Publikace UTB
Repozitář publikační činnosti UTB

Particle swarm optimizer with diversity measure based on swarm representation in complex network

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Particle swarm optimizer with diversity measure based on swarm representation in complex network en
dc.contributor.author Janoštík, Jakub
dc.contributor.author Pluháček, Michal
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Zelinka, Ivan
dc.relation.ispartof Proceedings of the Second International Afro-European Conference for Industrial Advancement (AECIA 2015)
dc.relation.ispartof Advances in Intelligent Systems and Computing
dc.identifier.issn 2194-5357 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 9783319295039
dc.date.issued 2016
utb.relation.volume 427
dc.citation.spage 561
dc.citation.epage 569
dc.event.title 2nd International Afro-European Conference for Industrial Advancement, AECIA 2015
dc.event.location Villejuif
utb.event.state-en France
utb.event.state-cs Francie
dc.event.sdate 2015-09-09
dc.event.edate 2015-09-11
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Verlag
dc.identifier.doi 10.1007/978-3-319-29504-6_52
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-319-29504-6_52
dc.subject Adaptive control en
dc.subject Complex network en
dc.subject Evolutionary algorithm en
dc.subject Graph en
dc.subject Particle swarm optimization en
dc.subject PSO en
dc.description.abstract In this paper a alternative approach to the diversity guided particle swarm optimization (PSO) is investigated. The PSO shows acceptable performance on well-known test problems, however tends to suffer from premature convergence on multi-modal test problems. This premature convergence can be avoided by increasing diversity in search space. In this paper we introduce diversity measure based on graph representation of swam evolution and we discuss possibilities of graph representation of swarm population in adaptive control of PSO algorithm. Based on our findings we concluded, that network representation of evolution population and its subsequent analysis can be used in adaptive control, in various degrees of success. © Springer International Publishing Switzerland 2016. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1006262
utb.identifier.rivid RIV/70883521:28140/16:43875575!RIV17-GA0-28140___
utb.identifier.obdid 43876342
utb.identifier.scopus 2-s2.0-84958280639
utb.identifier.wok 000371912400052
utb.source d-scopus
dc.date.accessioned 2016-04-28T10:53:18Z
dc.date.available 2016-04-28T10:53:18Z
utb.contributor.internalauthor Janoštík, Jakub
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Zelinka, Ivan
utb.fulltext.affiliation Jakub Janostik, Michal Pluhacek, Roman Senkerik and Ivan Zelinka J. Janostik ( ✉ ) ⋅ M. Pluhacek ⋅ R. Senkerik Faculty of Applied Informatics, Tomas Bata University in Zlin, T.G. Masaryka 5555, 760 01 Zlin, Czech Republic e-mail: [email protected] M. Pluhacek e-mail: [email protected] R. Senkerik e-mail: [email protected] I. Zelinka Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic e-mail: [email protected]
utb.fulltext.dates -
utb.fulltext.sponsorship This work was supported by Grant Agency of the Czech Republic - GACR P103/15/06700S, further by financial support of research project NPU I No. MSMT-7778/2014 by the Ministry of Education of the Czech Republic and also by the European Regional Development Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, partially supported by Grant of SGS No. SP2015/142, VŠB - Technical University of Ostrava, Czech Republic and by Internal Grant Agency of Tomas Bata University under the project No. IGA/FAI/2015/057 and IGA/FAI/2015/061.
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam