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Abstract

Accurate effort estimation is necessary for efficient management of software devel-
opment projects, as it relates to human resource management. Ensemble methods,
which employ multiple statistical and machine learning techniques, are more robust,
reliable, and accurate effort estimation techniques. This study develops a stacking
ensemble model based on optimization correction factors by integrating seven statis-
tical and machine learning techniques (K-nearest neighbor, random forest, support
vector regression, multilayer perception, gradient boosting, linear regression, and
decision tree). The grid search optimization method is used to obtain valid search
ranges and optimal configuration values, allowing more accurate estimation. We con-
ducted experiments to compare the proposed method with related methods, such as
use case points-based single methods, optimization correction factors-based single
methods, and ensemble methods. The estimation accuracies of the methods were
evaluated using statistical tests and unbiased performance measures on a total of
four datasets, thus demonstrating the effectiveness of the proposed method more
clearly. The proposed method successfully maintained its estimation accuracy across
the four experimental datasets and gave the best results in terms of the sum of
squares errors, mean absolute error, root mean square error, mean balance relative
error, mean inverted balance relative error, median of magnitude of relative error,
and percentage of prediction (0.25). The p-value for the t-test showed that the pro-
posed method is statistically superior to other methods in terms of estimation accu-
racy. The results show that the proposed method is a comprehensive approach for
improving estimation accuracy and minimizing project risks in the early stages of soft-

ware development.
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1 | INTRODUCTION

The complexity of software project development has increased, and this industry demands a high level of competence from its employees, who
must possess particular skills. Project managers typically need such early estimates to bid on a project contract and make informed planning deci-
sions.* However, they often encounter difficulties in estimating effort, cost, and schedule correctly in advance. Customer requirements are vola-
tile, inconsistent, and incomplete, that is, unknown. Therefore, a project manager must select an appropriate method and adapt or configure it to
the software project the company wants to undertake to obtain accurate estimates. However, since insufficient information is usually available,
the estimation process leads to a result subject to significant uncertainties.?

Software development effort estimation (SDEE) is one of the most challenging tasks in the early stages of software development. Effort esti-
mation methods are used to reduce project risk and minimize the risk of surprises during the project. They provide project managers with
informed control decisions to ensure that an appropriate amount of work is allocated to the various phases of the project development lifecycle.
Therefore, accurate effort estimation is critical to minimizing project risk.2 Several SDEE methods have been proposed, which can be classified
into three main categories: (1) algorithmic, (2) non-algorithmic, and (3) statistical and machine learning (ML) methods.** Algorithmic methods are
popular in the literature and use statistical and mathematical equations for SDEE, for example, use case point (UCP), functional point analysis
(FPA), the cost constructive model (COCOMO-II), source line of code (SLOC), and the Putnam software life cycle model (SLIM). Non-algorithmic
methods rely on analytical comparisons and historical projects for estimation, for example, analogy-based, expert judgment, and planning poker
strategies. Statistical and ML models include fuzzy logic, artificial neural network, and hybrid models.® These models can be used as stand-alone
models and require input variables to estimate software effort.

In the early phases of software development, the UCP method” was extensively studied as a functionally sized metric for predicting software
effort.®2 Most researchers today focus on developing new methods based on this original method or validating existing methods in industrial
applications, with an emphasis on improving accuracy. Basically, they apply statistical and ML techniques in these model variations to optimize
estimation accuracy. The techniques are used to model the relationship between effort and software variables, especially when this relationship is
non-linear. In recent decades, several statistical and ML techniques have been developed for effort estimation. Many of the proposed models
have achieved high estimation accuracy.” Jorgensen et al* identified 11 ML techniques used in studies published up until 2004 and noted that
regression techniques were used in 49% of the studies reviewed. Wen et al'® also performed a systematic literature review of ML techniques
used in SDEE covering the period 1990 to 2010. Their review indicated that the estimation accuracies obtained via ML techniques were greater
than those obtained using non-ML-based estimation methods. According to Kumar et al,*! the overall estimation accuracies of SDEE methods
based on statistical and ML techniques are nearly in the acceptable range, as they are within 25% of the percent error (PRED [0.25]). Given the
complexity of software development projects today, effort estimation requires ML assistance.*? Therefore, based on their review, we summarize

21 selected recent studies®®™*°

over the past 7 years (2016-2021) on software effort estimation using statistical and ML techniques or just ML
techniques. Specifically, seven statistical and ML techniques, namely, multilayer perceptron (MLP), support vector regression (SVR), decision tree
(DT), random forest (RF), multiple linear regression (MLR), K-nearest neighbor (KNN), and gradient boosting (GB), were discovered to have been
most frequently used in SDEE at 16%, 13%, 13%, 11%, 9%, 7%, and 4% of studies, respectively (see Figure 1). The list of abbreviations in Figure 1
is presented in Appendix A.

Although statistical and ML techniques have been handled remarkably well, there have been some difficulties in choosing unbiased
approaches and appropriate algorithms. First, selecting the proper statistical and ML techniques for SDEE is challenging. Generally, single statisti-
cal and ML methods are unreliable. Specifically, their estimation accuracies are inconsistent and unstable across different datasets and evaluation
criteria.**™*® According to Cabral et al,** the use of a single model does not lead to optimal results for SDEE. Priya et al*® also pointed out that
combining multiple models is more accurate. Second, it is well known that the accuracy of a single method depends on its parameter configura-
tions.*® Moreover, very few studies have used statistical tests to validate their results. It is not valid to claim that one model is better than another
when adequate statistical tests are not performed.*’

With such research motivation, we recently developed a parametric software effort estimation model based on optimizing correction factors
(OCFs).*84? Specifically, the MLR model is applied to the OCF method to efficiently minimize the estimation error in the integration or recursion
process. However, the method still needs to be improved to reach more comprehensive methods. The difference between previous works is that
we continue developing our method OCF. The OCF method has investigated the least absolute shrinkage and selection operator (LASSO)
method®®>? to determine the best technical and environmental complexity factors that significantly affect the estimation accuracy of the UCP
method. The novel in this paper is that the new ensemble-based OCF approach is studied. Its improvements proposed in this paper are put under
a specific situation where popular statistical and ML techniques are incorporated into an ensemble effort estimation (EEE) based on the OCF
method. The EEE approach combines at least two different single models to address the weaknesses of single models for estimation tasks through
a unique aggregation mechanism and generate the final solution by weighted voting over their solutions.>?> Compared to the previous related
methods, the new ensemble-based OCF approach will be unbiased in estimating the effort needed for a new software project. Our results confirm
the findings of the previous review that ML remains the most common technique for generating EEE and that ensemble techniques have out-

performed single models. Thus, the following three research questions will be addressed:
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Most commonly used soft computing algorithms in SDEE
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FIGURE 1 Most commonly used statistical and ML algorithms for SDEE over the past 7 years (2016-2021).

¢ RQ1: How much does the proposed ensemble-based OCF method improve upon the single methods used to produce it?
¢ RQ2: Are the differences in estimation accuracy between the proposed method and other methods statistically significant?

¢ RQ3: How much do the effects of the core components of the proposed method the estimation accuracy?

To answer the research questions, we conducted an empirical study to evaluate the estimation accuracies of the proposed method and methods

49:53 such as the sum of squares errors (SSE),

found in the literature. We used evaluation criteria that yield unbiased and symmetric distributions,
the mean absolute error (MAE), mean balance relative error (MBRE), mean inverted balance relative error (MIBRE), median of magnitude of rela-
tive error (MdMRE), root mean square error (RMSE), and the percentage of prediction within x% (PRED[x]). Finally, all experimental groups are
compared using a statistical comparison. In this way, we aim to draw the most accurate conclusions about comparing methods. The statistical
comparison includes parametric and non-parametric methods. In this study, we used both the t-test, a parametric statistical comparison, and the
Mann-Whitney U test, a non-parametric statistical comparison.>*~>¢ These pairwise statistical comparisons include the averages (us) of the evalu-
ation results (SSE, MAE, MBRE, MIBRE, MdMRE, and RMSE) from the five-fold cross-validations of the four experimental datasets. The following

statistical hypotheses were tested:

e Hp * Pthe proposed method = Hthe other tested methods -
In other words, the estimation ability of the proposed method is not significantly different from the estimation abilities of the other tested

methods. In particular, the proposed method does not outperform the other tested methods in estimating software effort.
Hl * Hthe proposed method < Hthe other tested methods -
In other words, the estimation ability of the proposed method is significantly different from the estimation abilities of the other tested

methods. In particular, the proposed method outperforms the other tested methods in estimating software effort.
Specifically, our main contributions are as follows:

o This study presents a novel SOCF method rooted in the Effort Estimation Ensemble concept. The SOCF method uniquely integrates the capa-
bilities of seven established statistical and ML techniques: MLR, KNN, SVR, MLP, RF, GB, and DTs. The main aim is to lessen the biases and
variability errors that are often found in individual models.

o A key aspect of the accuracy of this ensemble method lies in parameter tuning. The grid search (GS)*” optimization method is used to deter-
mine the best parameters for each technique and dataset, with 20% of the training set serving as the validation set. Detailed information on
the post-tuning parameters can be found in Section 3.

¢ The effectiveness of our proposed method is then compared with other estimation methods mentioned in previous studies.>® This comparison
utilizes four historical datasets from administrative, healthcare, and business sectors.>® We carry out the comparison by implementing a five-
fold cross-validation, leading to five random splits of the training and testing data. The findings are based on the average results each model

obtains across all evaluation criteria.
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o The results indicate that our innovative SOCF method significantly improves the accuracy of effort estimation in the early stages of software

development while minimizing project risks. This showcases its comprehensive ability to enhance effort estimation.

The remainder of this paper is organized as follows: Section 2 presents the related works. Section 3 provides the methodologies used, such as an
overview of the UCP and OCF methods, a background on the statistical and ML techniques used, and the configuration parameters for the statis-
tical and ML techniques used. Next, Section 4 presents the proposed method for estimating effort. Then, Section 5 describes the experimental
design, including the experimental process, the dataset, and the evaluation criteria/metrics. Section 6 focuses on the results, and Section 7 dis-

cusses the threats to validity. Finally, Section 8 discusses the conclusions and future work.

2 | RELATED WORKS
21 | Ensemble effort estimation problem formulation

Previous studies on statistical and ML techniques have shown that ensemble methods provide more accurate results than single methods.>” These
studies focused on various aspects of effort estimation, such as the diversity of base models, the ranking of models within the ensemble, aggrega-
tion techniques, and model selection. The ensemble learning approach in SDEE does well when the base models perform differently on different
datasets,° that is, it minimizes model limitations and leads to more accurate estimates. The authors investigated the ranking stability and ensem-
ble approach across 90 methods and 20 datasets. They concluded that the ensemble approaches were consistently better, were more reliable,
and had lower error estimates.? Pahariya et al®? agreed that ensemble models are superior to single methods. Azzed et al mentioned the impor-
tance of the ensemble approach in analogy-based estimation.® The findings demonstrate that these ensemble methods perform better than sin-
gle models and produce more accurate estimates of error measurements.

The problem with the ensemble approach is selecting single appropriate methods that must meet the high accuracy and diversity criteria
to receive a high estimate 1342436364 |n other words, a single method must be versatile and accurate under certain conditions. In this way,
every single method compensates for the estimation errors of the others. Otherwise, an ensemble approach that does not contain different
single methods may have a lower estimation accuracy than its single method. The EEE architecture is shown in Figure 2, where X denotes the
feature vector of the underestimated project. All other single estimation algorithms M1,M,,...,M,, are given the same feature vectors and estimates
VMl,VMZ,...,VMn. Based on the estimates provided by each single estimation algorithm, the ensemble aggregator | aggregates the estimates using
combination rules (mean, median, and IRWM with weights wp,,Wn,,...,wn, ). Finally, an overall ensemble estimate Vensemb,e is provided for the

project.

2.2 | Ensemble effort estimation methods

An ensemble method is proposed for identifying the best-performing regression-based ML model across various datasets.** In this method,
the AdaBoost ensemble approach is used to create combinations of two statistical and ML techniques (KNN, SVR, and DT) with which to
estimate the UCP-based effort. These adaptive UCP (AUCP) models are then compared with the ML models to determine whether they can
improve estimation accuracy. The results show that the best ensemble model performs best overall, with a regression rate of over 98% across

two datasets.

Single estimation .
models Estimations
4 M, m,
My
W, | I
PY > —
> " I f Y ensembie |
MYI
\ M, M,

FIGURE 2 The architecture of the ensemble effort estimation.
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Effective and practical approaches are proposed for deploying and maintaining ML.2® Specifically, an ensemble of three statistical and ML
algorithms (SVR, MLP, and GLM) is presented for estimating the effort put forth during and duration of the initial phase of a project. The results
show that the ensemble model is more accurate than other approaches and suitable for practical use. An ensemble of optimal trees is developed
for SDEE.X® The results show that the RF model outperforms the random tree (RT) model for all datasets except the Desharnais dataset, where
their PRED(0.25) values are equal. However, the developed ensemble model consistently has a smaller mean magnitude relative error (MMRE)
than the RT and RF models across five datasets.

An ensemble model that combines UCP, expert judgment, and case-based reasoning (CBR) techniques is proposed to improve estimation
accuracy in software development.!” Specifically, UCP, expert judgment, and CBR produce independent variables, whereas effort is the depen-
dent variable. The estimation results of the three basic models are combined into an ensemble using combination rules (mean, median, and inverse
rank-weighted mean). An ensemble framework is presented for effort estimation using ML algorithms to obtain better accuracy estimates for
error measurements.*® The framework, which is based on an enhanced RF algorithm, succeeded in this task when it was compared to existing
effort estimation methods.

The authors compared five statistical and ML models (MLP, RF, RT, KNN, and SVR) with a voting ensemble model for estimating software
development effort over five datasets.?? For the ensemble model, these models are combined using a combination rule based on the median of
their estimated values. The results confirmed that the single models are unreliable because their estimation accuracies are inconsistent and unsta-
ble across different datasets. However, the ensemble model outperformed the single models on three of the five datasets. The authors proposed
and evaluated heterogeneous ensembles based on KNN, SVR, MLP, and M5Prime using three combination rules (average, median, and inverse
rank-weighted mean).?° The methods were evaluated based on standardized accuracy (SA), effect size, and PRED(0.25) using the leave-one-out
cross-validation (LOOCV) method.2%?2 The Scott-Knott statistical test was also conducted to determine significant differences in accuracy among
the methods.

The authors experimented with SVR, RR, KNN, DT, and Bayesian networks to determine the method that provides better accuracy in estimat-

.42 The results show that none of the methods uniformly performs better. Therefore, an ensemble-based approach was pro-

|65

ing software effor
posed that outperformed the other similar approaches in terms of estimation accuracy. The article of Kumar et al®> proposed an ensemble
learning method, a gradient-boosted regression model. Accuracy comparisons are made with regression models such as KNN, DT, RF, and
AdaBoosted regressors. The models are evaluated using evaluation metrics such as MAE, MSE, RMSE, and R 2. The results show that the ensem-
ble learning method performs well on all the individual models used compared to both datasets, achieving 98% accuracy on COCOMO81 and
93% on the CHINA dataset. The authors conducted a comparative study of 12 ensemble methods for effort estimation. With an MMRE value of
10% and a PRED(0.25) of 97%, the M5 rule ensemble was found to be the best way to estimate effort.®

The above are some experimental studies on ensemble methods that are performed from time to time. Table 1 summarizes other related
work on software effort estimation of various single methods using known datasets and real-time industrial projects, and the performance metrics

were evaluated to determine the best model for estimating effort accuracy.

3 | METHODOLOGIES USED

The methodologies used in this paper to estimate the required effort are described below.

3.1 | Use case points
The UCP method’ is used to estimate the size of object-oriented software projects. The UCP is calculated by converting the elements of the

UML use case diagram into size measures according to a well-defined procedure. In the first step, the actor elements are categorized according to

their level of difficulty: simple, average, and complex, as shown in Table 2. The unadjusted actor weight (UAW) is calculated in Equation (1).
uAW=3"" atixw; (1)

The use case elements are categorized into three categories (simple, average, and complex) according to the number of transactions men-
tioned in the use case description, as shown in Table 3. The unadjusted use case weight (UUCW) is calculated in Equation (2).

uuew =37 ugxw, 2)
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TABLE 2 Actor classifications and their complexity weights.
Actor classification Description Weight
Simple The system through an API 1
Average The system through a protocol 2
Complex The system through a GUI 3
TABLE 3 Use case classifications and their complexity weights.
Use case classification Description Weight
Simple (0, 4) 1
Average <4,7> 2
Complex (7, ) 3
TABLE 4 Technical complexity factors.
T; Description Weight (Wt;)
T, Distributed system 2
T, Response adjectives 2
T3 End-use efficiency 1
Ta Complex processing 1
Ts Reusable code 1
Te Easy to install 0.5
T, Easy to use 0.5
Tg Portability 2
To Easy to change 1
T10 Concurrency 1
Tq1 Security features 1
Tio Access for third parties 1
T13 Special training facilities 1

where at; is the number of actors in actor element i, w; is the complexity weight of actor i, uc; is the number of use cases in use case element i,
and w; is the complexity weight of use case j.

The TCF and ECF correction factors are used to describe the experience level of the software development team. The TCF is calculated based
on 13 technical factors (F1, F2, ..., F13) significantly affecting project performance (see Table 4). The ECF is calculated based on eight environmen-
tal factors (E1, E2, ..., E8) significantly affecting productivity (see Table 5). Each element in both groups can take an influence value between 0 and

5 and predefined weights representing the influence of each factor. Equations (3) and (4) show how to calculate TCF and ECF.

TCF=0.6+0.01% " Tix Wt (3)
ECF=1.4-003%"" E/xWe, “)

where T; is the value of technical factor i, Wt; is the complexity weight of technical factor i, E; is the value of environmental factor i, and We; is the
complexity weight of environmental factor i.

The final UCP is computed according to Equation (5).

UCP = (UAW +UUCW) x TCF x ECF &)

For SDEE, Karner proposed a factor of 20 person-hours per UCP to measure software effort, as shown in the following Equation (6).

85U80|7 SUOWWOD dAeaID 8|qedl|dde sy Aq peusenob aJe sajonfe VO ‘8sn JO Sajni Joj ArIqiT8UIUQ AB]IAA UO (SUORIPUOD-PUR-SWUBHW0D A8 | 1M Ae.q Ul |uo//Sdny) SUORIPUOD pUe SWwie 18U 88S *[€20z/TT/E0] uo AriqiTauluo A8|IM ‘UljZ U] Teg 8sewo | elizieAun Aq TT9Z IWS/Z00T OT/I0p/u00 A8 im Areiq euljuo//sdny wo.j pepeojumod ‘0 ‘T81.LLY0Z



NHUNG ET AL.

WILEY-22¥

Software: Evolution and Process

TABLE 5 Environmental complexity factors.

E; Description Weight (We;)
Eq Family with RUP 1.5

E, Application experience 0.5

Es Object-oriented experience 1

E4 Lead analyst capability 0.5

Es Motivation 1

Eq Stable requirements 2

E, Part-time workers -1

Eg Difficult programming language 2

LASSO-based selection phase (Phase I)

Historical data points (P, ..., P,). X1 = t; X WL; LSR

Parameter received by UCP Yrcp = TCF @1, @2, --os Bn
For each project:

UAW, UUCW, TCF, T1, T2, T3, T4, T5, T6, n J
T7,T8,T9, T10,T11, T12, T13, LaTF = ao + Z a; XLaTyxWLt;
ECF, ENVI, ENV2, ENV3, ENV4, ENVS, =1

ENV6, ENV7, ENV8

XEi = Cj X WLC, LSR

‘ YECF =ECF ]
Feature selection on Correction Factors H LaEF = B, + zm 8, xLaE,xWe, J
i=1

i ﬁhBZ’ ey Bm

(LASSO)
The model fitting phase (Phase II) ay,ay, ..., A,
Bl'BZ) seey Bm
New Project Data !
Analysis n
ucp ™ LaTF = a + Zi=1ai XLaT;XxWLt;
m
Received parameters: ,| LaEF=p, + Z - Bj XLaExWLe
UAW, UUCW,
TCF, T1, T2, T3, T4, TS, T6, T7, T8, T9, LaEF |LaTF
T10, T11, T12, T13, -
ECF, ENVI, ENV2, ENV3, ENV4, ENVS, UCPocr = (UAW + UUCW) x LaTF x LaEF
ENV6, ENV7, ENV8

¥

Final Project Size Estimation

FIGURE 3 Detailed illustration of the optimization correction factor (OCF) method.

Effort =UCP x 20 (6)

32 | OCFs

Our method, the OCF method,*® uses the LASSO method>®°! to select the best correction factors, thus reducing the risk involved in evaluating
these factors using the UCP method. Figure 3 represents a detailed illustration of the OCF method.
Phase 1: The LASSO regression model is used to determine the correction factors for regression analysis. The LASSO estimate ﬁ(l) is given

as follows:
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~ . Y — Xp||?
A(3) = argmin (wﬂ H ﬂ\ll)
B n (7)
subject to ij: Bl <t,
where
1Y =XBI3 =1 o (Yi— (X)) (8)

1Al =37, 1) 9)

where 120 is the LASSO parameter, which controls the strength of the penalty determined by the LOOCV method.2*%2 LASSO parameter selec-
tion is based on the lowest possible estimation error and a lack of bias with respect to the correction factors for the observations in the training
set. The LASSO parameter is directly related to the number of correction factors selected over non-zero 4.

Next, least squares regression (LSR) is used to obtain the regression coefficients for the selected technical and environmental variables. Based on

LASSO, the lines for the n selected technical factors (LaTF) and m environmental factors (LaEF) are given in Equations (10) and (11), respectively.

LaTF = ao + Z?:la,- x LaT; x WLE;, (10)

LaEF =py+ Z:i1ﬂ; x LaEj x Wle;, -

where LaT; and LaE; are the technical and environmental factors, respectively, that take values from the interval [0, 5]; WLt;and WLe; are the
weight of these factors; and ao,a;, fg,and j; are the regression coefficients for the LSR model.
Phase 2: The OCF size is calculated as follows:

UCPocr = (UAW +UUCW) x LaTF x LaEF. (12)

3.3 | Statistical and ML techniques

331 | MLP

MLP is a feedforward neural network used to solve regression problems that is usually trained with a backpropagation algorithm. The simplest
MLP model consists of at least three nodes, an input layer, a hidden layer, and an output layer.®” The number of independent variables in the input
pattern is equal to the number of nodes in the input layer. Each neuron in the hidden layer converts the values from the previous layer via a
weighted linear summation utilizing a nonlinear activation function. The number of nodes in the output layer depends on the problem under con-
sideration and the number of dependent variables.

In this work, the OCF&MLP structure includes an input layer, a hidden layer MLP, and an output layer. The input layer neurons represent the
variables identified with OCF. The output layer is the software size (UCPocrgmLp) and receives values from the hidden layer to calculate the out-
put value. One of the essential steps in developing the MLP is the optimization of its configuration parameters, such as the number of neurons in
the hidden layer, and the three parameters of the learning algorithm (initial learning rate, momentum, and the regularization term). According to
Linoff et al,’® the number of nodes in the hidden layer should be between the number of nodes in the input layer and twice this number. In the
OCF&MLP, the number of hidden nodes is between five and eight because four OCF variables are input. In this study, the Stochastic Gradient
Descent (SGD) algorithm is used to train the MLP model.®” The critical parameters for constructing the MLP model and their values for prelimi-

nary execution are depicted in Table 6.

TABLE 6 The parameters for constructing the MLP model and their values for preliminary execution.

Model parameter Search range

Initial learning rate L={0.01,0.02,0.03,0.04,0.05}
Number of hidden nodes H={5,6,7,8}

Momentum M={0.1,0.2,0.3,0.4,0.5}
Regularization term a={0.00001,0.0001,0.001,0.01}
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3.3.2 | Support vector regression

Support vector machine (SVM) is a supervised learning method based on statistical learning theory.”® SV regression (SVR) is a special form of
SVM used to model the input-output functional relationship or regression. Assume that the training dataset is D:{(x,-,y,-)}';, where x; € R™
denotes the input values, y; € R denotes the corresponding output values, n is the number of samples in the training dataset, and m is the dimen-
sion of the input dataset.

The goal of SVR is to approximate the nonlinear relationship shown in Equation (13) that brings f(x;) as close as possible to the obtained tar-

get value (y;).

yi=f(xi) = (W, ®(x;)) +b, (13)

where w € R™ and b € R are the weight vector and threshold, respectively; (.,.) denotes the dot product, and ®(x;) is the transformation function
that maps the input values from R™ space to a feature space of higher dimension. The values w and b are reduced to ensure that the approxi-

mated function satisfies the above objective.

. 1 «
Miny, ¢ & §||WH2 +CZ,-”:15:' +&, (14)
subject to
yi— (W, ®(x;)) —bse+&i=1,.,n
(W, ®(x;)) +b—y;se+&,i=1,.,n (15)
£20,i=1,..,n
&=20,i=1,..,n,

where ¢ is the deviation of function f(x;) and & and &* are slack variables used to measure ¢. The regularization parameter C defines the error toler-
ance over e.

In this work, £ — SVR is used as a variant of SVR, and the radial basis function (RBF) is used as a kernel function.”* The RBF kernel is calculated as

K (xi,) = exp(7y||x,~ij||2>,y>0. (16)

Three parameters that significantly affect the performance of the ¢ — SVR generalization, namely, the C, ¢, and y, must be carefully selected.

Table 7 shows the details of these configuration parameters and their search ranges for the SVR method.

333 | DT

DTs are supervised ML algorithms used to solve regression and classification problems.”? A DT creates a flowchart in an inverted tree-like struc-

ture, where the internal nodes illustrate the test, the branches define the test results, and each leaf node denotes a class label.”®

The output of a
given DT is partitioned into distinguishable leaf nodes, following certain conditions, such as an if/else loop. There are many DT algorithms, such
as ID3, CART, CHAID, C4.5, M5P, and REPTrees.”*”® The DTs used in this study are optimized versions of the CART algorithm.

For any DT, we looked at four parameters: (1) the maximum depth (max_depth)—if this depth is not specified, the tree expands until the last
leaf nodes contain a single value, resulting in overfitting; (2) the minimum number of leaf nodes (min_samples_leaf) in a decision tree, which is

used to control the complexity of the model; (3) the minimum weighted fraction of the sum total of weights (min_weight_fraction_leaf) required

TABLE 7 The parameters for constructing the SVR model and their values for preliminary execution.

Model parameter Search range

Regularization term (C) C=4{5,10,100,150}

Epsilon fore —SVR (g) £={1,0.1,0.01,0.001,0.0001}
Kernel coefficient (y) y=1{1,0.1,0.01,0.001,0.0001}
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TABLE 8 The parameters for constructing the DT model and their values for preliminary execution.
Model parameter Search range
The maximum depth of the tree max_depth ={3,5,7,9,11,12}
The minimum weighted fraction min_weight_fraction_leaf={0.1,0.2,0.3,0.4,0.5}
The number of leaf nodes max_leaf_nodes = {10,20, 30,40, 50,60, 70,80, 90}
The minimum number of samples min_sample_nodes ={1,2,3,4,5,6,7,8,9,10}
TABLE 9 The parameters for constructing the RF model and their values for preliminary executions.
Model parameter Search range
The number of trees n_estimators = {100, 150,200, 150, 300, 350,400,450}
The minimum number of samples min_sample_nodes = {1,2,4}
The maximum depth of the tree max_depth = {10,20, 30,40, 50, 60,70,80,90,100}
TABLE 10 The parameter for constructing the KNN model and its values for preliminary executions.
Model parameter Search range
Number of neighbors (K) n_neighbors ={2,3,4,5,6,7,8,9,10,11,12,13,14,15}

at a leaf node; and (4) the number of leaf nodes (max_leaf_nodes) to control overfitting. Values that are too high can lead to under-fitting. Table 8

provides details concerning the parameters for the DT model and their search ranges.

334 | RF

The RF technique uses a supervised nonparametric approach for regression and classification.”® It creates multiple DTs and combines them to
obtain a more accurate and stable prediction. The RF result is the maximum vote from a panel of independent judges, which makes the final pre-
diction better than the best judge. In this research, we also focus on the parameters used in building an RF model, as in the DT model. Optimal RF
parameters either increase the model's predictive power or facilitate its training. The robustness and stability of the prediction depend on these

parameters.®? The optimal parameters for the RF method for each experimental dataset are listed in Table 9.

335 | KNN

KNN is a non-parametric ML method used in classifications and regressions. KNN collects historical data, called the training dataset, and produces
estimates for new test data.”® The K-nearest data from the training data set is determined, and then, based on the data attributes of these data,
an estimate is made of the new data. In KNN, the selection of K (number of neighbors) is very crucial. If the value of K is too small, the algorithm
becomes sensitive to noise, whereas if the value of K is too large, data from other classes can be counted as nearest neighbors.”” We apply GS to
optimize K in this study. Table 10 shows the values of its search range. The Euclidean, Manhattan, and Minkowski distance metrics can all be used
to measure the distance between points in KNN. We use the default Euclidean distance in scikit-learn. The Euclidean distance d(p;,q;) between

one vector p = (p4,p2,....p,) and another vector g=(q4,9s,....d,) can be computed as follows:

336 | GB

GB is an ML technique used in regression and classification tasks. It is basically an ensemble method based on DTs.”® In GB, the number of deci-

sion trees (number of estimators) is a crucial parameter. The higher the number of trees, the better the data will be learned. However, a large
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number of trees can significantly slow the training process down. Therefore, a parameter search is necessary. In this study, the three other param-
eters of interest in GB are the number of boosting stages (n_estimators), the minimum number of leaf nodes (min_samples_leaf), and the maximum
depth of the single regression estimators (max_depth), which is used to control model overfitting. The details of the search range for, and optimal

values of, the parameters for the OCF&GB method over GS for all datasets can be found in Table 11.

3.4 | Setting configuration parameters

The accuracy of a particular statistical or ML technique depends on the configuration parameters describing the characteristics of a specific
dataset. Determining a technique's optimal parameter values gives it a high predictive capacity. In this study, we use GS>’ to optimize the configu-
ration parameters of each statistical and ML technique. Specifically, GS exhaustively searches each empirical method's parameter set across a
predefined range of values for each dataset and then selects the configuration that yields the “optimal” estimates. The parameter search ranges
are derived from previous analyses.®%31:35 |n each case, we broadened the search range to consider as many possible configurations as possible
(see Tables 3-8). Each method's optimization convergence depends on the mean square error (MSE) reaching O or the maximum number of itera-
tions reaching 10,000.”? The parameters are tuned to the validation set, which represents 30% of the training set. The detailed optimal parameter

values for the estimation methods for each dataset are listed in Tables 12, 13, 14, and 15.

4 | PROPOSED STACKED OFC METHOD (IN FULL)

In this section, we present our proposed OCF-based stacked generalization ensemble method of statistical and ML models, which we have named
stacked OCF (SOCF). In this study, the staked generalization (staking) ensemble*'#? was used to estimate the OCF-based size. Recall that the
main goal of this study was to use the capabilities of a group of robust single estimators in a regression task to provide estimates that are more
accurate than those produced by any single model in the ensemble. The ensemble was trained and tested on the four datasets, D1-D4.

Figure 4 shows the detailed SOCF architecture, which consists of steps to clean the data, split the data into training and test datasets, and
apply the stacking model to estimate the OCF-based size. The following methodology was used:

TABLE 11 The parameters for constructing the GB model and their values for preliminary executions.

Model parameter Search range

Number of boosting stages n_estimators = {20,40,60,80,100}

Minimum number of leaf nodes min_samples_leaf = {10,20,30,40, 50, 60,70}
Maximum depth max_depth={5,6,7,8,9,10,11,12,13,14,15,16}

TABLE 12 The optimal values of the method parameters for the D1 dataset.

Method Parameters settings

OCF&MLP L=0.05,H=7,M=0.2,a=0.0001

UCP&MLP L=0.04,H=7,M=0.5,a=0.001

OCF&SVR C=10,y=0.001,¢=0.001

UCP&SVR C=10y=1e=1

OCF&DT max_depth =7, min_weight_fraction_leaf =0.4,

max_leaf_node =40, min_sample_leaf = 10
UCP&DT max_depth = 5, min_weight_fraction_leaf = 0.3,

max_leaf_node = 20, min_sample_leaf = 6

OCF&RF n_estimators = 100, min_sample_leaf = 2, max_depth = 10
UCP&RF n_estimators = 150, min_sample_leaf = 2, max_depth =20
OCF&GB n_estimators = 60, min_sample_leaf = 60, max_depth=5
OCF&KNN neighbors =5

UCP&KNN neighbors = 10

UCP&GRNN c=0.1
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TABLE 13 The optimal values of the method parameters for the D2 dataset.
Method Parameters settings
OCF&MLP L=0.02,H=8,M=0.5,a=0.001
UCP&MLP L=0.03,H=6,M=0.5,a=0.0001
OCF&SVR C=100,y=0.1,¢6 =0.001
UCP&SVR C=10,y=1=0.1
OCF&DT max_depth =5, min_weight_fraction_leaf =0.5,
max_leaf_node = 30, min_sample_leaf =4
UCP&DT max_depth = 3, min_weight_fraction_leaf =0.3,
max_leaf_node =40, min_sample_leaf = 2
OCF&RF n_estimators = 200, min_sample_leaf = 1, max_depth = 50
UCP&RF n_estimators = 100, min_sample_leaf = 1, max_depth = 30
OCF&GB n_estimators = 20, min_sample_leaf = 40, max_depth =6
OCF&KNN neighbors =8
UCP&KNN neighbors =9
UCP&GRNN =03
TABLE 14 The optimal values of the method parameters for the D3 dataset.
Method Parameters settings
OCF&MLP L=001,H=6,M=0.2,a=0.01
UCP&MLP L=0.04,H=6,M=0.2,a=0.01
OCF&SVR C=50,y=1e=1
UCP&SVR C=10,y=0.01,6=0.01
OCF&DT max_depth = 9, min_weight_fraction_leaf = 0.3,
max_leaf_node = 10, min_sample_leaf =5
UCP&DT max_depth = 5, min_weight_fraction_leaf=0.1,
max_leaf_node = 30, min_sample_leaf =7
OCF&RF n_estimators = 300, min_sample_leaf = 4, max_depth =80
UCP&RF n_estimator =400, min_sample_leaf = 2, max_depth = 50
OCF&GB n_estimators = 30, min_sample_leaf = 30, max_depth=7
OCF&KNN neighbors =6
UCP&KNN neighbors = 10
UCP&GRNN c=0.6

1. LASSO regression is used to determine the best correction factors for the UCP method (details are presented in Section 3.2). A list of the best
correction factors for each dataset is presented in Appendix B (Tables 36 and 37).

2. The input and output vectors are determined.

3. The data is divided into a training set $ and a test set S;. S js used to create the Level O models (regressors) via seven learning algorithms
(SVM, KNN, DT, MLP, MLR, GB, and RF).

4. The configuration parameters for the seven regression models (Level 0 models) SVM, KNN, DT, MLP, MLR, GB, and RF are tuned on the vali-
dation set (30% of the training set) to produce their optimal settings (see Section 3.4).

5. Create an ensemble model with the stacking method. The estimator's predictions are stacked and fed into a final estimator, which computes
the final estimation. More precisely, each of the Level O models in the first stage undergo five-fold cross-validation in 5 to output its predic-
tion and generate a prediction for S; by taking the average of the seven estimation results generated by the five CV models in the training
phase. Then, these Level O models create a vector of predictions to input into the Level 1 model (in the second stage). RF was selected as the

meta-regressor to train a new model for the final project size estimation.
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TABLE 15

Method
OCF&MLP
UCP&MLP
OCF&SVR
UCP&SVR
OCF&DT

UCP&DT

OCF&RF
UCP&RF
OCF&GB
OCF&KNN
UCP&KNN
UCP&GRNN

Software: Evolution and Process

The optimal values of the method parameters for the D4 dataset.

Parameters settings
L=0.02,H=6,M=0.3,a=0.01
L=0.03,H=6,M=0.4,a=0.001
C=100,y=1,6=0.01

C=10,y=0.01,¢=0.01

max_depth = 3, min_weight_fraction_leaf =0.1,
max_leaf_node = 50, min_sample_leaf = 2
max_depth = 5, min_weight_fraction_leaf = 0.5,

max_leaf_node = 30, min_sample_leaf =3

n_estimators = 250, min_sample_leaf = 4, max_depth = 10
n_estimators = 300, min_sample_leaf = 4, max_depth = 20

n_estimators = 40, min_sample_leaf = 50, max_depth =6

neighbors =7
neighbors =9
c=04

For each project:
Real P20, UAW,UUCW

Historical data points (Py, ...

, P,). Parameter received by UCP

TCF,T1,T2,T3,T4,T5,T6, T7, T8, T9, T10, T11, T12,T13,
ECF,ENVI1,ENV2,ENV3,ENV4,ENV5,ENV6, ENV7,ENVS

Data

Feature selection on

Data cleaning

Correction Factors

Results of feature engineering
Real P20, UAW, UUCW

LaTF, LaEF
Inputs/ outputs
determination
Grid Search (GS .
! .ezf“ .( ) Problem formulation Data split
optimization
| S('f| S;

First stage (Level-0)

; s(-nl ; S('J)[ : s(-J)l

SJ; [sVR| s | S [ mLp | si[ ot | si[ R | si[kNN] Si [
Base Base Base Base Base Base Base
Regressor 1j Regressor 2j Regressor 3j Regressor 4j Regressor 5j Regressor 6] Regressor 7j
Pljl P2J| P3j| Daj | Ps; | Psj | p7j|

Second stage (Level-1)

RF

| Meta-Regressor

S training data

S;: test data

p: level-0 regressors estimations over instances in S;
J: number of folds in cross-validation

| Final Project Size Estimation |

FIGURE 4 The architecture of the proposed SOCF model.
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5 | EXPERIMENTAL DESIGN

This section presents the experimental design, which consists of (1) an experimental process for evaluating the SDEE methods, (2) descriptions of

the datasets for the experiment, and (3) the evaluation criteria for assessing SDEE method accuracy.

51 | Experimental process

The experimental process for evaluating the accuracies of SDEE methods is shown in Figure 5. We performed experiments to compare our pro-
posed SOCF method with related methods, such as the UCP-based single methods (described in Table 16), OCF-based single methods (described
in Table 17), and ensemble methods (described in Table 18). In addition, we experimented with pure estimation methods, such as a baseline UCP
method,” and an OCF method.*®

We ran each experiment five times under five different random training and testing splits. The comparisons of the methods' estimation accu-
racies were based on the average results of these five runs and seven evaluation criteria, namely, the SSE, MAE, RMSE, MBRE, MIBRE, MdMRE,

and PRED(0.25), which are defined in Equations (18)-(24) of Section 6.3. A statistical comparison was also used to validate method accuracy.

5.2 | Dataset descriptions

The UCP methodology is a promising tool for early effort estimation in the software industry, but it still requires refinements in certain areas as
per our prior works.*84? The evaluation of correction factors (TCF and ECF), which inherently possess a degree of uncertainty, significantly influ-
ences the precision of the UCP method. This research examines explicitly the dataset quality, encompassing the number of projects incorporated.

t.38 This dataset's significance lies in its comprehensive coverage of technical (T1-T13)

Consequently, we utilized the UCP benchmark datase
and environmental factors (E1-E8), enabling a thorough evaluation of effort estimation methodologies. While some studies utilized multiple
datasets,®384 to the best of our understanding, no alternate dataset aligns with our focus area.

A critical challenge is the relatively small dataset size, but the implementation previously mentioned LOOCYV approach (as discussed in the
Threat to validity section) helps overcome this challenge. Other datasets that are publicly accessible for experiment replication and result generali-
zation, unlike in other research domains of effort estimation, cannot be used in the study, which evaluates TCF and ECF. This accessibility issue
significantly hinders broader community participation and progress.

A total of 70 projects from three repositories were used. Figure 6 shows boxplots of Real_P20 for each data repository, where Real_P20 is a
real effort in person-hours divided by productivity (PF — person-hours per 1 UCP). The repositories have significantly different Real_P20 values.
Specifically, the D1 data repository has the largest Real_P20 for projects, whereas the D3 data repository has the smallest Real_P20 for projects.
The D4 data repository, which combines D1-D3, was used to evaluate the impact of mixing projects from different data repositories.

Table 19 summarizes the descriptive statistics for the dataset's Real_P20 variables, including dataset size, as well as the median, mean, mini-
mum, and maximum Real_P20 values. For all datasets, the median Real_P20 uses PF = 20 because it is assumed that 20 person-hours equals
1 UCP.” Minimum Real_P20 and maximum Real_P20 describe the smallest and largest project sizes in each case.

5.3 | Evaluation criteria

In SDEE, different criteria are used to evaluate the accuracy of the estimation methods. The accuracy of the SDEE method in terms of MMRE and
MMERY?%? are the most commonly used measures. However, these measurements can be biased.82¢8>8 Therefore, to evaluate the proposed
estimation method, in this study, alternative criteria are used that provide an unbiased symmetric distribution as follows: SSE (Equation [18]),
MAE (Equation [19]), RMSE (Equation [20]), MBRE (Equation [21]), MIBRE (Equation [22]), MdMRE (Equation [23]), and PRED(x) (where x = 0.25
in this study; Equation [24]). All of these criteria have been proven to be effective.>

Specifically, SSE and PRED(0.25) are used to evaluate the accuracy of the estimated model. SSE is the most important metric to assess the
variability of modeling errors.8” This metric can describe errors in selected datasets. PRED(0.25) is less biased towards underestimation. This usu-
ally identifies the best method as standardized accuracy. The SDEE method with high estimation accuracy (when the value of PRED(x) is high) is
also suitable (when the value of SA is high).>

SSE=Y "7 (vi—v)% (18)
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Single soft
computing
methods Evaluation criteria
G SSE, MAE, RMSE,
Feature selection Compare and MBRE, MIBRE, MAMRE
Dataset ——] on Correction Input determine the PRED (0.25)
Factor Dataset best model -
t-tests
Ensemble soft
computing
methods
FIGURE 5 Description of experimental process.
TABLE 16 UCP-based single methods implemented for experiments.
Effort estimation ML
No. method technique Summary Notation
1 Use case point MLR e Uses MLR to estimate the software size based on UCP variables (UAW, UUCW, UCP&MLR
TCF, and ECF).
2 Use case point SVR e Uses SVR to estimate the software size based on UCP variables (UAW, UUCW, UCP&SVR
TCF, and ECF).
3 Use case point KNN e Uses KNN to estimate the software size based on UCP variables (UAW, UUCW, UCP&KNN
TCF, and ECF).
4 Use case point DT e Uses DT to estimate the software size based on UCP variables (UAW, UUCW, UCP&DT
TCF, and ECF).
5 Use case point GRNN e Uses GRNN to estimate the software size based on UCP variables (UAW, UUCW, UCP&GRNN
TCF, and ECF).
6 Use case point MLP e Uses MLP to estimate the software size based on UCP variables (UAW, UUCW, UCP&MLP
TCF, and ECF).
7 Use case point RF e Uses RF to estimate the software size based on UCP variables (UAW, UUCW, UCP&RF
TCF, and ECF).
TABLE 17 OCF-based single methods implemented for experiments.
Effort estimation Statistical and ML
No. method technique Summary Notation
1 Optimization SVR e Uses SVR to estimate the software size based on OCF variables (UAW, OCF&SVR
correction factor UUCW, LaTF, and LaEF).
2 Optimization MLP e Uses MLP to estimate the software size based on OCF variables (UAW, OCF&MLP
correction factor UUCW, LaTF, and LaEF).
3 Optimization GB e Uses GB to estimate the software size based on OCF variables (UAW, OCF&GB
correction factor UUCW, LaTF, and LaEF).
4 Optimization MLR e Uses RF to estimate the software size based on OCF variables (UAW, OCF&MLR
correction factor UUCW, LaTF, and LaEF).
5 Optimization KNN e Uses KNN to estimate the software size based on OCF variables (UAW, OCF&KNN
correction factor UUCW, LaTF, and LaEF).
6 Optimization DT e Uses DT to estimate the software size based on OCF variables (UAW, OCF&DT
correction factor UUCW, LaTF, and LaEF).
7 Optimization RF e Uses RF to estimate the software size based on OCF variables (UAW, OCF&RF

correction factor

UUCW, LaTF, and LaEF).

85U80|7 SUOWWOD dAeaID 8|qedl|dde sy Aq peusenob aJe sajonfe VO ‘8sn JO Sajni Joj ArIqiT8UIUQ AB]IAA UO (SUORIPUOD-PUR-SWUBHW0D A8 | 1M Ae.q Ul |uo//Sdny) SUORIPUOD pUe SWwie 18U 88S *[€20z/TT/E0] uo AriqiTauluo A8|IM ‘UljZ U] Teg 8sewo | elizieAun Aq TT9Z IWS/Z00T OT/I0p/u00 A8 im Areiq euljuo//sdny wo.j pepeojumod ‘0 ‘T81.LLY0Z



18 of 37 SOl
AW 0B DG Software: Evolution and Process

TABLE 18 Ensemble methods implemented for experiments.

Effort
estimation Statistical and ML
No. method technique
1 Use case point Majority voting
ensemble®®
2 Optimization Stacked
correction generalization
factor ensemble®?
400 A
380 A
360 A
o
~
&
® 340 1
o
320 A
300 A

D1

FIGURE 6 Boxplots of Real_P20 for four datasets.

NHUNG ET AL.
Summary Notation
Uses an ensemble of the MLR, SVR, and MLP models with the majority voting vucpst
method to estimate the software size based on UCP variables (UAW, UUCW,
TCF, and ECF).
Uses an ensemble of the SVM, KNN, DT, MLP, MLR, GB, and RF models with SOCF
the stacked generalization method to estimate the software size based on (proposed in
OCF variables (UAW, UUCW, LaTF, and LaEF). Section 4)
Boxplot of Real P20 for datasets
D2 D3 D4
1 n
MAE == i —Yils 19
. ,;'y' vil (19)
(20)
10 LV
MBRE = —ZM, (21)
n< min(y; —;)
10 LV
migre= 13~ LU= | (22)
n i=1 max()/i - YI)
MAMRE = median; (M) (23)
i
Y=Yl
1—=n 1if L <x
PRED() =" . | i ; (24)
O otherwise

where n is the number of observations, y; is the known real value, and y; is the estimated value.
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TABLE 19 Descriptive statistics for the datasets.

Real_P20
Dataset Size Min Max Mean Median Standard deviation
D1 27 338.200 398.500 364.500 362.600 18.820
D2 23 299.650 338.050 314.708 312.000 12.156
D3 20 288.750 299.250 293.787 293.900 3.287
D4 70 288.750 398.500 327.936 320.300 33.212

6 | RESULTS AND DISCUSSION

This section presents the results obtained for our proposed effort estimation method as well as the related methods and answers our research

questions.

61 | RQ1

To answer this question, we will first evaluate and rank the six UCP-based and seven OCF-based SDEE methods for each dataset. Second, we will
consider the ensemble methods and compare them with their component methods for each dataset. Finally, the ensemble methods will be com-
pared with each other.

The first step in assessing these statistical and ML techniques consisted of building and tuning them using the GS optimization technique.
The optimal settings for the datasets are listed in Section 3.4. Tables 20 and 21 present the estimation accuracies of the six UCP-based single
methods and seven OCF-based single methods across the four datasets.

The first observation from these results is that the OCF-based estimation methods, that is, OCF&SVR, OCF&MLP, OCF&DT, OCF&KNN, and
OCF&RF, minimize the errors more effectively than the traditional UCP model-based estimation methods, that is, UCP&SVR, UCP&MLP,
UCP&DT, UCP&KNN, and UCP&RF. This further reinforces the effectiveness of OCF variables when they are leveraged in estimation methods.
In addition, the determination of the technical and environmental complexity factors helped our OCF-based methods to give better experimental
in terms of average SSE, MAE, RMSE, MdMRE, MBRE, and MIBRE results in all experimental datasets, as shown in Figure 7. Based on the SSE,
MAE, RMSE, MdMRE, MBRE, and MIBRE results in Tables 20 and 21, we present in Tables 22, 23, 24, and 25 the percentage improvements in
SSE, MAE, RMSE, MdMRE, MBRE, and MIBRE results of the OCF-based estimation methods over the UCP-based estimation methods. Following
are some comments on the most significant improvements between the SSE results of the OCF-based and UCP-based models: the SSE results of
OCF&KNN are 133.39% and 166.71% better than those of UCP&KNN in data sets D1 and D2, respectively. For datasets D3 and D4, the SSE
results of OCF&RF are better than those of UCP&RF by 36.93% and 116%, respectively. Based on this finding, we can conclude that approaches
that use OCF variables outperform those that use UCP variables.

The second observation from these results is that the estimation accuracies of the single methods vary from one dataset to another, making
them unstable across these datasets and the evaluation criteria. In particular, the best model for the D1 dataset among the UCP-based single
models was UCP&GRNN. UCP&KNN had the lowest accuracy according to the SSE, whereas UCP&SVR had the most insufficient accuracy
according to the MAE, RMSE, MBRE, MIBRE, and MdMRE. For the D2 dataset, UCP&GRNN had the highest accuracy, whereas UCP&MLP had
the lowest. For the D3 dataset, UCP&SVR achieved the best accuracy according to the SSE, MAE, RMSE, MBRE, and MIBRE, whereas UCP&DT
achieved the best accuracy according to the MdMRE. UCP&RF was the worst model. For the D4 dataset, UCP&DT achieved the best accuracy
according to the SSE, whereas UCP&SVR had the lowest accuracy according to the MAE, RMSE, MBRE, MIBRE, and MdMRE. UCP&RF was the
worst model according to the SSE, RMSE, MBRE, MIBRE, and MdMRE, whereas UCP&MLP was the worst model according to the MAE. Similarly,
among the OCF-based single models for the D1 dataset, OCF&RF performed best according to the SSE and RMSE, whereas OCF&KNN per-
formed best according to the MAE, MBRE, MIBRE, and MdMRE. OCF&SVR was the worst model. For the D2 dataset, OCF&KNN had the highest
accuracy, whereas UCP&MLP had the lowest. For the D3 dataset, OCF&SVR had the best accuracy according to the SSE, MAE, RMSE, MBRE,
and MIBRE, whereas UCP&GB achieved the best accuracy according to the MAMRE. OCF&MLP was the worst model. For the D4 dataset,
OCF&DT had the best accuracy according to the SSE, whereas OCF&SVR had the lowest accuracy according to the MAE, RMSE, MBRE, MIBRE,
and MdMRE. OCF&MLP was the worst model. Table 26 ranks the UCP-based single methods from 1 to 6 based on the SSE metric across the
datasets, with “1” being the best, and “6” being the worst method in terms of the SSE metric. Similarly, in Table 27, the OCF-based methods are
ranked from 1 to 7 based on the SSE metric across the datasets, where “1” represents the best method, and “7” represents the worst method
based on the SSE metric. From these results, we can conclude that there is no single absolutely best method, meaning a single model can provide

superior estimation accuracy for one dataset while doing poorly on another dataset.
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TABLE 20 Estimation results for the UCP-based single methods. The best results are in bold. The worst results are italicized.
Method SSE MAE RMSE MBRE MIBRE MdMRE PRED
D1 dataset
UCP&SVR 1866.171 16.732 18.711 0.048 0.045 0.045 1.00
UCP&MLP 1515.529 14.082 16.768 0.040 0.038 0.036 1.00
UCP&GRNN 1493.428 12.770 15.553 0.039 0.036 0.035 1.00
UCP&KNN 1942.105 16.564 18.532 0.047 0.044 0.048 1.00
UCP&DT 1520.841 13.539 16.619 0.038 0.036 0.030 1.00
UCP&RF 1526.650 14.048 16.440 0.040 0.037 0.029 1.00
D2 dataset
UCP&SVR 768.535 10.180 13.168 0.034 0.032 0.026 1.00
UCP&MLP 1546.821 14.854 17.333 0.050 0.046 0.040 1.00
UCP&GRNN 392.452 8.382 9.736 0.028 0.026 0.023 1.00
UCP&KNN 651.119 11.122 12.459 0.036 0.035 0.032 1.00
UCP&DT 528.280 9.497 11.151 0.031 0.030 0.027 1.00
UCP&RF 405.550 8.054 9.640 0.026 0.025 0.021 1.00
D3 dataset
UCP&SVR 41.978 3.066 3.573 0.011 0.010 0.014 1.00
UCP&MLP 56.090 3.629 4.050 0.012 0.012 0.015 1.00
UCP&GRNN 51.268 3.517 4.020 0.012 0.012 0.015 1.00
UCP&KNN 54.621 3.780 4210 0.013 0.013 0.016 1.00
UCP&DT 46.617 3.305 3.767 0.011 0.011 0.013 1.00
UCP&RF 60.420 3.941 4.407 0.014 0.013 0.017 1.00
D4 dataset
UCP&SVR 10,935.116 25.628 30.962 0.082 0.074 0.073 1.00
UCP&MLP 11,890.211 25.894 31.395 0.081 0.072 0.062 0.98
UCP&GRNN 11,105.597 23.822 29.951 0.076 0.067 0.056 1.00
UCP&KNN 11,074.020 24.558 30.942 0.077 0.068 0.060 0.98
UCP&DT 10,878.228 26.588 31.223 0.086 0.077 0.085 1.00
UCP&RF 13,470.085 25.689 32.905 0.083 0.072 0.073 0.98

The third observation from these results is that the ensemble methods outperform all their components. We compare the experimental
results for the two ensemble methods (VUCP and SOCF) with their component methods across the datasets (Tables 20-21 show the estimation
accuracies for the single methods, which can then be compared with the results for their respective ensemble methods in Table 28). Specifically,
the SOCF ensemble method leads to the average SSE result better than OCF&SVR, OCF&MLP, OCF&DT, OCF&MLR, OCF&GB, OCF&RF, and
OCF&KNN, respectively, at 79.42%, 87.19%, 148.69%, 73.86%, 152.09%, 51.68%, and 56.01%. The results also show that the VUCP ensemble
method produces the average SSE results better than UCP&SVR, UCP&KNN, and UCP&DT with 41.92%, 43.07%, and 35.27%, respectively. The
comparison between the ensemble methods and their single approaches is shown in Figures 8 and 9.

In this straight line, we delved into the obtained experimental results to investigate the distinctiveness of our proposed approach. We have
proposed a new EEE-based OCF approach by combining the results of seven commonly used statistical and ML techniques with the OCF method.
The techniques are MLR, KNN, SVR, MLP, RF, GB, and DT. In this work, one of the strengths of our proposed SOCF is that we find the correct or
optimal hyperparameter values, which is the optimal model and uncertain training computational cost and test estimation models with different
values of hyperparameters and propose hyperparameter optimization with GS to optimize the parameters of the seven models in SOCF and find
the best parameters to estimate the effort of four datasets. We compared the experimental results with the ensemble algorithms commonly used
in the literature (AdaBoost ensemble, AUCP; random forest ensemble, ROCF; and voting ensemble, VUCP) and other related methods (see details
in Table 28). Figure 10 shows the improvement where SOCF outperforms all other methods regarding SSE, MAE, RMSE, MdMRE, MBRE, and
MIBRE. It can be seen that SOCF produced better SSE, MAE, MdMRE, MBRE, MIBRE, and RMSE results than VUCP by 1.969, 1.561, 1.791,
1.621, 1.217, and 1.448 times, respectively. Compared with AUCP, SOCF results were better than 2.914, 2.113, 2.344, 2.202, 1.650, and 1.885
times, respectively. Similarly, SOCF results were better than ROCF results of 1.517, 1.367, 1.529, 1.405, 1.067, and 1.323, respectively. Generally,
SOCEF also provides better SSE, MAE, RMSE, MdMRE, MBRE, and MIBRE results than the remaining methods.
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TABLE 21 The estimation results for the OCF-based single methods.

Method SSE MAE RMSE MBRE MIBRE MdMRE PRED
D1 dataset
OCF&SVR 1410.337 13.900 16.350 0.039 0.037 0.029 1.00
OCF&MLP 1197.735 12.887 15.362 0.036 0.035 0.031 1.00
OCF&DT 1343.018 13.470 16.021 0.038 0.036 0.030 1.00
OCF&MLR 1018.045 11.545 13.719 0.032 0.031 0.025 1.00
OCF&GB 1314.082 13.434 15.903 0.038 0.036 0.030 1.00
OCF&RF 747.095 9.520 11.700 0.027 0.026 0.022 1.00
OCF&KNN 832.111 9.245 12.356 0.026 0.024 0.017 1.00
D2 dataset
OCF&SVR 649.039 9.434 12.399 0.032 0.030 0.025 1.00
OCF&MLP 994.084 12.096 15.033 0.040 0.038 0.033 1.00
OCF&DT 278.476 7.203 7.949 0.023 0.023 0.022 1.00
OCF&MLR 493.827 9.479 11.017 0.031 0.029 0.026 1.00
OCF&GB 279.682 7.203 7.972 0.023 0.023 0.022 1.00
OCF&RF 360.796 7.371 9.340 0.024 0.023 0.019 1.00
OCF&KNN 244.127 6.405 7.673 0.020 0.022 0.018 1.00
D3 dataset
OCF&SVR 36.965 2.891 3.387 0.010 0.010 0.013 1.00
OCF&MLP 51.081 3.634 3.968 0.012 0.012 0.014 1.00
OCF&DT 37.345 2.887 3.408 0.010 0.010 0.013 1.00
OCF&MLR 46.500 3.417 3.806 0.012 0.012 0.013 1.00
OCF&GB 37.893 2.899 3.437 0.010 0.010 0.012 1.00
OCF&RF 44.123 3.132 3.700 0.011 0.011 0.013 1.00
OCF&KNN 47.462 3.312 3.830 0.011 0.011 0.014 1.00
D4 dataset
OCF&SVR 6642.853 18.577 23.772 0.059 0.054 0.047 1.00
OCF&MLP 6874.876 18.429 24.192 0.058 0.053 0.047 1.00
OCF&DT 10,454.394 25.932 30.547 0.083 0.075 0.077 1.00
OCF&MLR 6909.895 19.053 24.246 0.060 0.054 0.054 1.00
OCF&GB 10,647.201 26.230 30.810 0.085 0.076 0.084 1.00
OCF&RF 6236.123 17.973 23.387 0.056 0.051 0.050 1.00
OCF&KNN 6475.196 18.208 24.113 0.057 0.052 0.044 1.00

Note: The best results are in bold. The worst results are italicized.

Table 29 shows the processing time (in seconds) of the different experimental methods. It can be seen that the methods using neural network
techniques, that is, SOCF, UCP&MLP, and OCF&MLP, have longer training time than other conventional models. In particular, their average train-
ing time is longer than that of UCP&RF, OCF&RF, UCP&DT, VUCP, and OCF&DT: 47.61, 42.77, 36.24, 36.01, and 30.98 times in the D1 dataset;
10.40, 10.07, 15.02, 14.97, and 13.09 times in the D2 dataset; 25.61, 15.76, 35.05, 34.48, and 26.91 times in the D3 dataset; and 54.59, 52.19,
70.79, 69.82, and 50.75 times in the D4 dataset. The significantly higher time consumption of these methods is explained as follows by GS per-
forming in the step of tuning the hyperparameters. The main drawback of GS is its ineffectiveness in the configuration space of high-dimensional
hyperparameters since the number of evaluations increases exponentially with the frequency of hyperparameters. Assuming that k parameters
exist and each has n distinct values, the computational complexity increases exponentially at a rate of O(nk).57 Is it, therefore, necessary to per-
form hyperparameter tuning in ML methods? How about using these methods with the default parameters of the models, referred to as
SOCFwithoutGS? Figure 10 sheds light on these two questions in terms of SSE, MAE, MBRE, MIBRE, MdMRE, and RMSE results. We
experimented with the default parameters of the models. Specifically, compared to the other methods, we tested the estimation performance of
all seven models in SOCF without applying the grid search hyperparameter optimization. It can be seen that the ratio of improvement where

SOCFwithoutGS outperforms the other methods is not better than SOCF. We found that most hyperparameter values are changed during tuning,
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FIGURE 7 The average estimation results of the UCP-based and OCF-based single methods on all datasets.

indicating that the default values are suboptimal. The SSE result of our proposed SOCF method was more than 16.022%, 16.032%, 11.765%,
19.048%, and 13.358% of the SSE, MAE, MdMRE, MBRE, and RMSE of SOCFwithoutGS, respectively. These results showed that the tuning pro-
cess of the model's hyperparameters has a statistically significant positive impact on the estimation accuracy of the models. The methods in this

study performed well with optimally configured hyperparameter values. Moreover, these results show that when applying statistical and ML

methods, the optimization of the hyperparameters must be considered in the estimation process, as this theoretically increases the prediction effi-

ciency of ML methods. Based on the experimental results, conclusions can be drawn that the SOCF is a comprehensive approach to complex algo-

rithms based on the exploration of technical requirements for more accurate software effort estimation.
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TABLE 22 The percentage improvements of OCF&SVR, OCF&MLP, OCF&KNN, OCF&DT, and OCF&RF over UCP&SVR, UCP &MLP, UCP
&KNN, UCP &DT, and UCP &RF on the D1 dataset.

OCF&SVR vs. UCP&SVR  OCF&MLP vs. UCP&MLP  OCF&KNN vs. UCP&KNN  OCF&DT vs. UCP&DT  OCF&RF vs. UCP&RF

SSE 32.32% 26.53% 133.39% 13.24% 104.34%
MAE 20.38% 9.28% 79.16% 0.51% 47.56%
RMSE 14.44% 9.15% 49.99% 3.73% 40.51%
MdMRE  57.64% 16.03% 186.90% 0.00% 28.83%
MBRE 21.43% 9.39% 82.17% 1.59% 48.87%
MIBRE 21.08% 8.67% 82.64% 0.00% 46.09%

TABLE 23 The percentage improvements of OCF&SVR, OCF&MLP, OCF&KNN, OCF&DT, and OCF&RF over UCP&SVR, UCP &MLP, UCP

&KNN, UCP &DT, and UCP &RF on the D2 dataset.

OCF&SVR vs. UCP&SVR

OCF&MLP vs. UCP&MLP

OCF&KNN vs. UCP&KNN

OCF&DT vs. UCP&DT

OCF&RF vs. UCP&RF

SSE 18.41% 55.60% 166.71% 89.70% 12.40%
MAE 7.91% 22.80% 73.64% 31.85% 9.27%
RMSE 6.20% 15.30% 62.37% 40.28% 3.21%
MdMRE 4.0% 21.47% 73.91% 21.82% 15.05%
MBRE 8.23% 24.75% 77.45% 33.91% 9.09%
MIBRE 7.43% 21.69% 60.19% 29.82% 8.62%

TABLE 24 The percentage improvements of OCF&SVR, OCF&MLP, OCF&KNN, OCF&DT, and OCF&RF over UCP&SVR, UCP &MLP, UCP

&KNN, UCP &DT, and UCP &RF on the D3 dataset.

OCF&SVR vs. UCP&SVR

OCF&MLP vs. UCP&MLP

OCF&KNN vs. UCP&KNN

OCF&DT vs. UCP&DT

OCF&RF vs. UCP&RF

SSE 13.56% 9.81% 15.08% 24.83% 36.93%
MAE 6.07% 0.04% 14.13% 14.49% 25.86%
RMSE 5.49% 2.08% 9.86% 10.52% 19.10%
MdMRE 7.94% 5.80% 16.07% 3.08% 31.25%
MBRE 12.50% 0.00% 14.29% 12.00% 25.93%
MIBRE 6.25% 0.00% 9.91% 12.00% 24.53%
TABLE 25 The percentage improvements of OCF&SVR, OCF&MLP, OCF&KNN, OCF&DT, and OCF&RF over UCP&SVR, UCP &MLP, UCP

&KNN, UCP &DT, and UCP &RF on the D4 dataset.

OCF&SVR vs. UCP&SVR

OCF&MLP vs. UCP&MLP

OCF&KNN vs. UCP&KNN

OCF&DT vs. UCP&DT

OCF&RF vs. UCP&RF

SSE 64.61% 72.95% 71.02% 4.05% 116.00%

MAE 37.96% 40.51% 34.87% 2.53% 34.87%

RMSE 30.25% 29.77% 28.32% 2.21% 28.32%

MdMRE  55.32% 31.91% 36.36% 10.39% 46.00%

MBRE 38.51% 39.66% 35.09% 3.61% 48.21%

MIBRE 37.04% 35.85% 30.77% 2.67% 41.18%
62 | RQ2

To answer RQ2, we statistically compared the methods with a significance level of 0.05. This study used the t-test (parametric statistical compari-
son) and the Mann-Whitney U test (non-parametric statistical comparison). The t-test depends on the t-values, whereas the Mann-Whitney U
test depends on the z-values. The t- and z-values were used to calculate the p-values. If the p-value is less than 0.05, then the two methods used
in the statistical comparison are significantly different. The results of the comparison are shown in Tables 29, 30, 31, and 32. The tables show the

statistical significance between our proposed and other methods. Specifically, our proposed SOCF method is statistically superior to the baseline
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TABLE 26

Methods
UCP&SVR
UCP&MLP
UCP&GRNN
UCP&KNN
UCP&DT
UCP&RF

TABLE 27

Methods
OCF&SVR
OCF&MLP
OCF&DT
OCF&MLR
OCF&GB
OCF&RF
OCF&KNN

TABLE 28

Method

VUCP
AUCP
SOCF
ROCF

VUCP
AUCP
SOCF
ROCF

VUCP
AUCP
SOCF
ROCF

VUCP
AUCP
SOCF
ROCF

Joumalof

Rankings of the UCP-based single methods based on the SSE metric.

D1

A W O, N W

Rankings of the OCF-based single methods based on the SSE metric.

D1

N P, U1 W oD N

Ensemble estimation methods.

Base regressor

KNN, SVR, DT

AdaBoost

SVR, MLP, DT, MLR, GB, RF, KNN
RF

KNN, SVR, DT

AdaBoost

SVR, MLP, DT, MLR, GB, RF, and KNN
RF

KNN, SVR, and DT

AdaBoost

SVR, MLP, DT, MLR, GB, RF, and KNN
RF

KNN, SVR, and DT

AdaBoost

SVR, MLP, DT, MLR, GB, RF, and KNN
RF

Note: The methods with the best results are in bold.

SSE

D1 dataset
1173.227
1803.058
491.627
747.095
D2 dataset
335.898
705.518
125.236
360.796
D3 dataset
38.537
84.212
31.496
44123

D4 dataset
8043.400
11,598.995
4222.464
6236.123

NHUNG ET AL
D2 D3 D4
5 1 2
6 5 5
1 3 4
4 4 3
3 2 1
2 6 6
D2 D3 D4
6 1 3
7 7 4
2 2 6
5 5 5
3 3 7
4 4 1
1 6 2
MAE RMSE MBRE MIBRE MdMRE PRED
11.575 13.970 0.033 0.031 0.027 1.00
17.012 18.614 0.048 0.046 0.046 1.00
7.168 9.186 0.020 0.023 0.016 1.00
9.520 11.700 0.027 0.026 0.022 1.00
7.618 8.937 0.025 0.024 0.023 1.00
10.633 13.077 0.035 0.033 0.026 1.00
4.322 5.386 0.014 0.022 0.013 1.00
7.371 9.340 0.024 0.023 0.019 1.00
2.865 3431 0.010 0.010 0.013 1.00
4.542 4.876 0.015 0.015 0.013
2486 3.106 0.009 0.010 0.008 1.00
3.312 3.700 0.011 0.011 0.013 1.00
21.536 26.338 0.069 0.062 0.059 1.00
26.816 32.008 0.086 0.077 0.074
13.944 21.706 0.043 0.049 0.030 1.00
17.973 23.387 0.056 0.051 0.050 1.00

UCP method and its component methods (OCF&SVR, OCF&MLP, OCF&DT, OCF&MLR, OCF&GB, OCF&RF, and OCF&KNN), the VUCP ensem-
ble method and its component methods (UCP&SVR, UCP&KNN, and UCP&DT), and the other methods tested (OCF, UCP&MLP, and
UCP&GRNN) (Table 33). We can conclude that the proposed SOCF model achieves the best results regarding the number of wins compared to

other models. This is due to the effectiveness of each of the three main components of the SOCF model, including optimizing model parameters
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FIGURE 8 The comparison between the ensemble method VUCP and its single approaches.
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using GS methods, reducing generalization errors using stacked ensembles, and selecting seven appropriate individual models for stacked ensem-

bles. All three components strongly support our conclusion above. Therefore, we accept the alternative hypothesis H.

63 | RQ3

To address RQ3, we conducted effect analyses to assess the effectiveness of each of SOCF's three core components: (1) optimizing model param-

eters using the GS technique, (2) reducing the generalization error using the stacking ensemble, and (3) the selection of seven individual models

for the stacking ensemble.

e Case 1: Removing the first component (optimizing model parameters using the GS technique) and substituting the default parameters for
SOCF's single models. We named this method SOCF-Casel.
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FIGURE 9 The comparison between the ensemble SOCF and its single approaches.
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TABLE 29 The processing time (in seconds) for different experimental methods.
The training time The average response time of the estimation for a data record

Methods D1 D2 D3 D4 D1 D2 D3 D4
UCP&KNN 1.321 0.776 1.437 0.981 0.004 0.003 0.003 0.001
OCF&KNN 1.360 1.944 2951 1.737 0.035 0.037 0.018 0.008
UCP&SVR 14.620 11.588 65.354 26.414 0.002 0.002 0.002 0.001
OCF&SVR 19.248 14.549 86.044 29.970 0.036 0.036 0.016 0.008
OCF&GB 148.807 199.070 292.73 94.551 0.035 0.035 0.015 0.008
UCP&RF 1874.78 5620.99 5599.09 2539.39 0.003 0.005 0.004 0.001
OCF&RF 2087.17 5807.34 9099.68 2655.77 0.039 0.039 0.018 0.009
UCP&DT 2463.08 3894.02 4090.90 1957.94 0.001 0.002 0.002 0.001
VUCP 2479.04 3906.42 4157.75 1985.35 0.002 0.005 0.004 0.001
OCF&DT 2881.87 4467.11 5327.96 2731.12 0.036 0.036 0.015 0.008
UCP&MLP 86,504.7 54,753.3 136,296.1 117,837.9 0.002 0.001 0.001 0.001
OCF&MLP 88,066.5 55,098.2 139,488.8 146,233.6 0.035 0.035 0.016 0.008
SOCF 93,229.5 65,605.7 154,317.9 151,766.2 0.040 0.039 0.018 0.012

Table 34 shows that as each of the three components was removed from the model and replaced by their substitutes, the average SSE, MAE, and
RMSE results for SOCF across all experimental datasets increased, implying a decrease in estimation accuracy in each case. Specifically, the SSE
results increase the most when the seven single models (MLR, SVR, MLP, KNN, RF, GB, and DT) are replaced by MLR, SVR, and MLP. Table 35
indicates that removing any of the three SOCF core components increases the SSE, MAE, and RMSE results (t-test p-value of less than 0.05). As a
result, the estimation accuracy of SOCF decreased in each case. Thus, the ablation analyses provided an answer to our RQ3.

7 | THREATS TO VALIDITY

This section presents the threats to the validity of this study, specifically internal, construct, conclusion, and external validity.

In terms of internal validity, we highlight each statistical and ML algorithm's unbiased performance evaluation methodology, which should
correct for any overfitting of the proposed method.288? The LOOCV method was used in the experiments to select optimal configuration parame-
ters for the statistical and ML algorithms. Because it produces a lower bias and a higher variance estimate than cross-validation, the LOOCV
method appears to be a better evaluation method. All of the configuration settings for this study were provided by the GS fine-tuning technique.
Adding an additional tuning step would significantly increase the cost of the experiments, and most of the methods in this study performed well
with optimally configured parameter values. However, these parameters might not perform well for larger datasets.

Measurement validity is the most serious threat to construct validity. The credibility/reliability of measures was chosen to assess the estima-
tion accuracies of the methods. The accuracy of the SDEE with regard to the MMRE is the most commonly used measure,”*’ but this measure
can be biased.®8%? As a result, we evaluated the estimation methods using alternative criteria that produced unbiased and symmetric distributions:
the SSE, MAE, MAE, RMSE, MIBRE, MBRE, MdMRE, and PRED(0.25).>%

Conclusion validity is about the ability to draw significant correct conclusions. We carefully applied statistical tests and tested all necessary
assumptions. In particular, t-tests (parametric statistical comparison) and Mann-Whitney U tests (non-parametric statistical comparison) were
used to demonstrate statistical significance, as presented in Section 6. This research aimed to form the most accurate conclusions regarding the
methods. As a result, we can conclude that this study's experimental results are highly generalizable. In addition, we used a medium-sized dataset
to mitigate the risk associated with the number of observations that make up the dataset.

The most significant external threat to the study's validity is the generalizability of the ensemble and single techniques' estimation accuracy
results. Four datasets were chosen to assess the effectiveness of the ensemble and single techniques in mitigating external threats. These projects
were divided into four datasets and covered many domains, including the government, healthcare provider, and organizational domains.*® One
external threat concerns the use of only one GS technique to fine-tune the configuration parameters of each statistical and ML technique. To gen-

eralize the results of this study, it is suggested that research be conducted on other optimization techniques.

85U80|7 SUOWWOD dAeaID 8|qedl|dde sy Aq peusenob aJe sajonfe VO ‘8sn JO Sajni Joj ArIqiT8UIUQ AB]IAA UO (SUORIPUOD-PUR-SWUBHW0D A8 | 1M Ae.q Ul |uo//Sdny) SUORIPUOD pUe SWwie 18U 88S *[€20z/TT/E0] uo AriqiTauluo A8|IM ‘UljZ U] Teg 8sewo | elizieAun Aq TT9Z IWS/Z00T OT/I0p/u00 A8 im Areiq euljuo//sdny wo.j pepeojumod ‘0 ‘T81.LLY0Z



20477481, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/smr.2611 by Univerzita Tomase Bati In Zlin, Wiley Online Library on [03/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Wl LEY 29 of 37

Evolution and Process

Software

Joumalof

NHUNG ET AL.

<<

610000

€200
SATO0

>>

99120

£200
SACO0

<<

£0000°0

6200
'SAZ00

<<

010000

6611
SA 606

<<

500000
626
'SAB6'9

<<

661100

CL6681

SATLLTTT

NNX9400
‘SA

400S

<<

€2000°0

9200
SATO0

>>

96¥CT°0

8200
'SA 200

<<

£0000°0

6200
'SAZ00

<<

S0000°0

€0CT
SA60'6

<<

000000
6¥'6
SA86'9

<<

€8500°0

€0LVBT 'SATL'L1CT

448400
‘SA

420s

<<

€90000

LEOO
'SATO0

<<

¢ET000

9€00
'SAZ00

<<

600000

600
'SAZ00

<<

900000

E€GPT SA 606

<<

500000

¥'Cl SAB6'9

<<

097000

TL690°€ SATLLITT

4939400
‘SA

400s

<<

£S000°0

0€00
'SAL10°0

<<

611000

¢e00
'SA 9200

<<

800000

€00
'SATZO0

<<

000000

61°€T SA 606

<<

T0000'0

£L8'0T SA 869

>>

1500
LO0LT1C
‘SA

TLL1eT
YINRAD0
‘SA

400s

<<

8€000°0

S€00
SATO0

<<

921000

9€00
'SAC00

<<

000000

600
'SAZ00

<<

900000

€9VT SA60°6

<<

S0000°0

LETT SABE'9

<<

0v¥00'0

T€'8COE SATLLTICT

1d3400
‘SA

420s

<<

080000

T1€00
'SAL10°0

<<

60000

€00
'SA 9200

<<

000000

£LE00
'SATZ00

<<

¢00000

€9VT SA 606

<<

000000

9LTT SAB69

<<

940000

YV'6LTC SATLLTCT

d1N3400
‘SA

420s

<<

110000

8¢00
SATO0

<<

0€Y00'0

2¢e00
'SAC00

<<

000000

S€00
'SAZ00

<<

S0000°0

LE'ET SA 606

<<

000000

0C'TT SA86'9

<<

061000

08'¥8TC SATL'L1CT

YAS®4D0
‘SA

420S

<<

000000

61¢0
'SATO0

<<

000000

€020
'SA 200

<<

000000

€620
'SAZ00

<<

000000

60’18 'SA 60'6

<<

000000

VS TLSAB6'9

<<

000000

£L'8E0'TY 'SATLLTTT

400
'SA

400s

'g 03 Joladns Ajjedi3siyels sl 7 Jey} suesw g<<y :9JoN

<<

000000

0z¢co
SATO0

<<

000000

6610
SACO0

<<

000000
620
SA 200

<<

000000

¥1°€8 'SA 60°6

<<

000000

66'TLSNB6'9

<<

000000

V' Lv6'yy SATLLTITT

don
‘SA

400s

JU0d ‘1S

anjea-d
BAY

FANPIN BAY
2U0D 3§

anjea-d
BAy

JHQIN BAY
2U00 1S

anjeA-d
Bay

JHIN BAY
U0l 1S

anjeA-d
BAY

ISINY BAy
U0 35

anjeA-d
SAY

IVIN “BAY
U0 1S

anjea-d
BAy

35S 8Ay

FTINPIN

JAdIN

J4GN

ASNY

aVIN

3ss

spoyjaw Jo siied

"SPoYIaW JBY30 3Y3 YHM uosiiedwod uj poyiaw 410S pasodoid a3 JO SUNJ JUSISHIP Al J0J SHNSSI 3S93-39Yl  0€ 314dV L



20477481, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/smr.2611 by Univerzita Tomase Bati In Zlin, Wiley Online Library on [03/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

NHUNG ET AL.

Joumalof

30 of 37 _
AW 0B DG Software: Evolution and Process

<<

TET000°0
0€0'0
SALT00

<<

9€T000
¢e00
'SA 9200

<<

#0000°0
€00
SATC00

<<

£00000

691°CT
SA960°6

<<

€0000°0
668°0T SA 086’9

<<

94000

9L L6ECSATLLTICT
dONARdON

“SA

400S

<<

580000
S€00
SALT00

<<

190000
£LEOO
'SA 9200

<<

8€000°0
T¥00
SATC00

<<

LEOOO'O

818'GT 'SA 960'6

<<

020000
€E6'CT 'SA086'9

<<

050€0°0

9'G98€ SA L'LTCT
443d0N

“SA

400S

<<

910000
6€00
SALT00

<<

0T0000
8¢€00
'SA 9200

<<

100000
¢v0'0
SATC00

<<

000000

069°'ST 'SA 9606

<<

000000
CECET SA086'9

<<

152000

V'Evee
SALLTCT

1d3dDoN SA
420S

<<

100000

6€0°0
SALT00

<<

S0000°0

000
'SA 9200

<<

000000

€¥0'0
SATC00

<<

100000

9€G9T 'SA960'6

<<

000000
900'7T 'SA 086'9

<<

G€9000

9’ 0EVE SATLLTCT
NNXdON

‘SA

420S

"Spoy3aw JaY30 3y} YUM uosiedwod Ul poyawl 4705 pasodoid ay3 JO SUNJ JUSISHIP ALY 404 SHNSDI 1593-3 Sy L

<<

80000
¢e00
SALT00

<<

¢11000
S€00
'SA 9200

<<

87000°0
6£00
SA 1200

<<

¢/0000

SI8VT 'SA960°6

<<

8€000°0
€CT'CT 'SA086'9

<<

LS¥Y0°0

89°09¢E SATLLTCT
NNJ9®dON

“SA

4208

<<

170000
8€0'0
SALT00

<<

040000
¢0'0
'SA 9200

<<

£1000°0
900
SATC00

<<

600000

98€°LT
SA960°6

<<

600000
919¥T 'SA 0869

<<

¢e0100

T'CSLE SATLLTICT
dTANRdON

“SA

400S

<<

¢0000°0
6€0°0
SALT00

<<

900000
000
'SA 9200

<<

000000
00
SATC00

<<

000000

¥09°91 'SA 9606

<<

000000
C06°ET 'SA086'9

<<

S6100°0

G6°COVE SATLLICT
dAS®dON

‘SA

420S

"(‘3u0) g 03 Joladns Ajjedl3sie)s si vy Jey) sueaw g<<y 230N

oU0d 31§

anjea-d
By

FANPIN 8AY

U0l 1§

JANPIN

anjea-d
Say

JYQIN Bry
2U0D 1S

JAGIN

anjea-d
Say

JH9N 8SAY
U0l 1§

JA49N

anjea-d
SAy

JISNY BAY

oU0d 31§

ISNY

anjea-d
By

IVIN BAY AVIN
U0 3§

anjea-d
3y

35S SAy 3sS

spoyjaw Jo siied

1€ 318avl



NHUNG ET AL. g Wl LEY 31 0of 37

TABLE 32 The Mann-Whitney U test results for five different runs of the proposed SOCF method in comparison with the other methods.

SOCF SOCF SOCF SOCF SOCF SOCF SOCF SOCF
vs. vs. vs. vs. vs. SOCF vs. vs. vs.
Pairs of methods ucp OCF OCF&SVR  OCF&MLP  OCF&DT vs.OCF&MLR OCF&GB  OCF&RF  OCF&KNN
SSE Avg. 0.00000 0.00000  0.00060 0.00480 0.02280 0.00740 0.01880 0.02280 0.04320
p-value
St conc. >> >> >> >> >> >> >> >> >>
MAE Avg. 0.00000 0.00000  0.00140 0.00100 0.00340 0.00140 0.00340 0.00480 0.02280
p-value
St conc. >> >> >> >> >> >> >> >> >>
RMSE Avg. 0.00000 0.00000  0.00210 0.00110 0.01020 0.00340 0.01020 0.013%90 0.02070
p-value
St. conc. >> >> >> >> >> >> >> >> >>
MBRE Avg. 0.00000 0.00000  0.00080 0.00050 0.00020 0.00110 0.00200 0.00530 0.02390
p-value
st conc. >> >> >> >> >> >> >> >> >>
MIBRE Avg. 0.00000  0.00000  0.00400 0.00380 0.01470 0.00920 0.01260 0.09030 0.23650
p-value
St conc. >> >> >> >> >> >> >> << <<
MdMRE  Avg. 0.00000 0.00000  0.00170 0.00090 0.00040 0.00160 0.00030 0.00530 0.05350
p-value
st conc. >> >> >> >> >> >> >> >> <<

Note: A>>B means that A is statistically superior to B.

TABLE 33 The Mann-Whitney U test results for five different runs of the proposed SOCF method in comparison with the other methods.

SOCF SOCF SOCF SOCF SOCF SOCF
vs. VS. Vs. Vs. SOCF VS. Vs.

Pairs of methods UCP&SVR UCP&MLP UCP&GRNN UCP&KNN vs. UCP&DT UCP&RF UCP&VUCP
SSE Avg. 0.0034 0.0038 0.0092 0.0038 0.0042 0.0092 0.0126

p-value

St conc. >> >> >> >> >> >> >>
MAE Avg. 0.0003 0.0003 0.0018 0.0002 0.0006 0.0018 0.0034

p-value

St conc. >> >> >> >> >> >> >>
RMSE Avg. 0.0009 0.0005 0.0027 0.0010 0.0013 0.0027 0.0074

p-value

St conc. >> >> >> >> >> >> >>
MBRE Avg. 0.0002 0.0002 0.0014 0.0002 0.0003 0.0020 0.0030

p-value

St conc. >> >> >> >> >> >> >>
MIBRE Avg. 0.0017 0.0009 0.0133 0.0012 0.0022 0.0139 0.0396

p-value

St conc. >> >> >> >> >> >> >>
MdMRE Avg. 0.0003 0.0004 0.0006 0.0000 0.0003 0.0007 0.0013

p-value

St. conc. >> >> >> >> >> >> >>

Note: A>>B means that A is statistically superior to B. (cont.).
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TABLE 34 The results for SOCF-Casel, SOCF-Case2, and SOCF-Case3.
Methods SSE MAE RMSE MBRE MIBRE MdMRE PRED
SOCEF (in Full) 1217.71 6.98 9.10 0.021 0.026 0.017 1.00
SOCF-Casel 11412.80 18.10 110.31 10.025 10.024 10.019 1.00
SOCF-Case2 11643.75 1891 111.16 10.028 10.026 10.023 1.00
SOCF-Case3 12146.13 111.00 114.03 10.035 10.032 10.030 1.00

Note: The 1 sign denotes an increase in SSE, MAE, RMSE, MBRE, MIBRE, or MdMRE results, implying a decrease in estimation accuracy compared to the
SOCEF (in full) model.

TABLE 35 The ablation analyses.

Models for ablation analyses p-value of t-test
SOCF-Casel SSE increase 195.096 0.01166
<< Full SOCF model
MAE increase 1.119 0.00000
<< Full SOCF model
RMSE increase 1.215 0.00008
<< Full SOCF model
SOCF-Case2 SSE increase 426.047 0.01914
<< Full SOCF model
MAE increase 1.932 0.00035
<< Full SOCF model
RMSE increase 2.061 0.00011
<< Full SOCF model
SOCF-Case3 SSE increase 928.428 0.00070
<< Full SOCF model
MAE increase 4.029 0.00001
<< Full SOCF model
RMSE increase 4.930 0.00001

<< Full SOCF model

Note: The term “<< Full SOCF model” refers to the full SOCF model's statistical superiority over models that exclude one of the three core components.

8 | CONCLUSION AND FUTURE WORK

This work introduces a comprehensive approach to complex algorithms based on engineering requirements research for a more accurate estima-
tion of software effort. Specifically, we detailed software effort estimation using ensemble techniques and statistical and ML algorithms on the
OCF method. The proposed method incorporates standard statistical and ML techniques into an ensemble design to achieve higher estimation
accuracy with the OCF method. In particular, our proposed method combines three key components: optimizing the model parameters with a GS
technique, reducing the generalization error with a stacking ensemble, and including seven single models in the stacking ensemble. The stacking
ensemble was created by combining RF, KNN, SVR, MLR, MLP, GB, and DT. The GS method was used to find the optimal parameters for each
technique for the validation set. These regression-based single learners were then trained using the stacked learner. We conducted experiments
on a total of four datasets to demonstrate the effectiveness of our SOCF method more clearly. The estimation accuracy of the proposed method
and other methods were evaluated using unbiased performance measures, namely, the SSE, MAE, MAE, RMSE, MIBRE, MBRE, and PRED(0.25).
Based on the experimental results, no single model outperformed the other single models across all experimental datasets. Instead, our new
ensemble-based approach, which is an unbiased method for estimating the effort for a new software project, produced the best results across all
four experimental datasets. In other words, the SOCF method is highly stable. To provide robust method comparisons, we conducted statistical
comparisons using both the t-test and the Mann-Whitney U test, which indicated that our SOCF method is statistically superior to the other
models we considered. In addition, we performed ablation analyses to evaluate the effectiveness of each of the three core components of the
SOCEF. The results showed that the average evaluation results increased across all experimental datasets when the three components were pro-
gressively removed from the model and replaced by substitutes, implying a decrease in the estimation accuracy compared to the full SOCF model.
Overall, our method outperformed the other models tested. We believe that the SOCF method developed in this study will benefit project man-

agers in terms of the pricing process, project planning, iteration planning, budgeting, and investment analysis. In summary, the results obtained
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can be considered beneficial for industrial applications, as they show that the proposed approach leads to more accurate estimates of the size and
complexity of the software.

In the future, we believe that our proposed method can be further improved by identifying specific correction factor components that will
help inexperienced developers better design their correction factors. One of our initial ideas for this work is to incorporate the program evaluation
and review technique (PERT) into the estimation problem, especially the correction factors. Another possibility is to calibrate the weighting values
of the correction factors to reflect the latest trend in the software development industry and improve the accuracy of the proposed methods.

Therefore, an approach to calibrate the weights of the correction factors using an artificial neural network will be performed in the future.
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APPENDIX A: LIST OF ABBREVIATIONS

Abbreviation
MLP
SVR
DT
RF
MLR
KNN
GB
GLM
RT
CNN
ENN
NBL
BRE
MSE
RRAE
MAR
AB

Meaning of abbreviation
Multilayer perceptron
Support vector regression
Decision tree

Random forest

Multiple linear regression
K-nearest neighbor
Gradient boosting
Generalized linear model
Regression tree

Cascade neural network
Elman neural network
Naive Bayes, Logistic
Balanced Relative Error
Mean Squared Error

Root Relative Absolute Error
Mean of Absolute Residual

Adaptive Boosting ensemble

NHUNG ET AL.

Abbreviation
ELM
SR

RR

LR

ENR
PNN
RNN
GRNN
RBFNN
CCNN
ANFIS
MMRE
MAR
RSE
RRSE
MdAR

Meaning of abbreviation

Extreme learning machine

Stepwise regression

Ridge regression

Lasso regression

Elastic net regression

Probabilistic neural network
Recurrent neural network

General regression neural network
Radial basis function neural network
Cascade correlation neural network
Adaptive neuro-fuzzy inference system
Mean Magnitude Relative Error
Mean Absolute Residual

Relative Squared Error

Root Relative Squared Error

Median of Absolute Residual

APPENDIX B: THE TECHNICAL AND ENVIRONMENTAL FACTORS SELECTED IN EACH DATASET WITH THE A DETERMINED AND
THEIR COEFFICIENT ESTIMATES ARE PRESENTED IN TABLES 35 AND 36

TABLE 36 The estimated TCF coefficients in the LASSO regression.

A
intercept
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13

D1

0.000231
0.690619
0.009451
0.010897
0.009330
0.010430
0.009576
0.008536
0.010551
0.010526
0.007387

D2

0.000268
0.693400
0.009725
0.010902
0.008877
0.011130
0.010157

0.014018
0.010893
0.006516

D3 D4

0.000227 0.000236
0.720820 0.695850
0.009547 0.009505
0.010311 0.010456
0.009888 0.009556
0.015199 0.010622
- 0.009202
0.007298 0.008989
0.013144 0.010334
0.009730 0.010902
- 0.005998
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TABLE 37 The estimated ECF coefficients in the LASSO regression.

A
intercept
ENV1
ENV2
ENV3
ENV4
ENV5
ENV6
ENV7
ENV8

D1
0.000177
1.373478

—0.032072
—0.042291
—0.029170
—0.028133
—0.027981
—0.028193

D2
0.000192
1.376197

—0.042706
—0.037886
—0.028453
—0.027549
—0.026382
—0.028713
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D3
0.000247
1.404496

—0.032954
—0.025558
—0.029931
—0.030139
—0.029221
—0.031169
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D4
0.000327
1.387716

—0.033555
—0.033001
—0.029393
—0.029072
—0.028660
—0.029333
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