Publikace UTB
Repozitář publikační činnosti UTB

Controlled synthesis of mesoporous carbon nanosheets and their enhanced supercapacitive performance

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Controlled synthesis of mesoporous carbon nanosheets and their enhanced supercapacitive performance en
dc.contributor.author Yan, Yanfang
dc.contributor.author Cheng, Qilin
dc.contributor.author Pavlínek, Vladimír
dc.contributor.author Sáha, Petr
dc.contributor.author Li, Chunzhong
dc.relation.ispartof Journal of Solid State Electrochemistry
dc.identifier.issn 1432-8488 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2013
utb.relation.volume 17
utb.relation.issue 6
dc.citation.spage 1677
dc.citation.epage 1684
dc.type article
dc.language.iso en
dc.publisher Springer en
dc.identifier.doi 10.1007/s10008-013-2025-3
dc.relation.uri https://link.springer.com/article/10.1007/s10008-013-2025-3
dc.subject Carbon nanosheets en
dc.subject MgO en
dc.subject Resol en
dc.subject Supercapacitor en
dc.description.abstract Mesoporous carbon nanosheets (MCNs) were synthesized using porous magnesium oxide (MgO) layer as the template precursor and resol as the carbon source. The morphology of the mesoporous carbon particles can be easily controlled by altering the mass ratio of MgO to resol. The structural characterization demonstrates that the interlaced MCNs can be formed when MgO/resol is 1:1 and they possess the carbon nanolayer with a thickness of about 5 nm and a width of about 200 nm. The quantities of mesopores and micropores endow the MCNs with a large surface area of 1,180 m2 g-1 and a high pore volume of 1.56 cm3 g-1. The supercapacitive performance of carbon products synthesized with various MgO/resol ratios was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The results show that the interlaced MCNs exhibit the highest specific capacitance of 241 F g -1, the best rate capability and cycling stability, which are attributed to the fast electrolyte ion transport or diffusion throughout the electrode matrix and effective utilization of the electrical double-layer capacitance of carbon layer. © 2013 Springer-Verlag Berlin Heidelberg. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1003372
utb.identifier.obdid 43869823
utb.identifier.scopus 2-s2.0-84879237702
utb.identifier.wok 000320380700022
utb.source j-scopus
dc.date.accessioned 2013-07-27T14:55:31Z
dc.date.available 2013-07-27T14:55:31Z
utb.contributor.internalauthor Cheng, Qilin
utb.contributor.internalauthor Pavlínek, Vladimír
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Yanfang Yan & Qilin Cheng & Vladimir Pavlinek & Petr Saha & Chunzhong Li Y. Yan : Q. Cheng : C. Li (*) Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237( Shanghai, China e-mail: [email protected] Q. Cheng (*) : V. Pavlinek : P. Saha Centre of Polymer Systems, Polymer Centre, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic e-mail: [email protected]
utb.fulltext.dates Received: 27 September 2012 Revised: 27 November 2012 Accepted: 29 January 2013 Published online: 16 February 2013
utb.fulltext.sponsorship This work was supported by the National Natural Science Foundation of China (20925621, 21236003, 21206043), the Shanghai Pujiang Program (12PJ1401900), the Fundamental Research Funds for the Central Universities, and the project sponsored by SRF for ROCS, SEM.
utb.fulltext.faculty University Institute
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Polymer Centre
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam