Kontaktujte nás | Jazyk: čeština English
dc.title | Cost functions based on different types of distance measurements for pseudo neural network synthesis | en |
dc.contributor.author | Komínková Oplatková, Zuzana | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | Advances in Intelligent Systems and Computing | |
dc.relation.ispartof | Mendel 2015: Recent Advances in Soft Computing | |
dc.identifier.issn | 2194-5357 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-331919823-1 | |
dc.identifier.isbn | 978-3-319-19824-8 | |
dc.date.issued | 2015 | |
utb.relation.volume | 378 | |
dc.citation.spage | 291 | |
dc.citation.epage | 301 | |
dc.event.title | 21st International Conference on Soft Computing, Mendel 2015 | |
dc.event.location | Brno | |
utb.event.state-en | Czech Republic | |
utb.event.state-cs | Česká republika | |
dc.event.sdate | 2015-06-23 | |
dc.event.edate | 2015-06-25 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.identifier.doi | 10.1007/978-3-319-19824-8_24 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-319-19824-8_24 | |
dc.subject | Chebyshev distance | en |
dc.subject | Classification | en |
dc.subject | Euclidean distance | en |
dc.subject | Manhattan distance | en |
dc.subject | Pseudo neural networks | en |
dc.subject | Symbolic regression | en |
dc.description.abstract | This research deals with a novel approach to classification. New classifiers are synthesized as a complex structure via evolutionary symbolic computation techniques. Compared to previous research, this paper synthesizes multi-input-multi-output (MIMO) classifiers with different cost function based on distance measurements. An inspiration for this work came from the field of artificial neural networks (ANN). The proposed technique creates a relation between inputs and outputs as a whole structure together with numerical values which could be observed as weights in ANN. Distances used in cost functions were: Manhattan (absolute distances of output vectors), Euclidean, Chebyshev (maximum distance value), Canberra distance, Bray – Curtis. The Analytic Programming (AP) was utilized as the tool of synthesis by means of the evolutionary symbolic regression. For experimentation, Differential Evolution for the main procedure and also for meta-evolution version of analytic programming was used Iris data (a known benchmark for classifiers) was used for testing of the proposed method. © Springer International Publishing Switzerland 2015. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1005769 | |
utb.identifier.obdid | 43874343 | |
utb.identifier.scopus | 2-s2.0-84946741320 | |
utb.identifier.wok | 000364847700024 | |
utb.source | d-scopus | |
dc.date.accessioned | 2016-01-15T10:59:50Z | |
dc.date.available | 2016-01-15T10:59:50Z | |
utb.contributor.internalauthor | Komínková Oplatková, Zuzana | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.affiliation | Zuzana Kominkova Oplatkova, Roman Senkerik Faculty of Applied Informatics, Tomas Bata University in Zlin, Nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic e-mail: [email protected] e-mail: [email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics |