S.V.; Machado, A.V.; Covas, J.A. Evolution of the peroxide-induced degradation of polypropylene along a twin-screw extruder: Experimental data and theoretical predictions. J. Appl. Polym. Sci. 2006, 99, 2082–2090. [CrossRef] 54. Hinsken, H.; Moss, S.; Pauquet, J.-R.; Zweifel, H. Degradation of polyolefins during melt processing. Polym. Degrad. Stab. 1991, 34, 279–293. [CrossRef] 55. González-González, V.A.; Neira-Velázquez, G.; Angulo-Sánchez, J.L. Polypropylene chain scissions and molecular weight changes in multiple extrusion. Polym. Degrad. Stab. 1998, 60, 33–42. [CrossRef] 56. Canevarolo, S.V. Chain scission distribution function for polypropylene degradation during multiple extrusions. Polym. Degrad. Stab. 2000, 70, 71–76. [CrossRef] 57. Waldman, W.R.; de Paoli, M.A. Thermo-mechanical degradation of polypropylene, low-density polyethylene and their 1:1 blend. Polym. Degrad. Stab. 1998, 60, 301–308. [CrossRef] 58. Drozdov, A.D. The effect of thermal oxidative degradation of polymers on their viscoelastic response. Int. J. Eng. Sci. 2007, 45, 882–904. [CrossRef] 59. Qian, S.; Igarashi, T.; Nitta, K.-H. Thermal degradation behavior of polypropylene in the melt state: Molecular weight distribution changes and chain scission mechanism. Polym. Bull. 2011, 67, 1661–1670. [CrossRef] 60. Pivokonsky, R.; Zatloukal, M.; Filip, P.; Tzoganakis, C. Rheological characterization and modeling of linear and branched metallocene polypropylenes prepared by reactive processing. J. Non-Newton. Fluid Mech. 2009, 156, 1–6. [CrossRef] 61. Hugo Rolón-Garrido, V.; Zatloukal, M.; Wagner, M.H. Increase of long-chain branching by thermo-oxidative treatment of LDPE: Chromatographic, spectroscopic, and rheological evidence. J. Rheol. 2013, 57, 105–129. [CrossRef] 62. Rolón-Garrido, V.H.; Wagner, M.H. Elongational rheology and cohesive fracture of photo-oxidated LDPE. J. Rheol. 2014, 58, 199–222. [CrossRef] 63. Rolón-Garrido, V.H.; Wagner, M.H. Linear and non-linear rheological characterization of photo-oxidative degraded LDPE. Polym. Degrad. Stab. 2014, 99, 136–145. [CrossRef] 64. Rolón-Garrido, V.H.; Kruse, M.; Wagner, M.H. Size exclusion chromatography of photo-oxidated LDPE by triple detection and its relation to rheological behavior. Polym. Degrad. Stab. 2015, 111, 46–54. [CrossRef] 65. Chikhalikar, K.; Deshpande, A.; Pol, H.; Dhoble, D.; Jha, S.; Jadhav, K.; Mahajan, S.; Ahmad, Z.; Kulkarni, S.; Gupta, S.; et al. Long chain branched impact copolymer of polypropylene: Microstructure and rheology. Polym. Eng. Sci. 2015, 55, 1463–1474. [CrossRef] 66. Sentmanat, M.L. Dual Windup Extensional Rheometer. U.S. Patent 6,578,413 B2, 17 June 2003. 67. Sentmanat, M.L. Dual Windup Drum Extensional Rheometer. U.S. Patent 6,691,569 B1, 17 February 2004. 68. Sentmanat, M.L. Miniature universal testing platform: From extensional melt rheology to solid-state deformation behavior. Rheol. Acta 2004, 43, 657–669. [CrossRef] 69. Zatloukal, M. A simple phenomenological non-Newtonian fluid model. J. Non-Newton. Fluid Mech. 2010, 165, 592–595. [CrossRef] 70. Zatloukal, M. Novel non-Newtonian fluid model for polymer melts. Annu. Tech. Conf. ANTEC Conf. Proc. 2011, 1, 92–96. 71. Zatloukal, M. Measurements and modeling of temperature-strain rate dependent uniaxial and planar extensional viscosities for branched LDPE polymer melt. Polymer 2016. [CrossRef] 72. Drabek, J.; Zatloukal, M. Rheological evaluation of melt blown polymer melt. AIP Conf. Proc. 2013, 1526, 237–247. 73. Musil, J.; Zatloukal, M. Characterization of die drool sample produced by HDPE melt extrusion. AIP Conf. Proc. 2013, 1526, 47–58. 74. Kolarik, R.; Zatloukal, M.; Martyn, M. The effect of polyolefin extensional rheology on non-isothermal film blowing process stability. Int. J. Heat Mass Transf. 2013, 56, 694–708. [CrossRef] 75. Barnes, H.A.; Roberts, G.P. A simple empirical model describing the steady-state shear and extensional viscosities of polymer melts. J. Non-Newton. Fluid Mech. 1992, 44, 113–126. [CrossRef] 76. Zatloukal, M. Differential viscoelastic constitutive equations for polymer melts in steady shear and elongational flows. J. Non-Newton. Fluid Mech. 2003, 113, 209–227. [CrossRef] 77. Sedlacek, T.; Zatloukal, M.; Filip, P.; Boldizar, A.; Saha, P. On the effect of pressure on the shear and elongational viscosities of polymer melts. Polym. Eng. Sci. 2004, 44, 1328–1337. [CrossRef] 78. Yao, D. A non-Newtonian fluid model with an objective vorticity. J. Non-Newton. Fluid Mech. 2015, 218, 99–105. [CrossRef] 79. Yao, D. A non-Newtonian fluid model with finite stretch and rotational recovery. J. Non-Newton. Fluid Mech. 2016, 230, 12–18. [CrossRef] 80. Konaganti, V.K.; Ansari, M.; Mitsoulis, E.; Hatzikiriakos, S.G. Extrudate swell of a high-density polyethylene melt: II. Modeling using integral and differential constitutive equations. J. Non-Newton. Fluid Mech. 2015, 225, 94–105. [CrossRef] 81. Münstedt, H.; Schwarzl, F.R. Deformation and Flow of Polymeric Materials; Springer: Heidelberg, Germany, 2014.
utb.fulltext.sponsorship The authors wish to acknowledge Grant Agency of the Czech Republic (Grant registration No. 16-05886S) for the financial support. This study was also supported by the internal grant of TBU in Zlín IGA/FT/2016/007 funded from the resources of specific university research. The author also wishes to acknowledge Joachim Fiebig (Borealis Polyolefine) for donation of the PP Daploy WB180HMS polymer sample and help with the GPC measurements and analysis, as well as Donggang Yao (Georgia Institute of Technology) for providing a detailed explanation of his model.
utb.fulltext.projects 16-05886S
utb.fulltext.projects IGA/FT/2016/007
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International