Kontaktujte nás | Jazyk: čeština English
dc.title | Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability | en |
dc.contributor.author | López García, Jorge Andrés | |
dc.contributor.author | Kuceková, Zdenka | |
dc.contributor.author | Humpolíček, Petr | |
dc.contributor.author | Mlček, Jiří | |
dc.contributor.author | Sáha, Petr | |
dc.relation.ispartof | Molecules | |
dc.identifier.issn | 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2013 | |
utb.relation.volume | 18 | |
utb.relation.issue | 11 | |
dc.citation.spage | 13435 | |
dc.citation.epage | 13445 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI AG | en |
dc.identifier.doi | 10.3390/molecules181113435 | |
dc.relation.uri | http://www.mdpi.com/1420-3049/18/11/13435 | |
dc.subject | Atelocollagen thin films | en |
dc.subject | Cell viability | en |
dc.subject | Edible flowers | en |
dc.subject | Polyphenolic extracts | en |
dc.subject | Tissue engineering | en |
dc.description.abstract | The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen. © 2013 by the authors. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1003574 | |
utb.identifier.obdid | 43870233 | |
utb.identifier.scopus | 2-s2.0-84888587167 | |
utb.identifier.wok | 000330311500023 | |
utb.identifier.coden | MOLEF | |
utb.source | j-scopus | |
dc.date.accessioned | 2013-12-18T16:07:41Z | |
dc.date.available | 2013-12-18T16:07:41Z | |
dc.description.sponsorship | European Regional Development Fund (ERDF); project Centre of Polymer Systems [CZ.1.05/2.1.00/03.0111]; Advanced Theoretical and Experimental Studies of Polymer Systems [CZ.1.07/2.3.00/20.0104]; Czech Science Foundation [13-08944S]; TBU in Zlin [IGA/FT/2013/019] | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Unported | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/ | |
dc.rights.access | openAccess | |
utb.contributor.internalauthor | López García, Jorge Andrés | |
utb.contributor.internalauthor | Kuceková, Zdenka | |
utb.contributor.internalauthor | Humpolíček, Petr | |
utb.contributor.internalauthor | Mlček, Jiří | |
utb.contributor.internalauthor | Sáha, Petr | |
utb.fulltext.affiliation | Jorge López-García 1, Zdenka Kuceková 1,2, Petr Humpolíček 1,2,*, Jiři Mlček 3 and Petr Sáha 1 1 Centre of Polymer Systems, Tomas Bata University in Zlín, nám. T.G.Masaryka-5555, Zlín 76001, Czech Republic; E-Mails: [email protected] (J.L.-G.); [email protected] (Z.K.); [email protected] (P.S.) 2 Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G.M. sq. 275, Zlin 76272, Czech Republic 3 Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nám. T.G.Masaryka-5555, Zlin 76272, Czech Republic; E-Mail: [email protected] * Author to whom any correspondence should be addressed; E-Mail: [email protected]; Tel.: +420-73-479-2298; Fax: +420-57-603-1444. | |
utb.fulltext.dates | Received: 30 August 2013; in revised form: 3 October 2013 / Accepted: 23 October 2013 / Published: 30 October 2013 | |
utb.fulltext.references | 1. Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. 2. Banerjee, I.; Mishra, D.; Das, T.; Maiti, S.; Maiti, T.K. Caprine (Goat) collagen: A potential biomaterial for skin tissue engineering. J. Biomater. Sci. Polym. Ed. 2012, 23, 355–373. 3. Bernal, A.; Balková, R.; Kuřítka, I.; Sáha, P. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polym. Bull. 2012, 70, 431–453. 4. López-García, J.; Humpolíček, P.; Lehocký, M.; Junkar, I.; Mozetič, M. Different source atelocollagen thin films: Preparation, process optimisation and its influence on the interaction with eukaryotic cells. Mater. Tehnol. 2013, 47, 473–479. 5. Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-based biomaterials for tissue enginnering applications. Materials 2010, 3, 1863–1887. 6. Langer, R.; Tirell, D.A. Designing materials for biology and medicine. Nature 2004, 18, 487–492. 7. Tabata, Y. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface 2009, 6, 311–324. 8. Garcia, J.L.; Asadinezhad, A.; Pacherník, J.; Lehocký, M.; Junkar, I.; Humpolíček, P.; Sáha, P.; Valášek, P. Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules 2010, 15, 2845–2856. 9. Štajner, D.; Čanadanović-Brunet, J.; Pavlović, A. Allium schoenoprasum L., as a natural antioxidant. Phytother. Res. 2004, 18, 522–524. 10. Anačkov, G.; Božin, B.; Zorić, L.; Vukov, D.; Mimica-Dukić, N.; Merkulov, L.; Igić, R.; Jovanović, M.; Boža, P. Chemical composition of essential oil and leaf anatomy of Salvia bertolonii vis. and Salvia pratensis L. (Sect. Plethiosphace, Lamiaceae). Molecules 2009, 14, 1–9. 11. Hearst, C.; McCollum, G.; Nelson, D.; Ballard, L.M.; Millar, B.C.; Goldsmith, C.E.; Rooney, P.J.; Loughrey, A.; Moore, J.E.; Rao, J.R. Antibacterial activity of elder (Sambucus nigra L.) flower or berry against hospital pathogens. J. Med. Plants. Res. 2010, 4, 1805–1809. 12. Kirschner, J.; Stepanek, J. Typification of Leontodon taraxacum L. (Taraxacum officinale FH Wigg.) and the generic name Taraxacum: A review and a new typification proposal. Taxon 2011, 60, 216–220. 13. Shirshova, T.I.; Beshlei, I.V.; Deryagina, V.P.; Ryzhova, N.I.; Matistov, N.V. Chemical composition of Allium schoenoprasum leaves and inhibitory effect of their extract on tumor growth in mice. Pharm. Chem. J. 2013, 46, 672–675. 14. Vlase, L.; Parvu, M.; Parvu, E.A.; Toiu, A. Chemical constituents of three Allium species from Romania. Molecules 2013, 18, 114–127. 15. Kuceková, Z.; Mlček, J.; Humpolíček, P.; Rop, O. Edible flowers–Antioxidant activity and impact on cell viability. Cent. Eur. J. Biol. 2013, 8, 1023–1031. 16. Rodrigues, A.S.; Pérez-Gregorio, M.R.; García-Falcón, M.S.; Simal-Gándara, J. Effect of curing and cooking on flavonols and anthocyanins in traditional varieties of onion bulbs. Food Res. Int. 2009, 42, 1331–1336. 17. Pérez-Gregorio, M.R.; García-Falcón, M.S.; Simal-Gándara, J.; Rodrigues, A.S.; Almeida, D.P.F. Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. J. Food Compos. Anal. 2010, 23, 592–598. 18. Figueiredo-González, M.; Cancho-Grande, B.; Simal-Gándara, J. Evolution of colour and phenolic compounds during Garnacha Tintorera grape raisining. Food Chem. 2013, 141, 3230–3240. 19. Rop, O.; Mlček, J.; Juřiková, T.; Valsikova, M.; Sochor, J.; Reznicek, J.; Kramarova, D. Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (Aronia melanocarpa (Michx.) Elliot) cultivars. J. Med. Plants Res. 2010, 4, 2431–2437. 20. Osorio, C.; Carriazo, J.G.; Almanza, O. Antioxidant activity of corozo (Bactris guineensis) fruit by electron paramagnetic resonance (EPR) spectroscopy. Eur. Food Res. Technol. 2011, 233, 103–108. 21. Mlček, J.; Rop, O. Fresh edible flowers of ornamental plants–A new source of nutraceutical foods. Trends Food Sci. Tech. 2011, 22, 561–569. 22. Rodrigues, A.S.; Pérez-Gregorio, M.R.; García-Falcón, M.S.; Simal-Gándara, J.; Almeida, D.P.F. Effect of post-harvest practices on flavonoid content of red and white onion cultivars. Food Control 2010, 21, 878–884. 23. Pérez-Gregorio, M.R.; Regueiro, J.; González-Barreiro, C.; Rial-Otero, R.; Simal-Gándara, J. Changes in antioxidant flavonoids during freeze-drying of red onions and subsequent storage. Food Control 2011, 22, 1108–1113. 24. Hetrick, E.M.; Schoenfisch, M.H. Reducing implant-related infections: Active release strategies. Chem. Soc. Rev. 2006, 35, 780–789. 25. Kenawy, E.R.; Worley, S.D.; Broughton, R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules 2007, 8, 1359–1384. 26. Ferrer, J.L.; Austin, M.B.; Stewart, C.; Noel, J.P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Bioch. 2008, 46, 356–370. 27. Figueiredo-González, M.; Simal-Gándara, J.; Boso, S.; Martínez, M.C.; Santiago, J.L.; Cancho-Grande, B. Flavonoids in Gran Negro berries collected from shoulders and tips within the cluster, and comparison with Brancellao and Mouratón varieties. Food Chem. 2012, 133, 806–815. 28. Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992, 13, 435–448. 29. Kuceková, Z.; Mlček, J.; Humpolíček, P.; Rop, O.; Valášek, P.; Sáha, P. Phenolic compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effects. Molecules 2011, 16, 9207–9217. 30. Araim, O.; Ballantyne, J.; Waterhouse, A.L.; Sumpio, B.E. Inhibition of vascular smooth muscle cell proliferation with red wine and red wine polyphenols. J. Vasc. Surg. 2002, 35, 1226–1232. 31. Figueiredo-González, M.; Simal-Gándara, J.; Boso, S.; Martínez, M.C.; Santiago, J.L.; Cancho-Grande, B. Anthocyanins and flavonols berries from Vitis vinifera L. cv. Brancellao separately collected from two different positions within the cluster. Food Chem. 2012, 135, 47–56. 32. Quijada-Morín, N.; Regueiro, J.; Simal-Gándara, J.; Tomás, E.; Rivas-Gonzalo, J.C.; Escribano-Bailón, T. Relationship between the sensory-determined astringency and the flavanolic composition of red wines. J. Agric. Food Chem. 2012, 60, 12355–12361. 33. Katalinic, V.; Mozina, S.S.; Generalic, I.; Skroza, D.; Ljubenkov, I.; Klancnik, A. Phenolic profile, antioxidant capacity and antimicrobial activity of leaf extracts from six Vitis Viniferea L. varieties. Int. J. Food Prop. 2013, 16, 45–60. 34. Hashimoto, S.; Miyazawa, M.; Kameoka, H. Volatile flavour component of chive Allium Schoenprasum. J. Food Sci. 1983, 48, 1858–1863. 35. Veličković, D.T.; Randelović, N.V.; Ristić, M.S.; Šmelcerović, A.A.; Veličković, A.S. Chemical, composition and antimicrobial action of the ethanol extracts of Salvia pratensis L., Salvia glutinosa L. and Salvia aethiopis L. J. Serb. Chem. Soc. 2002, 67, 639–646. 36. Schmitzer, V.; Veberic, R.; Slatnar, A.; Stampar, F. Elderberry (Sambucus nigra L.) wine: A product rich in health promoting compounds. J. Agric. Food Chem. 2010, 58, 10143–10146. 37. Alonso-García, A.; Cancho-Grande, B.; Simal-Gándara, J. Development of a rapid method based on solid-phase extraction and liquid chromatography with ultraviolet detection for the determination of polyphenols in alcohol-free beers. J. Chromatogr. A 2004, 1054, 175–180. 38. Figueiredo-González, M.; Cancho-Grande, B.; Simal-Gándara, J. Garnacha Tintorera-based sweet wines: Chromatic properties and global phenolic composition by means of UV-Vis spectrophotometry. Food Chem. 2013, 140, 217–224. 39. International Organization for Standardization. ISO 10993 5: 2009. Biological evaluation of medical devices, Part 5: Tests for in vitro cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009. 40. Campbell, J.K.; King, J.L.; Harmston, M.; Lila, M.A.; Erdman, J.W. Synergistic effects of flavonoids on cell proliferation in Hepa-1c1c7 and LNCaP cancer cell lines. J. Food Sci. 2006, 71, 358–363. 41. Kowalczyk, M.C.; Kowalczyk, P.; Tolstykh, O.; Hanausek, M.; Walaszek, Z.; Slaga, T.J. Synergistic effects of combined phytochemicals and skin cancer prevention in SENCAR mice. Cancer Prev. Res. 2010, 3, 170–178. 42. Hole, A.; Grimmer, S.; Jensen, M.R.; Sahlstrøm, S. Synergistic and suppressive effects of dietary phenolic acids and other phytochemicals from cereal extracts on nuclear factor kappa B activity. Food Chem. 2012, 133, 969–977. 43. Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004, 52, 255–260. 44. Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. 45. García, J.L.; Pacherník, J.; Lehocký, M.; Junkar, I.; Humpolíček, P.; Sáha, P. Enhanced keratinocyte cell attachment to atelocollagen thin films through air and nitrogen plasma treatment. Prog. Colloid Polym. Sci. 2011, 138, 89–94. 46. Huang, C.-C.; Wu, W.-B.; Fang, J.-Y.; Chiang, H.-S.; Chen, S.-K.; Chen, B.-H.; Chen, Y.-T.; Hung, C.-F. (−)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT Keratinocytes. Molecules 2007, 12, 1845–1858. 47. Matić, I.; Žižak, Ž.; Simonović, M.; Simonović, B.; Godevadc, D.; Šavikin, K.; Juranić, Z. Cytotoxic effect of wine polyphenolic extracts and resveratrol against human carcinoma cells and normal peripheral blood mononuclear cells. J. Med. Food 2010, 13, 851–862. 48. Moravčíková, D.; Kuceková, Z.; Mlček, J.; Rop, O.; Humpolíček, P. Compositions of polyphenols in wild chive, meadow salsify, garden sorrel and agyoncha and their anti-proliferative effect. Acta Univ. Agric. Silvic. Mendel. Brun. 2012, 60, 125–132. 49. Gollucke, A.P.B.; Aguiar, O.; Barbisan, L.F.; Ribeiro, D.A. Use of grape polyphenols against carcinogenesis: Putative molecular mechanisms of action using in vitro and in vivo test systems. J. Med. Food 2013, 16, 199–205. 50. Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A. Normal keratinization in a spontaneously immortalized aneuploid keratinocyte cell line. J. Cell Biol. 1998, 106, 761–771. | |
utb.fulltext.sponsorship | The authors would like to express their gratitude to the Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of Czech Republic, within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111), the Advanced Theoretical and Experimental Studies of Polymer Systems (reg. number: CZ.1.07/2.3.00/20.0104) and the Czech Science Foundation (13-08944S). Zdenka Kuceková would also like to thank the internal grant of TBU in Zlin No. IGA/FT/2013/019 funded for her financial support. | |
utb.fulltext.projects | CZ.1.05/2.1.00/03.0111 | |
utb.fulltext.projects | CZ.1.07/2.3.00/20.0104 | |
utb.fulltext.projects | 13-08944S | |
utb.fulltext.projects | IGA/FT/2013/019 |