Publikace UTB
Repozitář publikační činnosti UTB

Quercetin and its anti-allergic immune response

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Quercetin and its anti-allergic immune response en
dc.contributor.author Mlček, Jiří
dc.contributor.author Juríková, Tünde
dc.contributor.author Škrovánková, Soňa
dc.contributor.author Sochor, Jiří
dc.relation.ispartof Molecules
dc.identifier.issn 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2016
utb.relation.volume 21
utb.relation.issue 5
dc.type review
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/molecules21050623
dc.relation.uri http://www.mdpi.com/1420-3049/21/5/623
dc.subject Anti-allergic effect en
dc.subject Anti-inflammatory properties en
dc.subject Flavonoids en
dc.subject Immune response en
dc.subject Quercetin en
dc.description.abstract Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate) and suppresses IL-6 and cytosolic calcium level increase. © 2016 by the authors; licensee MDPI. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1006531
utb.identifier.obdid 43875200
utb.identifier.scopus 2-s2.0-84973923072
utb.identifier.wok 000380241600087
utb.identifier.coden MOLEF
utb.source j-scopus
dc.date.accessioned 2016-08-09T14:02:54Z
dc.date.available 2016-08-09T14:02:54Z
dc.description.sponsorship internal grant agency of Tomas Bata University in Zlin [IGA/FT/2016/008, IGA ZF 2016]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Mlček, Jiří
utb.contributor.internalauthor Škrovánková, Soňa
utb.fulltext.affiliation Jiri Mlcek 1,*, Tunde Jurikova 2, Sona Skrovankova 1 and Jiri Sochor 3 1 Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, CZ-760 01 Zlín, Czech Republic; [email protected] 2 Institute for Teacher Training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, SK-949 74 Nitra, Slovakia; [email protected] 3 Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-57-603-3030 Academic Editor: Norbert Latruffe
utb.fulltext.dates Received: 22 February 2016; Accepted: 3 May 2016; Published: 12 May 2016
utb.fulltext.references 1. Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara, K.; Yamadori, T.; Shima, Y.; et al. Flavonoids and related compounds as anti-allergic substances. Allergol. Int. 2007, 56, 113–123. [CrossRef] [PubMed] 2. Ozdemir, C.; Akdis, M.; Akdis, C. T regulatory cells and their counterparts: Masters of immune regulation. Clin. Exp. Allergy 2009, 39, 626–639. [CrossRef] [PubMed] 3. Singh, A.; Holvoet, S.; Mercenier, A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin. Exp. Allergy 2011, 41, 1346–1359. [CrossRef] [PubMed] 4. Lakhanpal, P.; Rai, D.K. Quercetin: A versatile flavonoid. Internet J. Med. Update 2007, 2, 22–37. [CrossRef] 5. Magrone, T.; Jirillo, E. Influence of polyphenols on allergic immune reactions: Mechanisms of action. Proc. Nutr. Soc. 2012, 71, 316–321. [CrossRef] [PubMed] 6. Joskova, M.; Franova, S.; Sadlonova, V. Acute bronchodilator effect of quercetin in experimental allergic asthma. Bratisl. Med. J. 2011, 112, 9–12. 7. Matsushima, M.; Takagi, K.; Ogawa, M.; Hirose, E.; Ota, Y.; Abe, F.; Baba, K.; Hasegawa, T.; Hasegawa, Y.; Kawabe, T. Heme oxygenase-1 mediates the anti-allergic actions of quercetin in rodent mast cells. Inflamm. Res. 2009, 58, 705–715. [CrossRef] [PubMed] 8. Juríková, T.; Mlček, J.; Sochor, J.; Hegedűsová, A. Polyphenols and their mechanism of action in allergic immune response. Glob. J. Allergy 2015, 1, 037–039. 9. Gabor, M. Anti-inflammatory and anti-allergic properties of flavonoids. Prog. Clin. Biol. Res. 1986, 213, 471–480. [PubMed] 10. Boesch-Saadatmandi, C.; Wagner, A.E.; Wolffram, S.; Rimbach, G. Effect of quercetin on inflammatory gene expression in mice liver in vivo—Role of redox factor 1, miRNA-122 and miRNA-125b. Pharm. Res. 2012, 65, 523–530. [CrossRef] [PubMed] 11. Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Amer. J. Clin. Nutr. 2004, 79, 727–747. [PubMed] 12. Bouktaib, M.; Atmani, A.; Rolando, C. Regio-and stereoselective synthesis of the major metabolite of quercetin, quercetin-3-O-β-D-glucuronide. Tetrahedron Lett. 2002, 43, 6263–6266. [CrossRef] 13. Ko, E.Y.; Nile, S.H.; Sharma, K.; Li, G.H.; Park, S.W. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.). Saudi J. Biol. Sci. 2015, 22, 398–403. [CrossRef] [PubMed] 14. Koh, E.; Wimalasiri, K.; Chassy, A.; Mitchell, A. Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. J. Food Comp. Anal. 2009, 22, 637–643. [CrossRef] 15. Sun, T.; Xu, Z.; Wu, C.T.; Janes, M.; Prinyawiwatkul, W.; No, H. Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). J. Food Sci. 2007, 72, S98–S102. [CrossRef] [PubMed] 16. Francesca, N.; Barbera, M.; Martorana, A.; Saiano, F.; Gaglio, R.; Aponte, M.; Moschetti, G.; Settanni, L. Optimised method for the analysis of phenolic compounds from caper (Capparis spinosa L.) berries and monitoring of their changes during fermentation. Food Chem. 2016, 196, 1172–1179. [CrossRef] [PubMed] 17. Zielinski, A.A.F.; Alberti, A.; Braga, C.M.; da Silva, K.M.; Canteri, M.H.G.; Mafra, L.I.; Granato, D.; Nogueira, A.; Wosiacki, G. Effect of mash maceration and ripening stage of apples on phenolic compounds and antioxidant power of cloudy juices: A study using chemometrics. LWT-Food Sci. Technol. 2014, 57, 223–229. [CrossRef] 18. Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [CrossRef] [PubMed] 19. Flamini, R.; Mattivi, F.; de Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [CrossRef] [PubMed] 20. Tsanova-Savova, S.; Ribarova, F. Flavonols and flavones in some bulgarian plant foods. Pol. J. Food Nutr. Sci. 2013, 63, 173–177. [CrossRef] 21. Jeszka-Skowron, M.; Krawczyk, M.; Zgoła-Grześkowiak, A. Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. J. Food Comp. Anal. 2015, 40, 70–77. [CrossRef] 22. Martelo-Vidal, M.J.; Vazquez, M. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools. Food Chem. 2014, 158, 28–34. [CrossRef] [PubMed] 23. Yoo, Y.J.; Saliba, A.J.; MacDonald, J.B.; Prenzler, P.D.; Ryan, D. A Cross-cultural Study of Wine Consumers with Respect to Health Benefits of Wine. Food Qual. Pref. 2013, 28, 531–538. [CrossRef] 24. Yoo, Y.; Saliba, A.J.; Prenzler, P.D.; Ryan, D. Total Phenolic Content, Antioxidant Activity, and Cross-Cultural Consumer Rejection Threshold in White and Red Wines Functionally Enhanced with Catechin-Rich Extracts. J. Agric. Food Chem. 2012, 60, 388–393. [CrossRef] [PubMed] 25. Nishimuro, H.; Ohnishi, H.; Sato, M.; Ohnishi-Kameyama, M.; Matsunaga, I.; Naito, S.; Ippoushi, K.; Oike, H.; Nagata, T.; Akasaka, H.; et al. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients 2015, 7, 2345–2358. [CrossRef] [PubMed] 26. D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoter. 2015, 106, 256–271. [CrossRef] [PubMed] 27. Chirumbolo, S. Quercetin as a potential anti-allergic drug: Which perspectives? Iran. J. Allergy Asthma Immunol. 2011, 10, 139–140. [PubMed] 28. Vasantha Rupasinghe, H.; Kathirvel, P.; Huber, G.M. Ultrasonication-assisted solvent extraction of quercetin glycosides from ‘Idared’ apple peels. Molecules 2011, 16, 9783–9791. [CrossRef] [PubMed] 29. Sato, A.; Zhang, T.; Yonekura, L.; Tamura, H. Antiallergic activities of eleven onions (Allium cepa) were attributed to quercetin 41-glucoside using quechers method and Pearson’s correlation coefficient. J. Funct. Foods 2015, 14, 581–589. [CrossRef] 30. Slimestad, R.; Fossen, T.; Vågen, I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 2007, 55, 10067–10080. [CrossRef] [PubMed] 31. Beslic, Z.; Todic, S.; Tesevic, V.; Jadranin, M.; Novakovic, M.; Tesic, D. Pruning effect on content of quercetin and catechin in berry skins of cv. Blaufränkisch (Vitis vinifera L.). Turk. J. Agric. Forestry 2010, 34, 461–466. 32. Kelly, G.S. Quercetin. Altern. Med. Rev. 2011, 16, 172–194. [PubMed] 33. Hertog, M.G.; Hollman, P.C.; Katan, M.B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agric. Food Chem. 1992, 40, 2379–2383. [CrossRef] 34. Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 2004, 24, 851–874. [CrossRef] 35. Rimm, E.B.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Annals Internal Med. 1996, 125, 384–389. [CrossRef] 36. Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [CrossRef] [PubMed] 37. Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nnutr. 2000, 130, 2243–2250. 38. Boyer, J.; Liu, R. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5. [CrossRef] [PubMed] 39. Siddiq, M.; Roidoung, S.; Sogi, D.; Dolan, K. Total phenolics, antioxidant properties and quality of fresh-cut onions (Allium cepa L.) treated with mild-heat. Food Chem. 2013, 136, 803–806. [CrossRef] [PubMed] 40. Mlcek, J.; Valsikova, M.; Druzbikova, H.; Ryant, P.; Juríková, T.; Sochor, J.; Borkovcová, M. The antioxidant capacity and macroelement content of several onion cultivars. Turk. J. Agric. For. 2015, 39, 999–1004. [CrossRef] 41. Gazdik, Z.; Reznicek, V.; Adam, V.; Zitka, O.; Jurikova, T.; Krska, B.; Matuskovic, J.; Plsek, J.; Saloun, J.; Horna, A.; et al. Use of liquid chromatography with electrochemical detection for the determination of antioxidants in less common fruits. Molecules 2008, 13, 2823–2836. [CrossRef] [PubMed] 42. Bilyk, A.; Cooper, P.L.; Sapers, G.M. Varietal differences in distribution of quercetin and kaempferol in onion (Allium cepa L.) tissue. J. Agric. Food Chem. 1984, 32, 274–276. [CrossRef] 43. Patil, B.; Pike, L. Distribution of quercetin content in different rings of various coloured onion (Allium cepa L.) cultivars. J. Horticult. Sci. 1995, 70, 643–650. [CrossRef] 44. Hirota, S.; Shimoda, T.; Takahama, U. Tissue and spatial distribution of flavonol and peroxidase in onion bulbs and stability of flavonol glucosides during boiling of the scales. J. Agric. Food Chem. 1998, 46, 3497–3502. [CrossRef] 45. Patil, B.S.; Pike, L.M.; Yoo, K.S. Variation in the quercetin content in different colored onions (Allium cepa L.). J. Amer. Soc. Horticult. Sci. 1995, 120, 909–913. 46. Downey, M.O.; Harvey, J.S.; Robinson, S.P. Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Aust. J. Grape Wine Res. 2003, 9, 110–121. [CrossRef] 47. Santas, J.; Carbo, R.; Gordon, M.; Almajano, M. Comparison of the antioxidant activity of two Spanish onion varieties. Food Chem. 2008, 107, 1210–1216. [CrossRef] 48. Nemeth, K.; Piskula, M. Food content, processing, absorption and metabolism of onion flavonoids. Crit. Rev. Food Sci. Nutr. 2007, 47, 397–409. [CrossRef] [PubMed] 49. Smith, C.; Lombard, K.A.; Peffley, E.B.; Liu, W. Genetic analysis of quercetin in onion (Allium cepa L.) ‘lady raider’. Texas J. Agric. Nat. Res. 2003, 16, 24–28. 50. Walle, T.; Otake, Y.; Walle, U.K.; Wilson, F.A. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J. Nutr. 2000, 130, 2658–2661. [PubMed] 51. Wiczkowski, W.; Romaszko, J.; Bucinski, A.; Szawara-Nowak, D.; Honke, J.; Zielinski, H.; Piskula, M.K. Quercetin from shallots (Allium cepa L. var. Aggregatum) is more bioavailable than its glucosides. J. Nutr. 2008, 138, 885–888. [PubMed] 52. Lee, K.W.; Kim, Y.J.; Kim, D.-O.; Lee, H.J.; Lee, C.Y. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem. 2003, 51, 6516–6520. [CrossRef] [PubMed] 53. Escarpa, A.; Gonzalez, M. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J. Chrom. A 1998, 823, 331–337. [CrossRef] 54. Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Nutrition: Antioxidant activity of fresh apples. Nature 2000, 405, 903–904. [PubMed] 55. Cardeñosa, V.; Girones-Vilaplana, A.; Muriel, J.L.; Moreno, D.A.; Moreno-Rojas, J.M. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 202, 276–283. [CrossRef] [PubMed] 56. Jurikova, T.; Sochor, J.; Rop, O.; Mlcek, J.; Balla, S.; Szekeres, L.; Adam, V.; Kizek, R. Polyphenolic profile and biological activity of chinese hawthorn (Crataegus pinnatifida bunge) fruits. Molecules 2012, 17, 14490–14509. [CrossRef] [PubMed] 57. Juríková, T.; Balla, S.; Sochor, J.; Pohanka, M.; Mlcek, J.; Baron, M. Flavonoid profile of saskatoon berries (Amelanchier alnifolia Nutt.) and their health promoting effects. Molecules 2013, 18, 12571–12586. [CrossRef] [PubMed] 58. Jurikova, T.; Sochor, J.; Rop, O.; Mlček, J.; Balla, Š.; Szekeres, L.; Žitný, R.; Zitka, O.; Adam, V.; Kizek, R. Evaluation of polyphenolic profile and nutritional value of non-traditional fruit species in the Czech Republic—A comparative study. Molecules 2012, 17, 8968–8981. [CrossRef] [PubMed] 59. Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Mattila, P.H.; González-Paramás, A.M.; Törrönen, A.R. Distribution and contents of phenolic compounds in eighteen scandinavian berry species. J. Agric. Food Chem. 2004, 52, 4477–4486. [CrossRef] [PubMed] 60. Sochor, J.; Jurikova, T.; Ercisli, S.; Mlcek, J.; Baron, M.; Balla, S.; Yilmaz, S.O.; Necas, T. Characterization of cornelian cherry (Cornus mas L.) genotypes-genetic resources for food production in Czech Republic. Genetika 2014, 46, 915–924. [CrossRef] 61. Monobe, M.; Nomura, S.; Ema, K.; Matsunaga, A.; Nesumi, A.; Yoshida, K.; Maeda-Yamamoto, M.; Horie, H. Quercetin Glycosides-rich Tea Cultivars (Camellia sinensis L.) in Japan. Food Sci. Tech. Res. 2015, 21, 333–340. [CrossRef] 62. Jiang, H.; Engelhardt, U.H.; Thräne, C.; Maiwald, B.; Stark, J. Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC. Food Chem. 2015, 183, 30–35. [CrossRef] [PubMed] 63. Zhao, Y.; Chen, P.; Lin, L.; Harnly, J.; Yu, L.L.; Li, Z. Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chem. 2011, 126, 1269–1277. [CrossRef] [PubMed] 64. Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite profiling of grape: Flavonols and anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [CrossRef] [PubMed] 65. Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera white grape cultivars. J. Food Compos. Anal. 2010, 23, 699–705. [CrossRef] 66. Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Rad. Res. 1995, 22, 375–383. [CrossRef] 67. De Groot, H. Reactive oxygen species in tissue injury. Hepato-gastroenterol. 1994, 41, 328–332. 68. Cook, N.; Samman, S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76. [CrossRef] 69. Bahorun, T.; Soobrattee, M.; Luximon-Ramma, V.; Aruoma, O. Free radicals and antioxidants in cardiovascular health and disease. Internet J. Med. Update 2006, 1, 25–41. [CrossRef] 70. Jantan, I.; Ahmad, W.; Bukhari, S.N.A. Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front. Plant Sci. 2015, 6. [CrossRef] [PubMed] 71. Marzocchella, L.; Fantini, M.; Benvenuto, M.; Masuelli, L.; Tresoldi, I.; Modesti, A.; Bei, R. Dietary flavonoids: Molecular mechanisms of action as anti-inflammatory agents. Rec. Patents Inflamm. Allergy Drug Disc. 2011, 5, 200–220. [CrossRef] 72. Kimata, M.; Shichijo, M.; Miura, T.; Serizawa, I.; Inagaki, N.; Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy 2000, 30, 501–508. [CrossRef] [PubMed] 73. Kumazawa, Y.; Takimoto, H.; Matsumoto, T.; Kawaguchi, K. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Curr. Pharm. Design 2014, 20, 857–863. [CrossRef] 74. Tanaka, T.; Takahashi, R. Flavonoids and asthma. Nutrients 2013, 5, 2128–2143. [CrossRef] [PubMed] 75. Ozdemir, C.; Akdis, M.; Akdis, C.A. T-cell response to allergens. Chem. Immunol. Allergy 2010, 95, 22–44. [PubMed] 76. Gröber, U. Micronutrients: Metabolic tuning-prevention-therapy. Drug Metab. Drug Interact. 2009, 24, 331. 77. Nair, M.P.; Kandaswami, C.; Mahajan, S.; Chadha, K.C.; Chawda, R.; Nair, H.; Kumar, N.; Nair, R.E.; Schwartz, S.A. The flavonoid, quercetin, differentially regulates Th-1 (IFNγ) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Bioch. Biophys. Acta Mol. Cell Res. 2002, 1593, 29–36. [CrossRef] 78. Chirumbolo, S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm. Allergy Drug Targets 2010, 9, 263–285. [CrossRef] [PubMed] 79. Finn, D.F.; Walsh, J.J. Twenty-first century mast cell stabilizers. Br. J. Pharmacol. 2013, 170, 23–37. [CrossRef] [PubMed] 80. Thornhill, S.M.; Kelly, A.-M. Natural treatment of perennial allergic rhinitis. Altern. Med. Rev. 2000, 5, 448–454. [PubMed] 81. Kempuraj, D.; Madhappan, B.; Christodoulou, S.; Boucher, W.; Cao, J.; Papadopoulou, N.; Cetrulo, C.L.; Theoharides, T.C. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br. J. Pharm. 2005, 145, 934–944. [CrossRef] [PubMed] 82. Weng, Z.; Zhang, B.; Asadi, S.; Sismanopoulos, N.; Butcher, A.; Fu, X.; Katsarou-Katsari, A.; Antoniou, C.; Theoharides, T.C. Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. PLoS ONE 2012, 7, e33805. [CrossRef] [PubMed] 83. Johri, R.; Zutshi, U.; Kameshwaran, L.; Atal, C. Effect of quercetin and albizzia saponins on rat mast cell. Ind. J. Physiol. Pharm. 1984, 29, 43–46. 84. Min, Y.-D.; Choi, C.-H.; Bark, H.; Son, H.-Y.; Park, H.-H.; Lee, S.; Park, J.-W.; Park, E.-K.; Shin, H.-I.; Kim, S.-H. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line. Inflamm. Res. 2007, 56, 210–215. [CrossRef] [PubMed] 85. Shaik, Y.; Castellani, M.; Perrella, A.; Conti, F.; Salini, V.; Tete, S.; Madhappan, B.; Vecchiet, J.; de Lutiis, M.; Caraffa, A.; et al. Role of quercetin (a natural herbal compound) in allergy and inflammation. J. Biol. Reg. Homeost. Agents 2005, 20, 47–52. 86. Fewtrell, C.; Gomperts, B. Quercetin: A novel inhibitors of Ca2+ influx and exocytosis in rat peritoneal mast cells. Bioch. Biophys. Acta Biomembr. 1977, 469, 52–60. [CrossRef] 87. Haggag, E.G.; Abou-Moustafa, M.A.; Boucher, W.; Theoharides, T.C. The effect of a herbal water-extract on histamine release from mast cells and on allergic asthma. J. Herb. Pharmacother. 2003, 3, 41–54. [CrossRef] [PubMed] 88. Pearce, F.L.; Befus, A.D.; Bienenstock, J. Mucosal mast cells: III. Effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells. J. Allergy Clin. Immunol. 1984, 73, 819–823. [CrossRef] 89. Kaiser, P.; Youssouf, M.; Tasduq, S.; Singh, S.; Sharma, S.; Singh, G.; Gupta, V.; Gupta, B.; Johri, R. Anti-allergic effects of herbal product from Allium cepa (bulb). J. Med. Food 2009, 12, 374–382. [CrossRef] [PubMed] 90. Park, H.-J.; Lee, C.-M.; Jung, I.D.; Lee, J.S.; Jeong, Y.-I.; Chang, J.H.; Chun, S.-H.; Kim, M.-J.; Choi, I.-W.; Ahn, S.-C.; et al. Quercetin regulates Th1/Th2 balance in a murine model of asthma. Int. Immunopharmacol. 2009, 9, 261–267. [CrossRef] [PubMed] 91. Rogerio, A.; Kanashiro, A.; Fontanari, C.; da Silva, E.; Lucisano-Valim, Y.; Soares, E.; Faccioli, L. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm. Res. 2007, 56, 402–408. [CrossRef] [PubMed] 92. Rogerio, A.P.; Dora, C.L.; Andrade, E.L.; Chaves, J.S.; Silva, L.F.; Lemos-Senna, E.; Calixto, J.B. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharm. Res. 2010, 61, 288–297. [CrossRef] [PubMed] 93. Townsend, E.A.; Emala, C.W. Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4. Am. J. Physiol. Lun Cell. Mol. Physiol. 2013, 305, L396–L403. [CrossRef] [PubMed] 94. Oliveira, T.T.; Campos, K.M.; Cerqueira-Lima, A.T.; Carneiro, T.C.B.; da Silva Velozo, E.; Melo, I.C.A.R.; Figueiredo, E.A.; de Jesus Oliveira, E.; de Vasconcelos, D.F.S.A.; Pontes-de-Carvalho, L.C.; et al. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. DARU J. Pharm. Sci. 2015, 23. [CrossRef] [PubMed] 95. Jung, C.H.; Lee, J.Y.; Cho, C.H.; Kim, C.J. Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Archives Pharm. Res. 2007, 30, 1599–1607. [CrossRef] 96. Moon, H.; Choi, H.H.; Lee, J.Y.; Moon, H.J.; Sim, S.S.; Kim, C.J. Quercetin inhalation inhibits the asthmatic responses by exposure to aerosolized-ovalbumin in conscious guinea-pigs. Archives Pharm. Res. 2008, 31, 771–778. [CrossRef] [PubMed] 97. Capasso, R.; Aviello, G.; Romano, B.; Atorino, G.; Pagano, E.; Borrelli, F. Inhibitory effect of quercetin on rat trachea contractility in vitro. J. Pharm. Pharmacol. 2009, 61, 115–119. [CrossRef] [PubMed] 98. Shishehbor, F.; Behroo, L.; Broujerdnia, M.G.; Namjoyan, F.; Latifi, S.-M. Quercetin effectively quells peanut-induced anaphylactic reactions in the peanut sensitized rats. Iran. J. Allergy Asthma Immunol. 2010, 9, 27–34. [PubMed] 99. Wei, J.; Bhatt, S.; Chang, L.M.; Sampson, H.A.; Masilamani, M. Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PLoS ONE 2012, 7, e47979. [CrossRef] [PubMed] 100. Sakai-Kashiwabara, M.; Asano, K. Inhibitory action of quercetin on eosinophil activation in vitro. Evid. Based Complement. Altern. Med. 2013, 2013. [CrossRef] [PubMed] 101. Chan, A.L.-F.; Huang, H.-L.; Chien, H.-C.; Chen, C.-M.; Lin, C.-N.; Ko, W.-C. Inhibitory effects of quercetin derivatives on phosphodiesterase isozymes and high-affinity [(3)H]-rolipram binding in guinea pig tissues. Investig. New Drugs 2008, 26, 417–424. [CrossRef] [PubMed] 102. Lättig, J.; Böhl, M.; Fischer, P.; Tischer, S.; Tietböhl, C.; Menschikowski, M.; Gutzeit, H.O.; Metz, P.; Pisabarro, M.T. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: Rationale for lead design. J. Comput. Aided Mol. Des. 2007, 21, 473–483. [CrossRef] [PubMed] 103. Fortunato, L.R.; Alves, C.D.; Teixeira, M.M.; Rogerio, A.P. Quercetin: A flavonoid with the potential to treat asthma. Braz. J. Pharm. Sci. 2012, 48, 589–599. [CrossRef] 104. Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [PubMed] 105. Willers, S.; Devereux, G.; Craig, L.; McNeill, G.; Wijga, A.; El-Magd, W.A.; Turner, S.; Helms, P.; Seaton, A. Maternal food consumption during pregnancy and asthma, respiratory and atopic symptoms in 5-year-old children. Thorax 2007, 62, 773–779. [CrossRef] [PubMed] 106. Shaheen, S.O.; Sterne, J.A.; Thompson, R.L.; Songhurst, C.E.; Margetts, B.M.; Burney, P.G. Dietary antioxidants and asthma in adults: Population-based case–control study. Am. J. Resp. Crit. Care Med. 2001, 164, 1823–1828. [CrossRef] [PubMed] 107. Tabak, C.; Arts, I.C.; Smit, H.A.; Heederik, D.; Kromhout, D. Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones: The morgen study. Am. J. Resp. Crit. Care Med. 2001, 164, 61–64. [CrossRef] [PubMed] 108. Butland, B.K.; Fehily, A.M.; Elwood, P.C. Diet, lung function, and lung function decline in a cohort of 2512 middle aged men. Thorax 2000, 55, 102–108. [CrossRef] [PubMed] 109. Woods, R.K.; Walters, E.H.; Raven, J.M.; Wolfe, R.; Ireland, P.D.; Thien, F.C.; Abramson, M.J. Food and nutrient intakes and asthma risk in young adults. Am. J. Clin. Nutr. 2003, 78, 414–421. [PubMed] 110. Izadi, N.; Luu, M.; Ong, P.Y.; Tam, J.S. The role of skin barrier in the pathogenesis of food allergy. Children 2015, 2, 382–402. [CrossRef] 111. Lodge, C.J.; Allen, K.J.; Lowe, A.J.; Dharmage, S.C. Overview of evidence in prevention and aetiology of food allergy: A review of systematic reviews. Int. J. Environ. Res. Public Health 2013, 10, 5781–5806. [CrossRef] [PubMed]
utb.fulltext.sponsorship This study was funded by internal grant agency of Tomas Bata University in Zlín, project no. IGA/FT/2016/008 and IGA ZF 2016.
utb.fulltext.projects IGA/FT/2016/008
utb.fulltext.projects IGA ZF 2016
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International