Kontaktujte nás | Jazyk: čeština English
dc.title | Evolutionary dynamics as the structure of complex networks | en |
dc.contributor.author | Zelinka, Ivan | |
dc.contributor.author | Davendra, Donald David | |
dc.contributor.author | Chadli, Mohammed | |
dc.contributor.author | Šenkeřík, Roman | |
dc.contributor.author | Dao, Tran Trong | |
dc.contributor.author | Skanderová, Lenka | |
dc.relation.ispartof | Intelligent Systems Reference Library | |
dc.identifier.issn | 1868-4394 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-3-642-30503-0 | |
dc.date.issued | 2013 | |
utb.relation.volume | 38 | |
dc.citation.spage | 215 | |
dc.citation.epage | 243 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Springer Science+Business Media | en |
dc.identifier.doi | 10.1007/978-3-642-30504-7_9 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-642-30504-7_9 | |
dc.description.abstract | This chapter presents a novel method for visualizing the dynamics of evolutionary algorithms in the form of complex networks. The analogy between individuals in populations in an arbitrary evolutionary algorithm and vertices of a complex network is discussed, as well as between edges in a complex network and communication between individuals in a population. The possibility of visualizing the dynamics of a complex network using the coupled map lattices method and control by means of chaos control techniques are also discussed. © Springer-Verlag Berlin Heidelberg 2013. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1003507 | |
utb.identifier.obdid | 43870249 | |
utb.identifier.scopus | 2-s2.0-84885457653 | |
utb.source | j-scopus | |
dc.date.accessioned | 2013-11-11T08:23:30Z | |
dc.date.available | 2013-11-11T08:23:30Z | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.affiliation | Ivan Zelinka, Donald David Davendra, Mohammed Chadli, Roman Senkerik, Tran Trong Dao, and Lenka Skanderova Ivan Zelinka · Donald David Davendra · Lenka Skanderova Department of Computing Science, Faculty of Electrical Engineering and Computing Science, Technical University of Ostrava, Tr. 17. Listopadu 15, Ostrava e-mail: [email protected], [email protected], [email protected] Roman Senkerik Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic e-mail: [email protected] Mohammed Chadli University of Picardie Jules Verne, Laboratory of Modeling Information & Systems. 7, Rue du Moulin Neuf, 80000, Amiens, France e-mail: [email protected] Tran Trong Dao Ton Duc Thang University, Nguyen Huu Tho St.,Ward Tan Phong, Dist. 7, Ho Chi Minh City, Vietnam e-mail: [email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.references | 1. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Adv. Phys. 51, 1079 (2002) 2. Boccaletti, S., et al.: Complex Networks: Structure and Dynamics. Phys. Rep. 424, 175–308 (2006) 3. Turing, A.: Intelligent machinery, unpublished report for National Physical Laboratory. In: Michie, D. (ed.) Machine Intelligence, vol. 7 (1969); Turing, A.M. (ed.): The Collected Works, vol. 3. Ince D. North-Holland, Amsterdam (1992) 4. Holland, J.: Adaptation in natural and artificial systems. Univ. of Michigan Press, Ann Arbor (1975) 5. Schwefel, H.: Numerische Optimierung von Computer-Modellen. PhD thesis (1974); Reprinted by Birkhauser (1977) 6. Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (PhD thesis) (1971); Printed in Fromman-Holzboog (1973) 7. Fogel, D.B.: Unearthinga Fossil from the History of Evolutionary Computation. Fundamenta Informaticae 35(1-4), 116 (1998) 8. Richter, H., Reinschke, K.J.: Optimization of local control of chaos by an evolutionary algorithm. Physica D 144, 309–334 (2000) 9. Richter, H.: An Evolutionary Algorithm for Controlling Chaos: The Use of Multi-objective Fitness Functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–317. Springer, Heidelberg (2002) 10. Richter, H.: Evolutionary Optimization in Spatio–temporal Fitness Landscapes. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 1–10. Springer, Heidelberg (2006) 11. Richter, H.: A study of dynamic severity in chaotic fitness landscapes. In: The IEEE Congress on Evolutionary Computation, vol. 3(2-5), pp. 2824–2831 (September 2005) 12. Zelinka, I., Chen, G., Celikovsky, S.: Chaos Synthesis by Means of Evolutionary Algorithms. International Journal of Bifurcation and Chaos, University of California, Berkeley USA 18(4), 911–942 (2008) 13. Zelinka, I.: Real-time deterministic chaos control by means of selected evolutionary algorithms. Engineering Applications of Artificial Intelligence (2008), doi:10.1016/j.engappai.2008.07.008 14. Zelinka, I.: Investigation on Realtime Deterministic Chaos Control by Means of Evolutionary Algorithms. In: 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France (2006) 15. Senkerik, R., Zelinka, I., Navratil, E.: Optimization of feedback control of chaos by evolutionary algorithms. In: 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France (2006) 16. Dashora, Y., et al.: Improved and generalized learning strategies for dynamically fast and statistically robust evolutionary algorithms. Engineering Applications of Artificial Intelligence (2007), doi:10.1016/j.engappai.2007.06.005 17. Li, L., Wenxin, L., David, A.C.: Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Engineering Applications of Artificial Intelligence (2007), doi:10.1016/j.engappai.2007.10.002 18. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999) 19. Zelinka, I.: SOMA Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, ch. 7, 33 p. Springer (2004) ISBN 3-540-20167X 20. Zelinka, I., Davendra, D., Snasel, V., Jasek, R., Senkerik, R., Oplatkova, Z.: Preliminary Investigation on Relations Between Complex Networks and Evolutionary Algorithms Dynamics. In: CISIM 2010, Poland (2010) 21. Meyn, S.: Control Techniques for Complex Networks. Cambridge University Press (2007) 22. Lorenz, E.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963) 23. Stewart, I.: The Lorenz attractor exists. Nature 406, 948–949 (2000) 24. May, R.: Simple mathematical model with very complicated dynamics. Nature 261, 45–67 (1976) 25. Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeezeland 26. Schuster, H.: Handbook of Chaos Control. Wiley-VCH, New York (1999); Wiley-Interscience, New York (2002) 27. Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998) 28. Wang, X., Chen, G.: Chaotification via arbitrarily small feedback controls: Theory, method, and applications. Int. J. of Bifur. Chaos 10, 549–570 (2000) 29. Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) 30. Grebogi, C., Lai, Y.C.: Controlling chaos. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, New York (1999) 31. Zou, Y., Luo, X., Chen, G.: Pole placement method of controlling chaos in DC-DC buck converters. Chinese Phys. 15, 1719–1724 (2006) 32. Just, W.: Principles of time delayed feedback control. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, New York (1999) 33. Just, W., Benner, H., Reibold, E.: Theoretical and experimental aspects of chaos control by time-delayed feedback. Chaos 13, 259–266 (2003) 34. Deilami, M., Rahmani, C., Motlagh, M.: Control of spatio-temporal on-off intermittency in random driving diffusively coupled map lattices. Chaos, Solitons and Fractals (December 21, 2007) 35. Schuster, H.: Handbook of Chaos Control. Wiley-VCH, New York (1999) 36. Chen, G.: Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca Raton (2000) 37. Richter, H., Reinschke, K.: Optimization of local control of chaos by an evolutionary algorithm. Physica D 144, 309–334 (2000) 38. Richter, H.: An Evolutionary Algorithm for Controlling Chaos: The Use of Multi-objective Fitness Functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–317. Springer, Heidelberg (2002) 39. Zelinka, I.: Investigation on real-time deterministic chaos control by means of evolutionary algorithms. In: Proc. First IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France, pp. 211–217 (2006) 40. Hilborn, R.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (1994) 41. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007) 42. Zelinka, I., Davendra, D., Enkek, R., Jaek, R.: Do Evolutionary Algorithm Dynamics Create Complex Network Structures? Complex Systems 2, 0891–2513, 20, 127–140 | |
utb.fulltext.sponsorship | This work was supported by grant of the Grant Agency of the Czech Republic GACR 102/09/1680 and in the framework of the IT4Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 supported by Operational Programme Research and Development for Innovations funded by Structural Funds of the European Union and state budget of the Czech Republic. | |
utb.fulltext.projects | GACR 102/09/1680 | |
utb.fulltext.projects | CZ.1.05/1.1.00/02.0070 |