Publikace UTB
Repozitář publikační činnosti UTB

A new route of fucoidan immobilization on low density polyethylene and its blood compatibility and anticoagulation activity

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title A new route of fucoidan immobilization on low density polyethylene and its blood compatibility and anticoagulation activity en
dc.contributor.author Özaltin, Kadir
dc.contributor.author Lehocký, Marián
dc.contributor.author Humpolíček, Petr
dc.contributor.author Pelková, Jana
dc.contributor.author Sáha, Petr
dc.relation.ispartof International Journal of Molecular Sciences
dc.identifier.issn 1661-6596 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1422-0067 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2016
utb.relation.volume 17
utb.relation.issue 6
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/ijms17060908
dc.relation.uri http://www.mdpi.com/1422-0067/17/6/908
dc.subject biomaterials en
dc.subject fucoidan en
dc.subject heparin en
dc.subject thrombosis en
dc.subject anticoagulant en
dc.subject plasma treatment en
dc.description.abstract Beside biomaterials’ bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface properties in biomedical applications. Sulfated polysaccharide coatings can be used to avoid surface induced thrombosis which may cause vascular occlusion (blocking the blood flow by blood clot), which results in serious health problems. Naturally occurring heparin is one of the sulfated polysaccharides most commonly used as an anticoagulant, but its long term usage causes hemorrhage. Marine sourced sulfated polysaccharide fucoidan is an alternative anticoagulant without the hemorrhage drawback. Heparin and fucoidan immobilization onto a low density polyethylene surface after functionalization by plasma has been studied. Surface energy was demonstrated by water contact angle test and chemical characterizations were carried out by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Surface morphology was monitored by scanning electron microscope and atomic force microscope. Finally, their anticoagulation activity was examined for prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT). © 2016 by the authors; licensee MDPI, Basel, Switzerland. en
utb.faculty University Institute
utb.faculty Faculty of Humanities
dc.identifier.uri http://hdl.handle.net/10563/1006526
utb.identifier.obdid 43875198
utb.identifier.scopus 2-s2.0-84973548529
utb.identifier.wok 000378799300122
utb.source j-scopus
dc.date.accessioned 2016-08-09T14:02:53Z
dc.date.available 2016-08-09T14:02:53Z
dc.description.sponsorship Operational Program Research and Development for Innovations; European Regional Development Fund (ERDF); national budget of Czech Republic, within the framework of project Centre of Polymer Systems [CZ.1.05/2.1.00/03.0111]; Ministry of Education, Youth and Sports of the Czech Republic [LO1504]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Özaltin, Kadir
utb.contributor.internalauthor Lehocký, Marián
utb.contributor.internalauthor Humpolíček, Petr
utb.contributor.internalauthor Pelková, Jana
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Kadir Ozaltin 1, Marián Lehocký 1,*, Petr Humpolíček 1, Jana Pelková 2,3 and Petr Sáha 1 1 Centre of Polymer Systems, Tomas Bata University in Zlín, Tr. Tomase Bati 5678, 760 01 Zlín, Czech Republic; [email protected] (K.O.); [email protected] (P.H.); [email protected] (P.S.) 2 Department of Hematology, Vsetin Hospital, Nemocnicni 955, 755 01 Vsetin, Czech Republic; [email protected] 3 Faculty of Humanities, Tomas Bata University in Zlín, Mostni 5139, 760 01 Zlín, Czech Republic * Correspondence: [email protected]; Tel.: +420-608-616-048 Academic Editor: Hermann Ehrlich
utb.fulltext.dates Received: 26 April 2016; Accepted: 6 June 2016; Published: 9 June 2016
utb.fulltext.references 1. Jung, F.; Braune, S.; Lendlein, A. Hemocompatibility testing of biomaterials using human platelets. Clin. Hemorheol. Microc. 2003, 53, 97–115. 2. Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [CrossRef] [PubMed] 3. Horbett, T.A. Adsorbed proteis on biomaterials. In Biomaterials Science, an Introduction to Materials in Medicine, 3rd ed.; Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Eds.; Elsevier INC.: London, UK, 2013; pp. 394–408. 4. Xu, L.C.; Siedlecki, C.A. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 2007, 28, 3273–3283. [CrossRef] [PubMed] 5. Xu, L.C.; Bauer, J.W.; Siedlecki, C.A. Proteins, platelets and blood coagulation at biomaterial interfaces. Biointerfaces 2014, 124, 49–68. [CrossRef] [PubMed] 6. Seyfert, U.T.; Biehl, V.; Schenk, J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993–4. Biomol. Eng 2002, 19, 91–96. [CrossRef] 7. Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471. [CrossRef] [PubMed] 8. Vendra, V.K.; Wu, L.; Krishnan, S. Polymer Thin Films for Biomedical Applications. In Nanostructured Thin Films and Surfaces, 1st ed.; Kumar, C., Ed.; Wiley-VCH: Weinheim, Germany, 2010; pp. 1–54. 9. Courtney, J.M.; Lamba, N.M.K.; Sundaram, S.; Forbes, C.D. Biomaterials for blood-contacting applications. Biomaterials 1994, 15, 737–744. [CrossRef] 10. Ikada, Y. Surface modifications of polymers for medical applications. Biomaterials 1994, 15, 725–736. [CrossRef] 11. Faxalv, L.; Ekblad, T.; Liedberg, B.; Lindahl, T.L. Blood compatibility of photografted hydrogel coatings. Acta Biomater. 2010, 6, 2599–2608. [CrossRef] [PubMed] 12. Cashman, J.D.; Kennah, E.; Shuto, A.; Winternitz, C.; Springate, C.M.K. Fucoidan film safely inhibits surgical adhesions in a rat model. J. Surg. Res. 2011, 171, 495–503. [CrossRef] [PubMed] 13. Chen, H.; Yuan, L.; Song, W.; Wu, Z.; Li, D. Biocompatible polymer materials: Role of protein-surface interactions. Prog. Polym. Sci. 2008, 33, 1059–1087. [CrossRef] 14. Kaleekkal, N.J.; Thanigaivelan, A.; Durga, M.; Girish, R.; Rana, D.; Soundararajan, P.; Mohan, D. Graphene oxide nanocomposite incorporated poly(ether imide) mixed matrix membranes for in vitro evaluation of its efficacy in blood purification applications. Ind. Eng. Chem. Res. 2015, 54, 7899–7913. [CrossRef] 15. Chen, Z.; Wang, Z.; Fu, Q.; Ma, Z.; Fang, P.; He, C. Microstructure and surface state of plasma-treated high-density polyethylene elucidated by energy-tunable positron annihilation and water contact angle measurements. JJAP Conf. Proc. 2014. [CrossRef] 16. Lehocky, M.; Lapcik, L.; Neves, M.C.; Trindade, T.; Szyk-Warszynska, L.; Warszynski, P.; Hui, D. Deposition/detachment of particles on plasma treated polymer surfaces. Mater. Sci. Forum Vols. 2003, 426–432, 2533–2538. [CrossRef] 17. Lehocky, M.; Amaral, P.F.F.; Coelho, M.A.Z.; Stahel, P.; Barros-Timmons, A.M.; Coutinho, J.A.P. Attachment/detachment of Saccharomyces Cerevisiae on plasma deposited organosilicon thin films. Czechoslov. J. Phys. 2006, 56, B1256–B1262. [CrossRef] 18. Lehocky, M.; Lapcik, L.; Dlabaja, R.; Rachunek, L. Influence of artificially accelerated ageing on the adhesive joint of plasma treated polymer materials. Czechoslov. J. Phys. 2004, 54, C533–C538. [CrossRef] 19. Patel, D.; Wu, J.; Chan, P.; Upreti, S.; Turcotte, G.; Ye, T. Surface modification of low density polyethylene films by homogeneous catalytic ozonation. Chem. Eng. Res. Des. 2012, 90, 1800–1806. [CrossRef] 20. Garcia, J.L.; Asadinezhad, A.; Pachernik, J.; Lehocky, M.; Junkar, I.; Humpolicek, P.; Saha, P.; Valasek, P. Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules 2010, 15, 2845–2856. [CrossRef] [PubMed] 21. Popelka, A.; Novak, I.; Lehocky, M.; Junkar, I.; Mozetic, M.; Kleinova, A.; Janigova, I.; Slouf, M.; Bilek, F.; Chodak, I. A new route for chitosan immobilization onto polyethylene surface. Carbohydr. Polym. 2012, 90, 1501–1508. [CrossRef] [PubMed] 22. Garcia, J.L.; Bilek, F.; Lehocky, M.; Junkar, I.; Mozetic, I.; Sowe, M. Enhanced printability of polyethylene through air plasma treatment. Vacuum 2013, 95, 43–49. [CrossRef] 23. Bilek, F.; Krizova, T.; Lehocky, M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloids Surf. B Biointerfaces 2011, 88, 440–447. [CrossRef] [PubMed] 24. Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [CrossRef] 25. Azevedo, T.C.G.; Bezerra, M.E.B.; Santos, M.D.G.D.L.; Souza, L.A.; Marques, C.T.; Benevides, N.M.B.; Leite, E.L. Heparinoids algal and their anticoagulant, hemorrhagic activities and platelet aggregation. Biomed. Pharmacother. 2009, 63, 477–483. [CrossRef] [PubMed] 26. Dore, C.M.P.G.; Alves, M.G.C.F.; Will, L.S.E.P.; Costa, T.G.; Sabry, D.A.; Rego, L.A.R.S.; Accardo, C.M.; Rocha, H.A.O.; Filgueira, L.G.A.; Leite, E.L. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydr. Polym. 2013, 91, 467–475. [CrossRef] [PubMed] 27. Hu, Y.; Li, S.; Li, J.; Ye, X.; Ding, T.; Liu, D.; Chen, J.; Ge, Z.; Chen, S. Identification of a highly sulfated fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated tetrasaccharides units. Carbohydr. Polym. 2015, 134, 808–816. [CrossRef] [PubMed] 28. Jin, W.; Zhang, Q.; Wang, J.; Zhang, W. A comparative study of the anticoagulant activities of eleven fucoidans. Carbohydr. Polym. 2013, 91, 1–6. [CrossRef] [PubMed] 29. Yang, Q.; Yang, R.; Li, M.; Liang, X.; Elmada, Z.C. Effects of dietary fucoidan on the blood constituents, anti-oxidation and innate immunity of juvenile yellow catfisch (Pelteobagrus fulvidraco). Fish Shelfish Immunol. 2014, 41, 264–270. [CrossRef] [PubMed] 30. Tengdelius, M.; Lee, C.J.; Grenegard, M.; Griffith, M.; Pahlsson, P.; Konradsson, P. Synthesis and biological evaluation of fucoidan-mimetic glycopolymers through cyanoxyl-mediated free-radical polymerization. Biomacromolecules 2014, 15, 2359–2368. [CrossRef] [PubMed] 31. Vesel, A.; Mozetic, M.; Strnad, S. Improvement of adhesion of fucoidan on polyethylene terephthalate surface using gas plasma treatments. Vacuum 2011, 85, 1083–1086. [CrossRef] 32. Pielesz, A.; Binias, W. Cellulose acetate membrane electrophoresis and FTIR spectroscopy as methods of identifying a fucoidan in fucus vesiculosus linnaeus. Carbohydr. Res. 2010, 345, 2676–2682. [CrossRef] [PubMed] 33. Rabanal, M.; Ponce, N.M.; Navarro, D.; Gomez, R.M.; Stortz, C. The system of fucoidans from the brown seaweed dictyota dichotoma: Chemical analysis and antiviral activity. Carbohydr. Polym. 2014, 101, 804–811. [CrossRef] [PubMed] 34. Zhao, X.; Dong, S.; Wang, J.; Li, F.; Chen, A.; Li, B. A comparative study of antithrombotic and antiplatelet activities of different fucoidans from Laminaria japonica. Thromb. Res. 2012, 129, 771–778. [CrossRef] [PubMed] 35. Ale, M.T.; Maruyama, H.; Tamauchi, H.; Mikkelsen, J.D.; Meyer, A.S. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int. J. Biol. Macromol. 2011, 49, 331–336. [CrossRef] [PubMed] 36. Ustyuzhanina, N.E.; Bilan, M.I.; Gerbst, A.G.; Ushakova, N.A.; Tsvetkova, E.A.; Dmitrenok, A.S.; Usov, A.I.; Nifantiev, N.E. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea. Carbohydr. Polym. 2016, 136, 826–833. [CrossRef] [PubMed] 37. Zhu, Z.; Zhang, Q.; Chen, L.; Ren, S.; Xu, P.; Tang, Y. Luo, D. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb. Res. 2010, 125, 419–426. [CrossRef] [PubMed] 38. Durig, J.; Bruhn, T.; Zurborn, K.H.; Gutensohn, K.; Bruhn, H.D.; Beress, L. Anticoagulant fucoidan fractions from fucus vesiculosus induce platelet activation in vitro. Thromb. Res. 1997, 85, 479–491. [CrossRef] 39. Fitton, J.H. Therapies from fucoidan; multifunctional marine polymers. Mar. Drugs 2011, 9, 1731–1760. [CrossRef] [PubMed] 40. Bilek, F.; Sulovska, K.; Lehocky, M.; Saha, P.; Humpolicek, P.; Mozetic, M.; Junkar, I. Preparation of active antibacterial LDPE surface through multistep physicochemical approach II: Graft type effect on antibacterial properties. Colloids Surf. B Biointerfaces 2013, 102, 842–848. [CrossRef] [PubMed] 41. Huang, L.Y.; Yang, M.C. Surface immobilization of chondroitin 6-sulfate/heparin multilayer on stainless steel for developing drug-eluting coronary stents. Colloids Surf. B Biointerfaces 2008, 61, 43–52. [CrossRef] [PubMed] 42. Humpolicek, P.; Kucekova, Z.; Kasparkova, V.; Pelkova, J.; Modic, M.; Junkar, I.; Trchova, M.; Bober, P.; Stejskal, J.; Lehocky, M. Blood coagulation and platelet adhesion on polyaniline films. Colloids Surf. B Biointerfaces 2015, 133, 278–285. [CrossRef] [PubMed] 43. Wijesinghe, W.A.J.P.; Jeon, Y.J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 2012, 88, 13–20. [CrossRef] 44. Friedrich, J. Polymer surface modification with monosort functional groups. In The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design; Wiley-VCH: Weinheim, Germany, 2012; pp. 249–302.
utb.fulltext.sponsorship This work was co-funded by the Operational Program Research and Development for Innovations and by the European Regional Development Fund (ERDF) and national budget of Czech Republic, within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111). The authors would like to express their gratitude to the Ministry of Education, Youth and Sports of the Czech Republic (Project no. LO1504).
utb.fulltext.projects CZ.1.05/2.1.00/03.0111
utb.fulltext.projects LO1504
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International