Publikace UTB
Repozitář publikační činnosti UTB

High temperature mechanical properties of peroxide cross-linked ethylene-octene copolymer

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title High temperature mechanical properties of peroxide cross-linked ethylene-octene copolymer en
dc.contributor.author Theravalappil, Rajesh
dc.contributor.author Svoboda (FT), Petr
dc.contributor.author Poongavalappil, Sameepa
dc.relation.ispartof Annual Technical Conference - ANTEC, Conference Proceedings
dc.identifier.isbn 978-1-61782-960-4
dc.date.issued 2011
utb.relation.volume 3
dc.citation.spage 2558
dc.citation.epage 2560
dc.event.title 69th Annual Technical Conference of the Society of Plastics Engineers 2011, ANTEC 2011
dc.event.location Boston, MA
utb.event.state-en United States
utb.event.state-cs Spojené státy americké
dc.event.sdate 2011-05-01
dc.event.edate 2011-05-05
dc.type conferenceObject
dc.language.iso en
dc.relation.uri http://www.4spe.org/Resources/resource.aspx?ItemNumber=10121
dc.subject creep en
dc.subject cross-linking en
dc.subject ethylene-octene en
dc.subject peroxide en
dc.subject residual strain en
dc.subject TPV en
dc.description.abstract Ethylene-octene copolymer (EOC) was cross-linked by dicumyl peroxide (DCP). Thermoplastic vulcanizate (TPV) based on polypropylene (PP)/EOC-DCP was prepared by dynamic vulcanization. Gel content was noted. Tensile creep properties of these samples at elevated temperatures (70- 200°C) were studied. Residual strain after 100% and 200% elongation were examined. EOC cross-linked with lower peroxide levels underwent creep failure easily at lower temperatures even with small loads. EOC with 0.6 wt. % of DCP was found to be the strongest even at higher temperatures and lower temperatures with heavier loads. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1004863
utb.identifier.obdid 43874195
utb.identifier.scopus 2-s2.0-80051808935
utb.identifier.coden ACPED
utb.source d-scopus
dc.date.accessioned 2015-06-04T12:55:47Z
dc.date.available 2015-06-04T12:55:47Z
utb.contributor.internalauthor Theravalappil, Rajesh
utb.contributor.internalauthor Svoboda (FT), Petr
utb.contributor.internalauthor Poongavalappil, Sameepa
utb.fulltext.affiliation Rajesh Theravalappil1, Petr Svoboda1, 2, Sameepa Poongavalappil1 1 Faculty of Technology, Tomas Bata University in Zlin, Nam. TG Masaryka 275, 76272, Zlin, Czech Republic. 2 Centre of Polymer Systems, Tomas Bata University in Zlin, Nam.TG Masaryka 5555, 76001, Zlin, Czech Republic. [email protected]
utb.fulltext.dates -
utb.fulltext.references 1. U. Basuli, T. K. Chaki and K. Naskar, Journal of Applied Polymer Science, 108, 1079-1085 (2008). 2. P. Slobodian, D. Kralova, A. Lengalova, R. Novotny and P. Saha, Polymer Composites, 31, 452-458 (2010) 3. V. Devasenapathi, P. Monish and S. B. Prabu, International Journal of Advanced Manufacturing Technology, 44, 412-418 (2009). 4. Y. Xu, Q. Wu, Y. Lei and F. Yao, Bioresource Technology, 101, 3280-3286 (2010). 5. P.E. Tomlins, B.E. Read and G.D. Dean, Polymer, 35, 4376-4381 (1994). 6. A. H-Ulloa, J-R. M. D’Almeida and J-P. Habas, Polymer Engineering and Science, 50, 2122-2130 (2010). 7. B. Patham and K. Jayaraman, Journal of Rheology, 49, 989-999 (2005). 8. W. Kamphunthong and K. Sirisinha, Journal of Applied Polymer Science, 109, 2347-2353 (2008).
utb.fulltext.sponsorship This work has been supported by the Internal Grant Authority (SVV-IGA/4/FT/10/D) of Tomas Bata University in Zlin.
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam