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Abstract: Water pollution by organic dyes, and its remediation, is an important environmental
issue associated with ever-increasing scientific interest. Conducting polymers have recently come
to the forefront as advanced agents for removing dye. The present review reports on the progress
represented by the literature published in 2020–2022 on the application of conducting polymers and
their composites in the removal of dyes from aqueous media. Two composites, incorporating the
most important polymers, polyaniline, and polypyrrole, have been used as efficient dye adsorbents
or photocatalysts of dye decomposition. The recent application trends are outlined, and future uses
also exploiting the electrical and electrochemical properties of conducting polymers are offered.

Keywords: conducting polymers; composites; organic dyes; dye adsorption; dye removal; photocat-
alytic decomposition; polyaniline; polypyrrole

1. Introduction

The removal of water-soluble organic dyes from aqueous media using composites
based on conducting polymers has recently been reviewed [1]. The present article updates
this research direction’s progress made in the last three years, 2020–2022. It is aimed
at the organization of the recent studies by their objects of investigation rather than the
compilation of experimental results. These are difficult to compare due to the widely
differing experimental conditions, viz., the composition and concentration of adsorbents or
photocatalysts, and the content of dye sorbates. Other reviews have recently been published
on this topic and offer supplementary or alternative views [2–4].

Conducting polymers, such as polyaniline and polypyrrole (Scheme 1) and also,
exceptionally, their substituted derivatives, have become an under consideration in the
environmental sciences for water-pollution treatment. In principle, they can be used alone
as powders. More often, however, they are applied as simple binary composites comprising
an inorganic component, which provides some value-added, e.g., magnetic or photocat-
alytic properties. Alternatively, the composite component may be a natural or synthetic
polymer affording the mechanical and material properties required by the applications, e.g.,
in the preparation of membranes or sponges. Finally, typical ternary composites include
both inorganic and organic components, in addition to the conducting polymers.

The remediation of wastewater polluted by organic dyes is an important environ-
mental goal. Conducting polymers are insoluble in aqueous media. When added to a
solution of an organic dye, the reduction in the optical absorption reflecting the decreasing
dye concentration has often been reported [1]. The process is classified as dye removal
from the point of view of ecology (Scheme 1). Its mechanism is based on dye adsorp-
tion or its photocatalytic decomposition, or both occur simultaneously or in succession in
various proportions.

Polyaniline [5] (Figure 1), probably the most common conducting polymer, is typically
prepared by the oxidation of aniline in an acidic aqueous medium with ammonium perox-
ydisulfate [6]. The polymerization starts with common chemicals and proceeds easily at
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room temperature, in the open air, within tens of minutes, and at a stoichiometric yield.
The conducting polyaniline salt (Figure 1) has an electronic conductivity in the units of
S cm−1. The ease of preparation at an economic cost makes polyaniline an attractive object
of application. Its hydrophilic, thin films have an emerald-green color. Under alkaline
conditions, polyaniline salt converts to a nearly hydrophobic non-conducting blue base;
the transition occurs at pH 4–6. For that reason, the interaction with organic dyes will be
pH-dependent. On the other hand, most of the studies refer to the neutral conditions met
in practice.
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but the molecular structure and hydrophobicity are also altered simultaneously; while the 

Figure 1. Polyaniline salt and base. A− is a counter-ion, usually chloride or sulfate.

Conducting polymers, and many organic dyes, illustrated on polyaniline and methyl
orange (Figure 2), share a similar molecular structure. They have a system of conjugated
single and double bonds that are responsible for their color. They typically contain aromatic
benzenoid or quinonoid rings. Nitrogen atoms, in their structure, are able to be hydrogen
bonded. In addition to the hydrophobic organic section, the dyes include a charged ionic
group that affords solubility in water. The same applies to the conducting polymers, which,
however, are insoluble in water due to extensive intermolecular hydrogen bonding.
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Figure 2. A conducting polymer, polyaniline, and an organic dye, methyl orange, and sites of their
possible interactions.

Many organic dyes are used as acidobasic indicators. For example, the yellow color of
methyl orange changes under neutral pH conditions to red when acid is added, with the
transition range being pH 3.1–4.4 (Figure 3). However, not only does the color change but
the molecular structure and hydrophobicity are also altered simultaneously; while the salt
is well soluble, the acid form is not. This means that the interactions between polyaniline
and methyl orange will occur between different species under different pH. This fact should
be kept in mind. Methyl orange is also one of the common azo dyes extensively used in
textile, paper, printing, and food industries and often contaminates industrial wastewater.
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Figure 3. Yellow methyl orange salt converts to red acid under acidic conditions.

The interactions between the organic dyes and conducting polymers are responsible for
the dye removal from aqueous media [1,7]. The adsorption of dyes on conducting polymers
has often been reasonably proposed as the most relevant possibility. Adsorption is a surface
phenomenon that occurs when the dye is expected to be attached to the conducting polymer
surface by physical van der Waals forces or due to physicochemical interactions, e.g., of the
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π–π electron type. Conducting polymers have a typical specific area of tens m2g−1 [8], far
lower than classical adsorbents when this parameter is one or two orders of magnitude
higher. The adsorption, thus, probably cannot be the exclusive mechanism of efficient
dye removal. The dye absorption is thus likely to occur after the dye molecules diffuse
into the conducting polymer phase, a process much slower compared with the adsorption.
Conducting forms of polyaniline and polypyrrole are hydrophilic and penetrable with an
aqueous phase.

There is a choice of attractive interactions that occur, both during the adsorption or
absorption. One possibility is the π–π interaction between the aromatic rings present in
typical dyes and conducting polymers. The electrostatic interactions, when a soluble anionic
dye produces insoluble salt with the conducting polymers, also need to be considered.
The hydrogen bonding of hydrogen atoms in conducting polymers to nitrogen atoms in
dyes or vice versa is probably one of the strongest interactions to account for. Finally, the
hydrophobic interactions, when the non-ionic parts of conducting polymers (Figure 1) and
dyes prefer to contact each other instead of with water, are analogous to the formation of
surfactant micelles. Indeed, water-soluble dye molecules composed of a hydrophobic body
and ionic group conform to the definition of surfactants.

The photocatalytic decomposition of dyes has also often been reported in the literature.
In this case, the dye is removed by the degradation process to colorless products with the
help of photogenerated active peroxide species. Such a mechanism is relevant when the
dye removal occurring in the dark and when exposed to illumination considerably differ,
the latter being faster [9]. Synergistic dye adsorption is usually also operational in these
experiments [10]. The fact that the conducting polymers are colored, i.e., they efficiently
absorb the visible light, which may hinder the light penetration to the photocatalyst interior,
has not been discussed.

Polypyrrole is another conducting polymer (Figure 4). Its common globular form has
a conductivity comparable to polyaniline, the units of S cm−1. The transition between
the conducting salt and the less conducting base is shifted to a much lower pH [11]. The
adsorption is thus likely to depend on the pH [12]. Under neutral pHs, most often met in
practice, polypyrrole maintains its conducting form, whereas polyaniline may start to lose
its conductivity due to deprotonation (Figure 1).
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Polyaniline and polypyrrole have a typical globular morphology (Figure 5). In contrast
to polyaniline, polypyrrole converts its morphology from a globular to a nanotubular state
(Figure 5) when its preparation occurs in the presence of methyl orange dye. At the
same time, the conductivity of polypyrrole increases by one order of magnitude to tens
S cm−1 [13]. The morphology and conductivity of polypyrrole may be controlled by
introducing various dyes, again in contrast to polyaniline [14]. Especially in the case of
polypyrrole, it is important to distinguish between the globular and nanotubular forms
that behave differently with respect to the dye removal [15,16].
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Figure 5. Globular polypyrrole (a) and polypyrrole nanotubes (b).

Another reason for the numerous studies reporting dye removal (Figure 6) [17,18] is
the ease of the experimental procedure based on the UV-visible spectroscopy that monitors
the optical absorption of dye solution in time after the addition of a conducting polymer
or its composite (Figure 7). Such removal experiments have been carried out under static
conditions and only exceptionally in a dynamic mode [19]. The most often used dyes used in
the experiments are methyl orange, Congo red, methylene blue, and Rhodamine B (Figure 8).
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The experimental data and the time dependence of the dye concentration decrease are
often interpreted in terms of various adsorption models: a pseudo-first-order, a pseudo-
second-order, Freundlich, Langmuir, Temkin, or others. The authors found that one of
them provided the best fit of the data, with the Langmuir isotherm being the most often
winner [7,8,20–24]. This is the correct approach, but only if the dye removal mechanism is
based exclusively on adsorption.

Only the removal of soluble organic dyes is reviewed below; however, the many adsor-
bents and experimental techniques can also be used for the removal of colored toxic heavy
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metal compounds [3], such as lead(II) and cadmium(II) salts [25], chromium(VI) [26–29],
and zinc(II) ions [30]. This also applies to the removal of various drugs, which may often
be structurally related to the dyes, e.g., oxytetracycline [31], chloramphenicol or furazoli-
done [32], rifampin [33] as well as organic dyes. Such studies illustrate a more general
application of the composites based on conducting polymers in waste water remediation.

2. Polyaniline Adsorbents

Polyaniline alone has been recently tested as an adsorbent in several papers. It
was applied to the adsorption of cationic dye, Basic Red 46 [20]. Polyaniline, prepared
with two different oxidants, ammonium peroxydisulfate, and manganese dioxide, hes-
itantly adsorbed methylene blue to the same extent and more efficiently than Reactive
Black 5 [34]. Polyaniline, prepared with iron(III) chloride oxidant, was used to adsorb Acid
Red G [35]. Another type of polyaniline, prepared in the absence of acid and containing
aniline oligomers, adsorbed methylene blue and indigo carmine [36]. Polyaniline, prepared
in the presence of amino acids, was tested for the adsorption of Congo red [37]. The
same dye and Rhodamine B were adsorbed with hollow polyaniline microspheres [38]. A
polyaniline base was used for the adsorption of methylene blue [39]. The reports on the
adsorption of neat polyaniline as a reference material can also be found in various papers
dealing with polyaniline composites, e.g., [9,22,40,41].

2.1. Binary Polyaniline Composites

Conducting polymers are useful for the fundamental investigation of interactions
with conducting polymers. For practical applications, however, conducting composites are
required. This means that additional material is introduced to the conducting polymers that
afford mechanical or other material properties suitable for the particular application, such
as gel-like or macroporous substances [16,42,43]. They affect the distribution of conducting
polymer within the composite and the access of organic dyes to adsorption sites. The
independent adsorption of dyes on the supporting substrate must also be considered.
The non-conducting component may act as an independent adsorbent, e.g., melamine
sponge [16], that may improve or broaden dye removal ability.

The simple binary composites are usually prepared by an in situ deposition of con-
ducting polymers on the substrates immersed in a reaction mixture used for conducting
polymer preparations, i.e., they are of a core–shell type (Table 1). This is based on the
observation that any material in contact with the reaction mixture becomes coated with
a thin submicrometre film [44], which is well suited for adsorption purposes. The coat-
ing of inorganic substrates is represented by the following: barium titanate [45]; cobalt
ferrite [28]; cobalt sulfide [46]; copper(II) oxide [47]; fly ash [48]; iron oxyhydroxide [49];
iron sulfide [21]; magnetite [50]; manganese(IV) dioxide [34,40]; manganese ferrite [51];
magnesium ferrite [52]; molybdenum trioxide [53]; montmorillonite [54]; nickel oxide [40];
silica gel [55]; tin dioxide [56]; titanium dioxide [22,33,57,58]; zeolite [59]; zinc oxide [60–62];
zirconium(IV) dioxide [63].

Table 1. Polyaniline composites applied as dye adsorbents a.

Dye PANI Composite with Reference

BINARY COMPOSITES

Acid Blue 74 − Tea saponin [41]

Acid Red 18 − CoFe2O4 [28]

Brilliant green + Reduced graphene oxide [69]

Brilliant green + SiO2 [55]

Congo red − Activated carbon [66]
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Table 1. Cont.

Dye PANI Composite with Reference

BaTiO3 [72]

Graphene [68]

Kevlar fibers [73]

Polyimide [74]

SiO2 [55]

Tea saponin [41]

TiO2 [58]

ZnO [60]

Crystal violet + SiO2 [55]

Direct Blue 14 − Activated carbon [64]

Polystyrene [64]

Direct Blue 15 − SnO2 [56]

Eosin Y − FeS [21]

Methyl orange − Activated carbon [7]

Bacterial cellulose [75]

Cellulose [24]

CuO [71]

Fe3O4 [50]

Manganese ferrite [51]

Multiwall carbon nanotubes [8]

PEO [76]

Polyurethane foam [77]

TiO2 [22]

Methyl red − MgFe2O4 [52]

Methylene blue + Boron cluster [27]

Carbonized peanut shells [65]

CMC [78]

MnO2 [34]

Poly(phenyl sulfone) [79]

Reduced graphene oxide [30]

ZnO [60]

ZnO/SiO2 [62]

ZrO2 [63]

Cellulose [24]

Mordant Blue 9 − CMC [78]

Orange G − Opuntia ficus [80]

Nut shells [81]

Zeolite [59]

Orange II − FeO(OH) [49]

Reactive Black 5 − Manganese dioxide [34]
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Table 1. Cont.

Dye PANI Composite with Reference

Reactive Green 19 − Montmorillonite [54]

4Rhodamine 6G + Boron cluster [27]

Rhodamine B + Carbonized tea waste [67]

CMC [78]

Sunset yellow − Reduced graphene oxide [30]

TERNARY COMPOSITES

Allura Red − Bentonite/PEO [40]

Congo red − CoS/graphite [46]

Fly ash/Fe3O4 [48]

L-cysteine/reduced
graphene oxide [70]

Crystal violet + Fe3O4/chitosan [82]

Methyl orange − Cu/TiO2 [22]

Fe3O4/chitosan [82]

Fly ash/Fe3O4 [48]

MnO2/NiO [40]

Montmorillonite/PVAL [43]

PAA/PAN [83]

SiO2 [55]

TiO2/PVDF [84]

TiO2/PVDF [85]

Methylene blue + MoO3/Fe3O4 [53]

PAA/PAN [83]

Orange G − Calcium alginate/sawdust [86]

Reactive Black 5 − Montmorillonite/PVAL [43]

Fe3O4/PVAL [42]

Reactive Orange 5 − TiO2/zeolite [33]

Rhodamine B + CuO/graphene [47]

Safranin + Montmorillonite/PVAL [43]
a The plus sign + denotes a cationic dye, and the minus sign − is an anionic one. The same notation is used in all
Tables. CMC = carboxymethylcellulose; PAA = poly(acrylic acid); PAN = polyacrylonitrile; PEO = poly(ethylene
oxide); PVAL = poly(vinyl alcohol); PVDF = poly(vinylidene fluoride).

A separate class of adsorbents is represented by the polyaniline-coated carbonaceous
materials, e.g., activated carbon [7,64]; activated carbonized peanut shells [65]; activated
carbons based on prickly pear seeds [66]; carbonized tea waste [67]; graphene [47,68];
multiwall carbon nanotubes [8] or reduced graphene oxide [30,69,70]. Only exception-
ally, polyaniline was decorated in a reverse manner by an inorganic component, such as
copper(II) oxide [71].

It should be mentioned that some inorganic compounds, typically titanium dioxide
or zinc oxide but also others, are also active as photocatalysts. This means that the dye
removal reported as adsorption may contain a contribution of photocatalytic decomposition.
This also applies vice versa: prior adsorption of the dye on a photocatalyst is needed for
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photocatalytic degradation. For the practical application, it need not be important which
mechanism of dye removal, adsorption, or photodegradation predominates.

The organic substrates coated with conducting polymers include synthetic polymers, such
as carboxymethylcellulose gel [78], Kevlar fibers [73], macroporous melamine sponges [16],
poly(ethylene oxide) [76], polyimide membrane [74], polystyrene [64], poly(vinyl alcohol) aero-
gel [42], polyurethane foam [77], and various natural materials, such as [24,75], chitosan [82],
opuntia ficus [80], almond and wall nut shells [81] or tea saponin [41]. Only exceptionally, both
components were simply mixed, e.g., polyaniline and nitrogen-containing carbon nanodots [87]
or zinc oxide [61]. In this case, the fact that the organic component may also be an efficient
adsorbent in addition to conducting polymer also has to be kept in mind [16].

The removal of dyes by the hybrid inorganic–organic composites was more efficient
when compared with neat polyaniline and inorganic component alone [7,8,41,72,88]. This is
interpreted as a synergistic effect, but a few words of explanation are relevant. Polyaniline
is prepared in globular form (Figure 9) with closely packed chains cross-linked by hydrogen
bonding to nitrogen atoms. When polyaniline is deposited on a particulate substrate in
situ during the polymer preparation, thin submicrometre polyaniline film grows on the
substrate’s surface. It is assumed that the polyaniline chains are more organized and grow
in a perpendicular direction to the coated surface. The resulting brush-like morphology may
be better penetrable to the dye molecules, and also, the specific surface area of polyaniline in
coatings will be larger than that in the compact globules. For this reason, the hybrid coatings
perform better as adsorbents than individual components. The observed “synergism” is
not a result of a specific interaction between the polyaniline and supporting materials,
but it is due to the different morphology and random chain arrangement in the globular
polyaniline and more ordered structure in the polyaniline coatings.
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2.2. Ternary Polyaniline Composites

Multicomponent composites are composed of more than two components. Here,
three is a typical number (Table 1). For example, they include some specific parts, such as
magnetite or ferrites [26,42,46,48,50,51,53,82,89,90], which serve the adsorbent separation
with a magnetic field.

Poly(vinyl alcohol) supports the composite macroporosity when used in aerogels [42,43].
Calcium alginate hydrogel provided a matrix for polyaniline/sawdust [86]. A supporting
polymer was also introduced when the adsorbent was a part of a membrane [40,74,76,79,83–85].

Many studies agree that polyaniline is an efficient adsorbent or photocatalyst for both
anionic and cationic dyes [24,55,91,92], meaning that ionic interactions are not decisive in
their activity.

3. Polyaniline Photocatalysts

There is a single report on the photocatalytic degradation of malachite green and
methylene blue caused by polyaniline [93]. Polyaniline, however, was prepared by the
oxidation of aniline with periodic acid in acetonitrile and not by the standard way using
ammonium peroxydisulfate in an aqueous medium [5].
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3.1. Binary Polyaniline Composites

The composites used for the photocatalytic decomposition of dyes have also displayed
adsorption properties [94] because dye adsorption on a photocatalyst is the prerequisite
for efficient photocatalytic dye decomposition. The composites typically contained an
inorganic photocatalyst, a conducting polymer, and a supporting material (Table 2). The
inorganic component was coated with conducting polymer in situ during the synthesis of
polyaniline (Figure 9). A polyaniline coating has a typical thickness of 100–200 nm and
is green; however, it is still sufficiently transparent to all wavelengths of the UV-visible
light, which thus has access to the photocatalyst. This is important for the success of
photocatalysis afforded by hybrid composites.

Table 2. Polyaniline composites applied as photocatalysts.

Dye PANI Composite with Reference

BINARY COMPOSITES

Acid Blue 29 − CdS [97]

Acid Orange 52 − TiO2 [105]

Brilliant green + Ni [100]

Congo red − Carbon nanodots [87]

g-C3N4 [98]

Reduced graphene oxide [101]

ZrO2 [9]

Crystal violet + Carbon nanodots [87]

NiWO4 [111]

Disperse Red 1 − Co0.5Zn0.5Fe2O4 [90]

Fluorescein − ZnO [108]

Levafix red − Fe3O4 [89]

Malachite green + Fe3O4 [89]

Methyl orange − Ag2O [102]

g-C3N4 [98]

MWCNT [99]

TiO2 [106]

Methylene blue + Carbon nanodots [87]

MWCNT [99]

Nb2O5 [101]

NiWO4 [111]

TiO2 [104]

ZnO [61]

Orange II − ZnO [109]

Reactive Blue 220 − BiOCl [95]

Reactive Orange 14 − Co0.5Zn0.5Fe2O4 [90]

Rhodamine B + Carbon nanodots [87]

CdS [96]

MWCNT [99]
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Table 2. Cont.

Dye PANI Composite with Reference

SnO2 [103]

WO3 [107]

TERNARY COMPOSITES

Acid Blue 29 − TiO2/CdS [97]

Allura red − TiO2/PVDF [84]

Congo red − Zn/Fe3O4 [118]

Methyl orange − Ag/AgMoO4 [29]

g-C3N4/attapulgite [112]

TiO2/chitosan [115]

TiO2/PVDF [84]

Methyl red − ZnO/Cu/Ni [110]

Methylene blue + CeO2/polystyrene [113]

TiO2/chitosan [115]

ZnO/graphene oxide [116]

Methylene green + NaBiO2/polycarbonate [114]

Reactive Black 5 − TiO2/Fe3O4 [117]

Reactive Brilliant Red K-2K − Graphene oxide/cellulose [94]

Rhodamine B + BiOI/reduced graphene
oxide [10]

NaBiO2/polycarbonate [114]

The list of simple polyaniline composites includes the following moieties: bismuth
oxychloride [95]; cadmium sulfide [96,97]; carbon nitride [98]; magnetite [89]; multiwall
carbon nanotubes [99]; nickel [100]; reduced graphene oxide [101]; silver molybdate [29];
silver oxide [102]; tin dioxide [103]; titanium dioxide [104–106]; tungsten trioxide [107];
zinc oxide [61,104,108–110]; zirconium dioxide [9].

In the preparation of the above composites, the inorganic substrate was coated with
polyaniline in the course of its preparation. On rare occasions, polyaniline was simply
mixed with an inorganic compound. The mixture of polyaniline and nitrogen-containing
carbon nanodots, obtained by the hydrothermal method from bovine serum albumin, pho-
tocatalyzed the decomposition of various dyes [87]. A mixture of commercial polyaniline
with nickel tungstate was used to decompose methylene blue and crystal violet [111].

3.2. Ternary Polyaniline Composites

Ternary systems are more useful for practical applications (Table 2) but also more
difficult to interpret because each component can participate in dye adsorption. The
latest examples are: attapulgite/g-carbon nitride [112]; bismuth(III) oxyiodide/reduced
graphene oxide [10]; cerium dioxide/polystyrene [113]; cobalt/zinc ferrite [90]; sodium
bismuthate/polycarbonate [114]; titanium dioxide/cadmium sulfide [97]; titanium diox-
ide/chitosan [115]; titanium dioxide/poly(vinylidene fluoride) [84,85]; zinc oxide/graphene
oxide/viscose [116]; zinc/magnetite [117,118].

The antibacterial activity of the polyaniline composites has occasionally been men-
tioned [56,75,78,101]. This may be expected, especially in photocatalytic experiments, due
to the formation of reactive oxygen species [87,119,120].
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4. Polypyrrole Adsorbents

The adsorption or an anionic dye, Reactive Black 5, on globular polypyrrole was poor,
but it was complete when the polypyrrole nanofibers of nanotubes were used instead [16].
In another study, the adsorption of both anionic and cationic dyes was attributed to
electrostatic interactions and hydrogen bonding [12].

4.1. Binary Polypyrrole Composites

In contrast to polyaniline, polypyrrole composites have been investigated as adsor-
bents less often (Table 3). Polypyrrole has been combined and, as a rule, deposited in situ
during the polymerization of pyrrole onto inorganic substrates, such as carbon nitride [121],
MXene [122], nanosilica [23], and stainless steel mesh [123].

Table 3. Polypyrrole composites applied as dye adsorbents a.

Dye Composite with Reference

BINARY COMPOSITES

Acid Orange 7 − nanosilica [23]

alizarine red − carbonized chicken feathers [126]

chrysoidine + melamine [16]

Congo red − Chinese yam peel [127]

PPT [124]

Eosin Y − PPT [124]

wheat straw [128]

fuchsin − bacterial cellulose [125]

malachite green + steel mesh [123]

methyl orange − MXene [122]

methylene blue + g-C3N4 [121]

MXene [122]

sodium alginate [129]

Reactive Black 5 − melamine [15–18]

Rhodamine B + g-C3N4 [121]

steel mesh [123]

TERNARY COMPOSITES

Acid Orange 7 − PAN/PVP nanofibers [131]

Acid Yellow 9 − PAN/PVP nanofibers [131]

Congo red − CoO/graphene [25]

PEGMA/Fe3O4 [132]

sodium alginate/algae biomass [130]

metanil yellow − PAN/PVP nanofibers [131]

methyl orange − magnetite/chitosan [26]

methylene blue + CoO/graphene [25]

MoO3/Fe3O4 [53]
a PAN = polyacrylonitrile; PVP = poly(N-vinylpyrrolidone); PEGMA = poly(ethyleneglycol methacrylate); PPT =
poly(p-phenylene terephthamide).

Organic supports, such as melamine sponge [16] and poly(p-phenylene terephthala-
mide) [124], have been used to provide macroporous sponges or membranes. Additionally,
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natural organics have been used to provide a value-added material, e.g., bacterial cellu-
lose [125], carbonized chicken feathers [126], Chinese yam peel [127], and wheat straw [128].

In the systems comprising polypyrrole, the morphology of this polymer, as globules
or nanotubes (Figure 5), has to be taken into account. Globular polypyrrole, deposited
on macroporous melamine sponge, did not significantly adsorb Reactive Black 5 [16], but
polypyrrole nanotubes on the same substrate proved to be an excellent adsorbent of this
dye [15,16]. This may be the result of a better polymer chain organization in nanotubes
compared to the random arrangement in globules, similar to polyaniline (Figure 9). The
polypyrrole nanotubes had a higher conductivity, specific surface area, and stability with
respect to the acidity changes when compared with the globular form [11,13]. The adsorp-
tion decreased after coating with polypyrrole. Melamine sponge alone was not indifferent;
however, it efficiently adsorbed a cationic dye, crystal violet, meaning that the adsorption
properties of the support also have to be considered.

In general, only limited attention has been paid to the composites of polypyrrole
nanotubes. Wheat straw biomass was coated in situ with the polypyrrole nanotubes and
used for the removal of Eosin Y [128]. The polypyrrole nanotubes were dispersed in sodium
alginate gel and then applied for the removal of methylene blue [129].

4.2. Ternary Polypyrrole Composites

The typical adsorbents had three components again: a conducting polymer, an inor-
ganic compound, and a supporting material (Table 3). Cobalt oxide/graphene [25] and
molybdenum trioxide/magnetite [53] are examples of inorganic components, while the
organics are represented by sodium alginate/algae biomass [130], polyacrylonitrile/poly(N-
vinylpyrrolidone) [131], and poly(ethyleneglycol methacrylate)/magnetite microspheres [132].

5. Polypyrrole Photocatalysts

The photocatalytic activity of polypyrrole alone was reported only rarely and was
demonstrated in the removal of methyl orange [133] and malachite green [134]. The main
reactive species generated under illumination were identified to be oxygen anion-radicals.

5.1. Binary Polypyrrole Composites

In addition to polypyrrole, the simple binary composites contained inorganic compo-
nents (Table 4). The improvement in the catalytic activity has often been observed after the
surface modification with a conducting polymer.

Table 4. Polypyrrole composites applied as dye photocatalysts.

Dye Composite with Reference

BINARY COMPOSITES

alizarine red − FeWO4 [135]

Congo red − MoSe2 [92]

malachite green + Fe [134]

methyl orange − AgMnO2 [32]

TiO2 [58]

methylene blue + Ag [137]

+ MWCNT [136]

+ WO3 [138]

Rhodamine B + MoSe2 [92]

+ MWCNT [136]
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Table 4. Cont.

Dye Composite with Reference

rose bengal − FeWO4 [135]

TERNARY COMPOSITES

brilliant red − g-C3N4/reduced graphene oxide [119]

Congo red − Ag/Sn3O4 [120]

malachite green + Ag/ZnO [142]

+ Ag/ZnO/cellulose acetate [141]

metanil yellow − CuO/ZnO [143]

methyl orange − MWCNT/polyacrylonitrile [139]

TiO2/Cu-MOF [91]

methylene blue + TiO2/graphene oxide [140]

Ag/Sn3O4 [120]

TiO2/Cu-MOF [91]

ZnO/activated carbon [141]

ZnO/Fe3O4 [19]

Rhodamine B + MWCNT/polyacrylonitrile [139]

TiO2/Cu-MOF [91]

The substrates used for the deposition of polypyrrole were as follows: iron [134]; iron
tungstate [135]; molybdenum sulfide [92]; MWCNT [136]; silver [137]; silver manganite [32];
titanium dioxide [58]; or tungsten trioxide [138].

5.2. Ternary Polypyrrole Composites

Most studies, however, have been devoted to multicomponent composite materials
(Table 4). The ternary composites typically included photocatalytically active inorganic
compounds, e.g., titanium dioxide or zinc oxide. A third component has often been
included, typically a polymer, to provide materials with a controlled morphology or
mechanical properties required by applications.

A list of the composites used in the recent literature includes: graphitic carbon/reduced
graphene oxide composites [119]; multiwall carbon nanotubes/polyacrylonitrile [139];
silver/tin oxide [120]; titanium dioxide/Cu-MOF [91]; titanium dioxide/graphene ox-
ide [140]; zinc oxide/activated carbon [72]; zinc oxide/cellulose acetate [141,142]; zinc
oxide/copper [143]; or zinc oxide/magnetite [19].

6. Polyaniline and Polypyrrole Derivatives

Substituted polyanilines have been used in dye removal, but only exceptionally.
The poly(N-methylaniline)/chitosan composite was used for methyl red removal [144].
Polyphenylenediamines [145] are promising candidates for adsorbents due to their prepara-
tion from non-toxic monomers at an economical cost. They are considerably less conducting
compared with polyaniline, but this need not be a drawback in dye removal. Poly-p-
phenylenediamine, deposited on hydrolyzed polyacrylonitrile membrane, has recently
been reported to remove the anionic Congo red and Direct Red 23 dyes [146].

Polyaniline can easily be converted to nitrogen-containing carbons [147]. The morphol-
ogy is retained after this process, except for some shrinkage. Carbon fibers prepared from
the polyaniline precursor were combined with titanium dioxide to produce a photocatalyst
for the decomposition of methylene blue [148].
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The study that combined both of our reviewed conducting polymers, polyaniline,
and polypyrrole, in the composite with carbon nitride involved methylene blue as the
decomposition object [149].

Concerning polypyrrole, there are many ways to modify the polymer chains by copoly-
merization with ring-substituted monomers; however, reports in this direction are scarce.
For example, poly(pyrrole-co-sulfophenylenediamine) was found to adsorb an anionic dye,
Congo red, and a cationic dye, methylene blue [150].

Polypyrrole was exposed to 200, 400, and 650 ◦C in an inert atmosphere. This first
deprotonated polypyrrole (Figure 4), followed by its carbonization [151,152]. The ability
to remove Reactive Black 5 from aqueous media decreased with an increasing exposure
temperature. The activation of polypyrrole with potassium hydroxide during pyrolysis
only slightly increased the adsorption ability [152].

7. Conclusions

The conducting polymers, polyaniline, and polypyrrole, became well-established
active materials for wastewater management. In recent years, from 2020 to 2022, most
papers have been dedicated to the application of polyaniline as a dye adsorbent (Table 1). A
preference was given to the anionic dyes, where the electrostatic interaction with polymer
cations was expected. In the photocatalytic studies, the participation of the anionic and
cationic dyes was balanced (Table 2). The number of papers reporting on polypyrrole was
slightly lower with regards to the comparable treatment of anionic and cationic dyes both
in adsorption (Table 3) and photocatalytic decomposition (Table 4). Still, more detailed
studies on neat polyaniline and polypyrrole, even though of academic interest, would
be welcome to further our understanding of the role of these polymers in the composites
for practical application. Concerning the mechanism of dye removal, dye adsorption, or
photocatalytic decomposition, they are likely to be operative at the same time, and their
contributions should be estimated if possible. It has to be stressed that the present review
concerns the papers published in 2020–2022. For the extensive work reported in preceding
years, the readers are referred to an earlier review [1].

8. Future Prospects

Conducting polymers are not just conducting [153]. Their use as adsorbents of organic
dyes is a typical example of an application that does not require electrical conductivity.
However, in the next step, their conductivity allows for the construction of electrodes
by their in situ deposition on non-conducting substrates and subsequent use in electro-
chemistry. In this experiment, an electric potential was applied to the conducting polymer
adsorbent. The electrochemical switching between the redox polymer forms may change the
adsorption properties due to a change in molecular structure, degree of protonation, and/or
hydrophilicity. For example, the electroremediation of aqueous effluents containing Congo
red on polyaniline/titanium dioxide composite points in this direction [58], similar to the
electrooxidation of this dye on the polyimide membrane coated with polyaniline [74]. Such
systems might be regarded as intelligent adsorbents controlled by the applied potential.

The array of adsorbents may be broadened by testing the polymers of ring-substituted
anilines, viz., phenylenediamines [145] and various copolymers, with aniline. As a rule,
they have a lower conductivity than polyaniline, but this would not limit their suitability
for dye removal experiments. Concerning polypyrrole, attention should be paid to its
morphology, especially to the nanotubes, which have been tested only marginally.
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