Publikace UTB
Repozitář publikační činnosti UTB

On the retention mechanisms and secondary effects in microthermal field-flow fractionation of particles

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title On the retention mechanisms and secondary effects in microthermal field-flow fractionation of particles en
dc.contributor.author Janča, Josef
dc.contributor.author Stejskal, Jaroslav
dc.relation.ispartof Journal of Chromatography A
dc.identifier.issn 0021-9673 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2009
utb.relation.volume 1216
utb.relation.issue 52
dc.citation.spage 9071
dc.citation.epage 9080
dc.type article
dc.language.iso en
dc.publisher Elsevier Science B.V. en
dc.identifier.doi 10.1016/j.chroma.2009.06.040
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0021967309009200
dc.subject mikrotermální field-flow frakcionace cs
dc.subject Separace částic cs
dc.subject Analýza částic cs
dc.subject Separační mechanismy cs
dc.subject Sekundární interakce cs
dc.subject Field-flow fractionation en
dc.subject separation mechanisms en
dc.subject nanoparticles en
dc.subject microparticles en
dc.subject Microthermal FFF en
dc.subject secondary interactions. en
dc.description.abstract Chování nanočástic a mikročástic, dispergovaných v kapalné fázi a vystavených teplotnímu gradientu, je komplexním a ještě nedostatečně prostudovaným jevem. Termální field-flow frakcionace (TFFF) využívající kanálů konvenčních rozměrů hrála důležitou roli při studiu tohoto jevu. K termální difúzi (termoforéze) a molekulární difúzi či Brownovskému pohybu se navíc připojují sekundární jevy a interakce jako například interakce mezi částicemi, částicemi a stěnami kanálu, atd. Mikrotermální field-flow frakcionace jako nová metoda s vysokou účinností byla použita v kombinaci s dalšími experimentálními metodami ke komplexnímu studiu uvedených jevů a interakcí cs
dc.description.abstract The behavior of nanometer or micrometer-sized particles, dispersed in liquid phase and exposed to temperature gradient, is a complex and not yet well understood phenomenon. Thermal field-flow fractionation (TFFF), using conventional-size channels, played an important role in the studies of this phenomenon. In addition to thermal diffusion (thermophoresis) and molecular diffusion or Brownian movement, several secondary effects such as particle-particle and/or particle-wall interactions, chemical equilibria with the components of the carrier liquid, buoyant and lift forces, etc., may contribute to the retention and complicate the understanding of the relations between the thermal diffusion and the characteristics of retained particles. Micro-TFFF is a new high-performance technique allowing much easier manipulation and control of the operational parameters within an extended range of experimental conditions in comparison with conventional TFFF. Consequently, in combination with various other methods, it is well suited for a detailed investigation of the mentioned effects. In this work, some contradictory published results concerning the thermal diffusion of the colloidal particles, studied by TFFF but also by other methods, are analyzed and compared with our experimental findings. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1001075
utb.identifier.rivid RIV/70883521:28110/09:63508783!RIV10-MSM-28110___
utb.identifier.obdid 43861210
utb.identifier.scopus 2-s2.0-70549087755
utb.identifier.wok 000272781200007
utb.source j-riv
utb.contributor.internalauthor Janča, Josef
utb.fulltext.affiliation Josef Janča a,∗, Jaroslav Stejskal b a Tomas Bata University in Zlin, Department of Physics and Materials Engineering, Nad Stranemi 4511, 760 05 Zlin, Czech Republic b Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq.2, 162 06 Prague 6, Czech Republic ∗ Corresponding author. Tel.: +420 57603 5110; fax: +420 57603 2741. E-mail address: [email protected] (J. Janca).
utb.fulltext.dates Available online 18 June 2009
utb.fulltext.references [1] J. Janča, J. Liq. Chromatogr. Relat. Technol. 25 (2002) 683. [2] J. Janča, Microthermal Field-Flow Fractionation: Analysis of Synthetic, Natural, and Biological Macromolecules and Particles, HNB Publishing, New York, 2008. [3] J. Janča, Int. J. Polym. Anal. Charact. 11 (2006) 57. [4] J.C. Giddings, Sep. Sci. 1 (1966) 123. [5] J.C. Giddings, M.N. Myers, Sep. Sci. Technol. 13 (1978) 637. [6] J. Janča, Macromol. Chem., Rapid Commun. 3 (1982) 887; J. Janča, Macromol. Chem., Rapid Commun. 4 (1983) 267. [7] J.F.G. Reis, E.N. Lightfoot, AIChE J. 22 (1976) 779. [8] M.R. Doshi, W.N. Gill, Chem. Eng. Sci. 34 (1979) 725. [9] E.N. Lightfoot, A.S. Chiang, P.T. Noble, Annu. Rev. Fluid Mech. 13 (1981) 351. [10] R. Brown, Phil. Mag. 4 (1828) 161. [11] A. Einstein, Ann. D. Phys. 17 (1905) 549. [12] J. Janča, Collect. Czech. Chem. Commun. 66 (2001) 1191. [13] J. Janča, I.A. Ananieva, A.Yu. Menshikova, T.G. Evseeva, J. Chromatogr. B 800 (2004) 33. [14] J. Janča, J. Colloid Interface Sci. 189 (1997) 51. [15] J. Janča, Phys. Chem. Chem. Phys. 2 (2000) 2607. [16] J. Janča, N. Gospodinova, Sep. Purif. Methods 29 (2000) 247. [17] J. Janča, Collect. Czech. Chem. Commun. 65 (2000) 1067. [18] J. Janča, M. Špírková, J. Stejskal, Russ. J. Phys. Chem. 77 (Suppl. 1) (2003) S95. [19] J.C. Giddings, Sep. Sci. Technol. 18 (1983) 765. [20] G. Liu, J.C. Giddings, Anal. Chem. 63 (1991) 296. [21] G. Liu, J.C. Giddings, Chromatographia 34 (1992) 483. [22] P.M. Shiundu, G. Liu, J.C. Giddings, Anal. Chem. 67 (1995) 2705. [23] P.M. Shiundu, J.C. Giddings, J. Chromatogr. A 715 (1995) 117. [24] S.K. Ratanathanawongs, P.M. Shiundu, J.C. Giddings, Colloids Surf. A, Physicochem. Eng. Aspects 105 (1995) 243. [25] S.J. Jeon, M.E. Schimpf, Polym. Mater. Sci. Eng. 75 (1996) 4. [26] S.J. Jeon, M.E. Schimpf, A. Nyborg, Anal. Chem. 69 (1997) 3442. [27] E.P.C. Mes, W.Th. Kok, R. Tijssen, Chromatographia 53 (2001) 697. [28] E.P.C. Mes, R. Tijssen, W.Th. Kok, J. Chromatogr. A 907 (2001) 201. [29] P.M. Shiundu, P.S. Williams, J.C. Giddings, J. Colloid Interface Sci. 266 (2003) 366. [30] P.M. Shiundu, S.M. Munguti, S.K. Ratanathanawongs Williams, J. Chromatogr. A 983 (2003) 163. [31] P.M. Shiundu, S.M. Munguti, S.K. Ratanathanawongs Williams, J. Chromatogr. A 984 (2003) 67. [32] P.S. Williams, Y. Xu, P. Reschiglian, J.C. Giddings, Anal. Chem. 69 (1997) 349. [33] J. Janča, N. Gospodinova, S. Le Hen, M. Špírková, J. Colloid Interface Sci. 229 (2000) 462. [34] J. Janča, Collect. Czech. Chem. Commun. 68 (2003) 672. [35] V. Kašpárková, V. Halabalová, L. Šimek, J. Dostál, J. Janča, J. Liq. Chromatogr. Relat. Technol. 29 (2006) 2771. [36] J. Janča, M. Špírková, J. Chem. Soc., Faraday Trans. 93 (1997) 3137. [37] J. Janča, Field-Flow Fractionation: Analysis of Macromolecules and Particles, Marcel Dekker, Inc., New York, 1988. [38] J. Janča, in: R.A. Myers (Ed.), Field-Flow Fractionation in Particle Size Analysis. Encyclopedia of Analytical Chemistry, J. Wiley & Sons, Chichester, 2000. [39] J.C. Giddings, Sep. Sci. Technol. 13 (1978) 241. [40] J. Janča, J. Liq. Chromatogr. Relat. Technol. 26 (2003) 835. [41] J. Janča, J. Stejskal, I.A. Ananieva, J.-F. Berneron, J. Gearing, M. Minárik, in: M.M. Bou-Ali, J.K. Platten (Eds.), Thermodiffusion: Basics & Applications, Mondragon Unibersitatea Press, 2006, p. 337. [42] D. Henderson, D.T. Wasan, in: J.P. Hsu (Ed.), Interactions Between Colloidal Particles. Interfacial Forces and Fields: Theory and Applications, M. Dekker, Inc, New York, 1999. [43] J. Stejskal, M. Trchová, S. Fedorova, I. Sapurina, J. Zemek, Langmuir 19 (2003) 3013. [44] J. Janča, Unpublished technical data on micro-TFFF channel. [45] J.L.M. Poiseuille, Ann. Sci. Nat. 5 (2) (1936) 111. [46] G. Segré, A. Silberberg, Nature 189 (1961) 209. [47] G. Segré, A. Silberberg, J. Fluid Mech. 14 (1962) 115. [48] G. Segré, A. Silberberg, J. Fluid Mech. 14 (1962) 136. [49] L.D. Landau, E.M. Lifshitz, Hydrodynamics, Nauka, Moscow, 1986. [50] P.G. Saffman, J. Fluid Mech. 22 (1965) 385; Corrigendum: J. Fluid Mech. 31 (1968) 624. [51] P.S. Williams, T. Koch, J.C. Giddings, Chem. Eng. Commun. 111 (1992) 121. [52] P.S. Williams, S. Lee, J.C. Giddings, Chem. Eng. Commun. 130 (1994) 143. [53] D.C. Prieve, B.M. Alexander, Science 231 (1986) 1269. [54] D.C. Prieve, S.G. Bike, Chem. Eng. Commun. 55 (1987) 149. [55] S.G. Bike, L. Lazarro, D.C. Prieve, J. Colloid Interface Sci. 175 (1995) 411. [56] S.G. Bike, D.C. Prieve, J. Colloid Interface Sci. 175 (1995) 422. [57] A.D. Hollingsworth, C. Silebi, Langmuir 12 (1996) 613. [58] P.S. Williams, M.H. Moon, Y. Xu, J.C. Giddings, Chem. Eng. Sci. 51 (1996) 4477. [59] M. Braibanti, D. Vigolo, R. Piazza, Phys. Rev. Lett. 100 (2008) 108303. [60] R. Piazza, A. Parola, J. Phys., Condens. Matter 20 (2008) 153102.
utb.fulltext.sponsorship -
utb.fulltext.projects -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam