Publikace UTB
Repozitář publikační činnosti UTB

Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation en
dc.contributor.author Sedláková, Zuzana
dc.contributor.author Clarizia, Gabriele
dc.contributor.author Bernardo, Paola
dc.contributor.author Jansen, Johannes Carolus
dc.contributor.author Slobodian, Petr
dc.contributor.author Svoboda (FT), Petr
dc.contributor.author Kárászová, Magda
dc.contributor.author Friess, Karel
dc.contributor.author Izak, Pavel
dc.relation.ispartof Membranes
dc.identifier.issn 2077-0375 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2014
utb.relation.volume 4
utb.relation.issue 1
dc.citation.spage 20
dc.citation.epage 39
dc.type article
dc.language.iso en
dc.publisher MDPI AG en
dc.identifier.doi 10.3390/membranes4010020
dc.relation.uri http://www.mdpi.com/2077-0375/4/1/20
dc.subject poly(ethylene-co-octene) en
dc.subject carbon fibers en
dc.subject carbon nanotubes en
dc.subject mixed matrix membrane en
dc.subject membrane separation en
dc.subject transport properties en
dc.subject mechanical properties en
dc.description.abstract Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene)) with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs) and carbon fibers (CFs). Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane), aromatic compound (toluene), alcohol (ethanol), as well as water for the representative samples. The mechanical properties and homogeneity of samples was checked by stress-strain tests. The addition of virgin CNTs and CFs improve mechanical properties. Gas permeability of EOC lies between that of the more permeable PDMS and the less permeable semi-crystalline polyethylene and polypropylene. Organic vapors are more permeable than permanent gases in the composite membranes, with toluene and hexane permeabilities being about two orders of magnitude higher than permanent gas permeability. The results of the carbon-filled membranes offer perspectives for application in gas/vapor separation with improved mechanical resistance. © 2014 by the authors; licensee MDPI, Basel, Switzerland. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1003639
utb.identifier.obdid 43871749
utb.identifier.scopus 2-s2.0-84891709552
utb.identifier.wok 000215750900002
utb.identifier.pubmed 24957119
utb.source j-scopus
dc.date.accessioned 2014-02-04T15:49:39Z
dc.date.available 2014-02-04T15:49:39Z
dc.description.sponsorship Czech Science FoundationGrant Agency of the Czech Republic [P106/10/1194]; Italian National Program, Programma Operativo Nazionale Ricerca e Competitivita [PON01_01840]; Operational Program of Research and Development for Innovations - European Regional Development Fund (ERDF); National budget of Czech Republic within the framework of the Centre of Polymer Systems project [CZ.1.05/2.1.00/03.0111]
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Slobodian, Petr
utb.contributor.internalauthor Svoboda (FT), Petr
utb.fulltext.affiliation Zuzana Sedláková 1, Gabriele Clarizia 2, Paola Bernardo 2, Johannes Carolus Jansen 2,*, Petr Slobodian 3,4, Petr Svoboda 3,4, Magda Kárászová 1, Karel Friess 5 and Pavel Izak 1 1 Institute of Chemical Process Fundamentals of the AS CR, Rozvojová 135, 165 02 Prague 6, Czech Republic; E-Mails: [email protected] (Z.S.); [email protected] (M.K.); [email protected] (P.I.) 2 Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; E-Mails: [email protected] (G.C.); [email protected] (P.B.) 3 Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nam, TGM 275, 762 72 Zlin, Czech Republic; E-Mails: [email protected] (P.Sl.); [email protected] (P.Sv.) 4 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin, Czech Republic 5 Department of Physical Chemistry, Institute of Chemical Technology, Technická 5, 160 00 Prague 6, Czech Republic; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-(0)984-492031; Fax: +39-(0)984-402103.
utb.fulltext.dates Received: 6 November 2013; in revised form: 26 November 2013 / Accepted: 21 December 2013 / Published: 3 January 2014
utb.fulltext.references 1. Éigenson, A.S. Regularity in boiling point distribution of crude oil fractions. Chem. Technol. Fuels Oils 1973, 9, 3–8. 2. Kimmerle, K.; Bell, C.M. Solvent recovery from air. J. Membr. Sci. 1988, 36, 477–488. 3. Ravanchia, M.T.; Kaghazchia, T.; Margarin, A. Application of membrane separation processes in petrochemical industry: A review. Desalination 2009, 235, 199–244. 4. Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. 5. Leemann, M.; Eigenberger, G.; Strathmann, H. Vapour permeation for the recovery of organic solvents from waste air streams: Separation capacities and process optimization. J. Membr. Sci. 1996, 113, 313–322. 6. Rebollar-Perez, G.; Carretier, E.; Lesage, N.; Moulin, P. Volatile organic compound (VOC) removal by vapor permeation at low VOC concentrations: Laboratory scale results and modeling for scale up. Membranes 2011, 1, 80–90. 7. Kim, H.J.; Nah, S.S.; Min, B.R. A new technique for preparation of PDMS pervaporation membrane for VOC removal. Adv. Environ. Res. 2002, 6, 255–264. 8. Majumdar, S.; Bhaumik, D.; Sirkar, K.K. Performance of commercial-size plasmapolymerized PDMS-coated hollow fiber modules in removing VOCs from N2/air. J. Membr. Sci. 2003, 214, 323–330. 9. Sohn, W.-I.; Ryu, D.-H.; Oh, S.-J.; Koo, J.-K. A study on the development of composite membranes for the separation of organic vapors. J. Membr. Sci. 2000, 175, 163–170. 10. Liu, Y.; Feng, X.; Lawless, D. Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control. J. Membr. Sci. 2006, 271, 114–124. 11. Yampolskii, Y.; Pinnau, I.; Freeman, B. Materials Science of Membranes for Gas and Vapor Separation; John Wiley & Sons: New York, NY, USA, 2006. 12. Šindelář, V.; Sysel, P.; Hynek, V.; Friess, K.; Šípek, M.; Castaneda, N. Transport of gases and organic vapors through membrane made of poly(amide-imide)s crosslinked with poly(ethyleneadipate). Collect. Czech. Chem. Commun. 2001, 66, 533–540. 13. Guizard, C.; Boutevin, B.; Guida, F.; Ratsimihety, A.; Amblard, P.; Lasere, J.C.; Naiglin, S. VOC vapor transport properties of new membranes based on cross-linked fluorinated elastomers. Sep. Purif. Technol. 2001, 22–23, 23–30. 14. Togawa, J.; Kanno, T.; Horiuchi, J.-I.; Kobayashi, M. Gas permeability modification of polyolefin films induced by D-limonene swelling. J. Membr. Sci. 2001, 188, 39–48. 15. Tasselli, F.; Jansen, J.C.; Sidari, F.; Drioli, E. Morphology and transport property control of modified poly(ether ether ketone) (PEEKWC) hollow fiber membranes prepared from PEEKWC/PVP blends: Influence of the relative humidity in the air gap. J. Membr. Sci. 2005, 255, 13–22. 16. Feron, P.H.M.; Jansen, A.E. CO2 separation with polyolefin membrane contactors and dedicated absorption liquids: Performances and prospects. Sep. Purif. Technol. 2002, 27, 231–242. 17. Chung, T.-S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2005, 255, 13–22. 18. Moore, T.T.; Koros, W.J. Non-ideal effects in organic–inorganic materials for gas separation membranes. J. Mol. Struct. 2005, 739, 87–98. 19. Merkel, T.C.; Freeman, B.D.; Spontak, R.J.; He, Z.; Pinnau, I.; Meakin, P.; Hill, A.J. Ultrapermeable, reverse-selective nanocomposite membranes. Science 2002, 296, 519–522. 20. Slobodian, P.; Riha, P.; Lengalova, A.; Saha, P. Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks. J. Mater. Sci. 2011, 46, 3186–3190. 21. Slobodian, P.; Riha, P.; Benlikaya, R.; Svoboda, P.; Petras, D. A flexible multifunctional sensor based on carbon nanotube/polyurethane composite. IEEE Sens. J. 2013, 13, 4045–4048. 22. Petras, D.; Olejnik, R.; Slobodian, P.; Riha, P. Temperature dependence of electrical conductance of multi-walled carbon nanotube networks and their polystyrene composite. Key Eng. Mater. 2013, 543, 356–359. 23. Slobodian, P.; Riha, P.; Saha, P. A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane. Carbon 2012, 50, 3446–3453. 24. Slobodian, P.; Kralova, D.; Lengalova, A.; Novotny, R.; Saha, P. Adaptation of polystyrene/multi-wall carbon nanotube composite properties in respect of its thermal stability. Polym. Compos. 2010, 31, 452–458. 25. Slobodian, P.; Lengálová, A.; Šlouf, M.; Sáha, P. Poly(methyl methacrylate)/multi-wall carbon nanotubes composites prepared by solvent cast technique: composites electrical percolation threshold. J. Reinf. Plast. Compos. 2007, 26, 1705–1712. 26. Surya Murali, R.; Sridhar, S.; Sankarshana, T.; Ravikumar, Y.V.L. Gas permeation behavior of pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind. Eng. Chem. Res. 2010, 49, 6530–6538. 27. Khan, M.M.; Filiz, V.; Bengtson, G.; Shishatskiy, S.; Rahman, M.; Abetz, V. Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation. Nanoscale Res. Lett. 2012, 44, 1899–1901. 28. Sears, K.; Dumée, L.; Schütz, J.; She, M.; Huynh, C.; Hawkins, S.; Duke, M.; Gray, S. Recent developments in carbon nanotube membranes for water purification and gas separation. Materials 2010, 3, 127–149. 29. Poongavalappil, S.; Svoboda, P.; Theravalappil, R.; Svobodova, D.; Danek, M.; Zatloukal, M. Study on the influence of electron beam irradiation on the thermal, mechanical, and rheological properties of ethylene-octene copolymer with high comonomer content. J. Appl. Polym. Sci. 2013, 128, 3026–3033. 30. Svoboda, P.; Theravalappil, R.; Poongavalappil, S.; Vilcakova, J.; Svobodova, D.; Mokrejs, P.; Blaha, A. A study on electrical and thermal conductivities of ethylene–octene copolymer/expandable graphite composites. Polym. Eng. Sci. 2012, 52, 1241–1249. 31. Bernardo, P.; Jansen, J.C.; Bazzarelli, F.; Tasselli, F.; Fuoco, A.; Friess, K.; Izak, P.; Jarmarová, V.; Kačírková, M.; Clarizia, G. Gas transport properties of Pebax®/room temperature ionic liquid gel membranes. Sep. Purif. Technol. 2012, 97, 73–82. 32. Jansen, J.C.; Friess, K.; Clarizia, G.; Schauer, J.; Izák, P. High ionic liquid content polymeric gel membranes: preparation and performance. Macromolecules 2011, 44, 39–45. 33. Clarizia, G.; Algieri, C.; Drioli, E. Filler-polymer combination: A route to modify gas transport properties of a polymeric membrane. Polymer 2004, 45, 5671–5681. 34. Jansen, J.C.; Friess, K.; Drioli, E. Organic vapour transport in glassy perfluoropolymer membranes: A simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. J. Membr. Sci. 2011, 367, 141–151. 35. Crank, J. The Mathematics of Diffusion; Oxford Press: London, UK, 1990. 36. Koda, S.; Mori, H.; Matsumoto, K.; Nomura, H. Ultrasonic degradation of water-soluble polymers. Polymers 1994, 35, 30–33. 37. Taghizadeh, M.T.; Mehrdad, A. Calculation of the rate constant for the ultrasonic degradation of aqueous solutions of polyvinyl alcohol by viscometry. Ultrason. Sonochem. 2003, 10, 309–313. 38. Olejnik, R.; Liu, P.; Slobidian, P.; Zatloukal, M.; Saha, P. Characterization of carbon nanotube based polymer composites through rheology. AIP Conf. Proc. 2009, 1152, 204–209. 39. Osazuwa, O.; Petrie, K.; Kontopoulou, M.; Xiang, P.; Ye, Z.; Docoslis, A. Characterization of non-covalently, non-specifically functionalized multi-wall carbon nanotubes and their melt compounded composites with an ethylene–octene copolymer. Compos. Sci. Technol. 2012, 73, 27–33. 40. Sliwa, F.; El Bounia, N.-E.; Charrier, F.; Marin, G.; Malet, F. Mechanical and interfacial properties of wood and bio-based thermoplastic composite. Compos. Sci. Technol. 2012, 72, 1733–1740. 41. Blume, I.; Schwering, P.J.F.; Mulder, M.H.V.; Smolders, C.A. Vapour sorption and permeation properties of poly(dimethylsiloxane) films. J. Membr. Sci. 1991, 61, 85–97.
utb.fulltext.sponsorship This research was supported by the Czech Science Foundation, grant No. P106/10/1194. The financial support of the Italian National Program, “Programma Operativo Nazionale Ricerca e Competitività 2007–2013”, project PON01_01840 “MicroPERLA” is gratefully acknowledged. The work was also supported by the Operational Program of Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF), the National budget of Czech Republic within the framework of the Centre of Polymer Systems project (reg. number: CZ.1.05/2.1.00/03.0111). Fabio Bazzarelli is gratefully acknowledged for his assistance with some of the permeability measurements.
utb.wos.affiliation [Sedlakova, Zuzana; Karaszova, Magda; Izak, Pavel] AS CR, Inst Chem Proc Fundamentals, Prague 16502 6, Czech Republic; [Clarizia, Gabriele; Bernardo, Paola; Jansen, Johannes Carolus] CNR, ITM, Via P Bucci 17-C, I-87036 Arcavacata Di Rende, CS, Italy; [Slobodian, Petr; Svoboda, Petr] Tomas Bata Univ Zlin, Fac Technol, Dept Polymer Engn, Nam 76272, Zlin, Czech Republic; [Slobodian, Petr; Svoboda, Petr] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Zlin 76001, Czech Republic; [Friess, Karel] Inst Chem Technol, Dept Phys Chem, Tech 5, Prague 16000 6, Czech Republic
utb.fulltext.projects P106/10/1194
utb.fulltext.projects PON01_01840
utb.fulltext.projects ERDF
utb.fulltext.projects CZ.1.05/2.1.00/03.0111
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam