Publikace UTB
Repozitář publikační činnosti UTB

Evolutionary dynamics as the structure of complex networks

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Evolutionary dynamics as the structure of complex networks en
dc.contributor.author Zelinka, Ivan
dc.contributor.author Davendra, Donald David
dc.contributor.author Chadli, Mohammed
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Dao, Tran Trong
dc.contributor.author Skanderová, Lenka
dc.relation.ispartof Intelligent Systems Reference Library
dc.identifier.issn 1868-4394 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-642-30503-0
dc.date.issued 2013
utb.relation.volume 38
dc.citation.spage 215
dc.citation.epage 243
dc.type article
dc.language.iso en
dc.publisher Springer Science+Business Media en
dc.identifier.doi 10.1007/978-3-642-30504-7_9
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-642-30504-7_9
dc.description.abstract This chapter presents a novel method for visualizing the dynamics of evolutionary algorithms in the form of complex networks. The analogy between individuals in populations in an arbitrary evolutionary algorithm and vertices of a complex network is discussed, as well as between edges in a complex network and communication between individuals in a population. The possibility of visualizing the dynamics of a complex network using the coupled map lattices method and control by means of chaos control techniques are also discussed. © Springer-Verlag Berlin Heidelberg 2013. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1003507
utb.identifier.obdid 43870249
utb.identifier.scopus 2-s2.0-84885457653
utb.source j-scopus
dc.date.accessioned 2013-11-11T08:23:30Z
dc.date.available 2013-11-11T08:23:30Z
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.affiliation Ivan Zelinka, Donald David Davendra, Mohammed Chadli, Roman Senkerik, Tran Trong Dao, and Lenka Skanderova Ivan Zelinka · Donald David Davendra · Lenka Skanderova Department of Computing Science, Faculty of Electrical Engineering and Computing Science, Technical University of Ostrava, Tr. 17. Listopadu 15, Ostrava e-mail: [email protected], [email protected], [email protected] Roman Senkerik Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic e-mail: [email protected] Mohammed Chadli University of Picardie Jules Verne, Laboratory of Modeling Information & Systems. 7, Rue du Moulin Neuf, 80000, Amiens, France e-mail: [email protected] Tran Trong Dao Ton Duc Thang University, Nguyen Huu Tho St.,Ward Tan Phong, Dist. 7, Ho Chi Minh City, Vietnam e-mail: [email protected]
utb.fulltext.dates -
utb.fulltext.references 1. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Adv. Phys. 51, 1079 (2002) 2. Boccaletti, S., et al.: Complex Networks: Structure and Dynamics. Phys. Rep. 424, 175–308 (2006) 3. Turing, A.: Intelligent machinery, unpublished report for National Physical Laboratory. In: Michie, D. (ed.) Machine Intelligence, vol. 7 (1969); Turing, A.M. (ed.): The Collected Works, vol. 3. Ince D. North-Holland, Amsterdam (1992) 4. Holland, J.: Adaptation in natural and artificial systems. Univ. of Michigan Press, Ann Arbor (1975) 5. Schwefel, H.: Numerische Optimierung von Computer-Modellen. PhD thesis (1974); Reprinted by Birkhauser (1977) 6. Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (PhD thesis) (1971); Printed in Fromman-Holzboog (1973) 7. Fogel, D.B.: Unearthinga Fossil from the History of Evolutionary Computation. Fundamenta Informaticae 35(1-4), 116 (1998) 8. Richter, H., Reinschke, K.J.: Optimization of local control of chaos by an evolutionary algorithm. Physica D 144, 309–334 (2000) 9. Richter, H.: An Evolutionary Algorithm for Controlling Chaos: The Use of Multi-objective Fitness Functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–317. Springer, Heidelberg (2002) 10. Richter, H.: Evolutionary Optimization in Spatio–temporal Fitness Landscapes. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 1–10. Springer, Heidelberg (2006) 11. Richter, H.: A study of dynamic severity in chaotic fitness landscapes. In: The IEEE Congress on Evolutionary Computation, vol. 3(2-5), pp. 2824–2831 (September 2005) 12. Zelinka, I., Chen, G., Celikovsky, S.: Chaos Synthesis by Means of Evolutionary Algorithms. International Journal of Bifurcation and Chaos, University of California, Berkeley USA 18(4), 911–942 (2008) 13. Zelinka, I.: Real-time deterministic chaos control by means of selected evolutionary algorithms. Engineering Applications of Artificial Intelligence (2008), doi:10.1016/j.engappai.2008.07.008 14. Zelinka, I.: Investigation on Realtime Deterministic Chaos Control by Means of Evolutionary Algorithms. In: 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France (2006) 15. Senkerik, R., Zelinka, I., Navratil, E.: Optimization of feedback control of chaos by evolutionary algorithms. In: 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France (2006) 16. Dashora, Y., et al.: Improved and generalized learning strategies for dynamically fast and statistically robust evolutionary algorithms. Engineering Applications of Artificial Intelligence (2007), doi:10.1016/j.engappai.2007.06.005 17. Li, L., Wenxin, L., David, A.C.: Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Engineering Applications of Artificial Intelligence (2007), doi:10.1016/j.engappai.2007.10.002 18. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999) 19. Zelinka, I.: SOMA Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, ch. 7, 33 p. Springer (2004) ISBN 3-540-20167X 20. Zelinka, I., Davendra, D., Snasel, V., Jasek, R., Senkerik, R., Oplatkova, Z.: Preliminary Investigation on Relations Between Complex Networks and Evolutionary Algorithms Dynamics. In: CISIM 2010, Poland (2010) 21. Meyn, S.: Control Techniques for Complex Networks. Cambridge University Press (2007) 22. Lorenz, E.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963) 23. Stewart, I.: The Lorenz attractor exists. Nature 406, 948–949 (2000) 24. May, R.: Simple mathematical model with very complicated dynamics. Nature 261, 45–67 (1976) 25. Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeezeland 26. Schuster, H.: Handbook of Chaos Control. Wiley-VCH, New York (1999); Wiley-Interscience, New York (2002) 27. Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998) 28. Wang, X., Chen, G.: Chaotification via arbitrarily small feedback controls: Theory, method, and applications. Int. J. of Bifur. Chaos 10, 549–570 (2000) 29. Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) 30. Grebogi, C., Lai, Y.C.: Controlling chaos. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, New York (1999) 31. Zou, Y., Luo, X., Chen, G.: Pole placement method of controlling chaos in DC-DC buck converters. Chinese Phys. 15, 1719–1724 (2006) 32. Just, W.: Principles of time delayed feedback control. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, New York (1999) 33. Just, W., Benner, H., Reibold, E.: Theoretical and experimental aspects of chaos control by time-delayed feedback. Chaos 13, 259–266 (2003) 34. Deilami, M., Rahmani, C., Motlagh, M.: Control of spatio-temporal on-off intermittency in random driving diffusively coupled map lattices. Chaos, Solitons and Fractals (December 21, 2007) 35. Schuster, H.: Handbook of Chaos Control. Wiley-VCH, New York (1999) 36. Chen, G.: Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca Raton (2000) 37. Richter, H., Reinschke, K.: Optimization of local control of chaos by an evolutionary algorithm. Physica D 144, 309–334 (2000) 38. Richter, H.: An Evolutionary Algorithm for Controlling Chaos: The Use of Multi-objective Fitness Functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–317. Springer, Heidelberg (2002) 39. Zelinka, I.: Investigation on real-time deterministic chaos control by means of evolutionary algorithms. In: Proc. First IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France, pp. 211–217 (2006) 40. Hilborn, R.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (1994) 41. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007) 42. Zelinka, I., Davendra, D., Enkek, R., Jaek, R.: Do Evolutionary Algorithm Dynamics Create Complex Network Structures? Complex Systems 2, 0891–2513, 20, 127–140
utb.fulltext.sponsorship This work was supported by grant of the Grant Agency of the Czech Republic GACR 102/09/1680 and in the framework of the IT4Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 supported by Operational Programme Research and Development for Innovations funded by Structural Funds of the European Union and state budget of the Czech Republic.
utb.fulltext.projects GACR 102/09/1680
utb.fulltext.projects CZ.1.05/1.1.00/02.0070
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam