

Engine emissions with air pollutants and greenhouse gases and their control technologies

Citation

https://www.sciencedirect.com/science/article/pii/S095965262203832X

DOI

https://doi.org/10.1016/j.jclepro.2022.134260

Permanent link

https://publikace.k.utb.cz/handle/10563/1011166

This document is the Accepted Manuscipt version of the article that can be shared via institutional repository.

Engine emissions with air pollutants and greenhouse gases and their control technologies

Ahmad Fayyazbakhsh^{a,*}, Michelle L. Bell^b, Xingbao Zhu^c, Xueyi Mei^c, Marek Koutný^a, Nima Hajinajaf^d, Yexin Zhang^{c,**}

^aEnvironmental Protection Engineering Department, Faculty of Technology, Tomas Bata University in Zlin, Czech Republic

^bSchool of the Environment, Yale University, New Haven, CT, USA

^cNingbo Institute of Materials Technology & Engineering Chinese Academy of Sciences, Ningbo, PR China

^dChemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA

* Corresponding author: nam T.G. Masaryka 5555, 76001, Zlin, Czech Republic.

** Corresponding author: E-mail addresses: Fayyaz_bakhsh@utb.cz (A. Fayyazbakhsh), zhangyexin@nimte.ac.cn (Y. Zhang).

ABSTRACT

Diesel and gasoline are the most used fossil fuels due to their high energy release and low cost for engines. However, the emission of air pollutants and greenhouse gases has caused severe environmental issues, and emission regulations are becoming stricter. Recently, several advances in emission control technologies for fossil fuel engines have been available, which need to be reviewed to manifest future research. Here, we reviewed the primary pollutants emitted from the diesel and gasoline-powered engines, their formation process, and the present technologies to control the emissions of greenhouse gases and air pollutants, especially during the COVID-19 pandemic. In this regard, this review concentrates on a particular matter ($PM_{2.5}$ and PM_{10}), carbon monoxide (CO), nitrogen oxides (NO_x), unburned hydrocarbons (UHC), and greenhouse gases (water vapor, CO_2 , N_2O , etc.) as exhaust emissions, the difficulties they cause, and the strategies employed to reduce emissions. This review also provides a framework for understanding how to reduce air pollution and greenhouse gases generated by diesel and gasoline-powered engines.

Keywords: Fossil fuels, diesel, gasoline, diesel- and gasoline-powered engines, environmental issues

1. Introduction

The immense use of gasoline and diesel fuels that started in the industrial period caused several benefits, especially in providing energy and spurring economic development; however, their environmental problems are also significant. Today, air pollution is one of the most critical problems that directly impact the environment and human health. Moreover, air pollution can increase electricity consumption (e. g., central air conditioning to avoid air pollution) and reduce the energy generated by solar cell panels (**Eom et al., 2020**; **He et al., 2020**). **Fig. 1** shows the major health

problems caused by different air pollutants and greenhouse gases. Generally, air pollution's health problems are divided into short- and long-term effects. Short-term issues, which are temporary, include headache, skin irritation, irregular heartbeat, etc. On the other hand, permanent, long-term problems, such as blood cancer, decreased lung function, and heart disease (see **Table 3**).

Although there are several policies and legislations regarding energy usage worldwide, reductions in air pollution are not expected to be substantial (**Fig. 2**A). As can be seen, carbon monoxide, one of the most important air pollutants, plays a vital role in air pollution, and it is expected to enhance Air pollutant emissions worldwide from, 2020 after a sensible reduction from 2015 to 2020.

Additionally, unequal exposure to air pollution, and varied response to a given level of air pollution, lead to health inequities across and within nations, a phenomenon often referred to as environmental justice (**Rao et al., 2021**). Recently, the COVID-19 epidemic has been proved to affect energy demand and is projected to have a long-term influence (**Kikstra et al., 2021**). Viruses such as SARS-CoV-2, which is responsible for the current COVID-19 epidemic, may bind to other particles, altering their aerodynamic properties and causing airborne transmission. Research suggests that those who live in places with higher levels of air pollution have more COVID-19 cases (**Hoang et al., 2021a, 2021b**; **Nguyen et al., 2021a**; **Prather et al., 2020**) and have been found almost in aerosols ranging in size from 0.25 to >4 pm (**Wang et al., 2021a**). Due to these problems, decision-makers have explored and enacted a variety of strategies to lower air pollution, such as regulation for emission control (i.e., limiting the emissions of CO_{x} , NO_{x} , and other pollutants emitted by vehicles (**Datye and Votsmeier, 2021**)), manufacturing green-energy cars and using of solar and wind energies (**Stokes and Warshaw, 2017; Kempa et al., 2021**). Although renewable energies have significant environmental benefits, their cost and performance and perceptions about cost and performance still limit their usage.

An active area of research is identifying which air pollution types and mixtures are most harmful to aid decision-makers in prioritizing air pollution control. One of the most significant anthropogenic contaminants is *PM*, with the main constituents of soot, a by-product of incomplete biomass and fossil fuel combustion, among other sources (**Lohmann et al., 2020**). Soot particles are mostly comprised of *UHC* and black and organic carbon and have a wide range of physicochemical characteristics depending on the combustion source (**Fayyazbakhsh and Pirouzfar, 2017**; **Ramanathan and Carmichael, 2008**).

Although PM_{10} are also harmful to health, $PM_{2.5}$ are reported as the most dangerous for human health as they penetrate deep into the respiratory system and further contribute to climate change (**Loh et al., 2012**). As a result, determining the influence of soot on atmospheric processes and their involvement in cloud formation and climate change is important (**Lohmann et al., 2020**). Another pollutant critically important to health and ecosystem damage is NO_x (**Peng et al., 2018**). On-road vehicles with diesel engines account for around a quarter of worldwide anthropogenic NO_x emissions. NO_x emissions are critical precursors for the formation of $PM_{2.5}$ and ozone. In most markets, NO_x emission standards have become gradually more stringent; however, modern diesel vehicles generate considerably more NO_x under real-world conditions than in laboratory settings (**Anenberg et al., 2017**).

SO₂ are another pollutant generated by internal combustion engines that are not discussed in depth in this review. SO₂ can be released from the burning of most types of fossil fuels that have a substantial adverse effect on human health. The release of sulfuric acid significantly influences atmosphere chemistry, air quality, climate, and ecosystem health, as well as causing adverse health outcomes such as cancer and cardiovascular issues (**McLinden et al., 2016**). The severe pollution haze in East Asia, in particular, results from exceptionally high amounts of sulfate emissions (**Su et al., 2020**; **Liu and Abbatt, 2021**). Moreover, SO₂ has ecological impacts on soil, forests, and freshwater. Also, they are the main content of sulfuric acid production (i.e., "acid rain") (**Smith et al., 2019**). SO_x emissions, aerosol sulfate production, and sulfate aerosol and dispersion of these components in the environment have all occurred at rates that greatly exceed the return of industrial S to more stable geologic elements (**Hinckley et al., 2020**).

Abbrevia	ntions	IMO	International Maritime Organization
		LNT	Lean NO _x Trap
COP26	26th UN Climate Change Conference of the Parties	LTC	Low-Temperature Combustion
E10	A blend of 10% ethanol and 90% gasoline	MOFs	Metal-organic frameworks
ATCF	$Al_2O_3 - TiO_2/CeO_2/Fe_2O_3$	NRT	Near-Real-Time
Al₂TiO₅	Aluminium titanate	NO	Nitric Oxide
ANCF	Al ₂ O ₃ -Nb ₂ O ₅ /CeO ₂ /Fe ₂ O ₃	NOx	Nitrogen oxides
AFR	Air/fuel ratio	NO_2	Nitrogen dioxide
ASC	Ammonia slip catalyst	N_2O	Nitrous oxide
AOC	Ammonia oxidation layer catalyst	NTP	Non-thermal plasma
ACCT	Ammonia creation and conversion technology	NSR	NO _x storage-reduction
NH₄NO3	Ammonium nitrate	OC	Organic carbons
AB	Argemone Biodiesel	<i>O</i> ₃	Ozone
BC	Black Carbon	PGM	Pt, Pd, Rh
BSFC	Brake Specific Fuel Consumption	PM	Particulate matter
CARB	California Air Resources Board	PM ₁₀	Particulate matter with lower than 10µ in size
CCS	Carbon capture and storage	PM _{2.5}	Particulate matter with lower than 2.5μ in size
CO_2	Carbon dioxides	PNA	Passive NO _x adsorbers
CO	Carbon monoxide	Pt	Platinum
CDPF	Catalysed diesel particulate filter	PGMs	Platinum group metals
CAGR	Compound annual growth rate	PAHs	Polycyclic aromatic hydrocarbons
COVID-1	9 Coronavirus Disease 2019	PFI	Port fuel injection
CRDi	Diesel common rail direct injection	PCCI	Premixed Charge Compression Ignition
EDI	Direct Ethanol Injection	RON	Research Octane Number
DOC	Diesel Oxidation Catalyst	Rh	Rhodium
DPF	Diesel Particulate Filter	SCR	Selective catalytic reduction
DAC	Direct air capture	SARS-Co	v-2 Severe acute respiratory syndrome coronavirus 2
DF-PCCI	Dual fuel Premixed Charge Compression Ignition	SW	Shortwave
EPA	Environmental Protection Agency	SiC	Silicon carbide
φ	Equivalence ratio	SACs	Single-atom catalysts
λ	Excess air ratio	SI	Spark Ignition
EGR	Exhaust gas recirculation	SO_2	Sulfuric oxides
GDI	Gasoline direct injection	3DOM	Three-dimensionally ordered microporous
GPF	Gasoline Particulate Filter	TWC	Three Ways Catalytic converter
GHGs	Greenhouse gases	UHC	Unburned hydrocarbons
HSDF	High Speed Diesel Fuel	UNFCC	or COP21 United Nations Frameworks Conversion on
HCCI	Homogenous Charge Compression Ignition		Climate Change
HO_2	Hydroperoxyl	VCR	Variable compression ratio
OH	Hydroxyl	VOCs	Volatile organic compounds
IPCC ARG	5 Intergovernmental Panel on Climate Change Assessment	WCO	Waste cooking oil
	Report 6	WHR	Water to hydrogen ratios
MARPOL	International Convention for the Prevention of Pollution	WHO	World Health Organization
	from Ships		

CO produced during incomplete combustion is another important pollutant for human health (**Motterlini and Otterbein, 2010**; **Fujita et al., 2001**) as the human lungs absorb *CO* more than oxygen if there is the same amount of each in the environment. The emissions from China and the US are shown in **Fig. 2**B, which shows that *CO* has the highest air pollution emissions compared with other pollutants. Due to more stringent regulations, the amount of generated pollutants in the US was less than in China.

 CO_2 , which are the main product of complete combustion of fossil fuels, are critical *GHG*s, absorbing heat from the atmosphere and contributing to climate change. There are currently two methods to deal with the ever-increasing CO_2 levels in our biosphere: carbon seizing and storage or carbon seizing and usage (**Babacan et al., 2020**), which is due to their significant potential for CO_2 storage in natural

areas such as depleted gas and oil fields, coal beds, and aquifers (**Aresta et al., 2014**). Carbon seizing and storage include the collection of CO₂, as well as its separation, compression, and transfer, in order to permanently deposit it, while carbon seizing and usage includes either biological/chemical conversions to fuels and products or direct CO₂ usage such as for fire extinguishers (**Navarro-Jaen et al., 2021**).

The increasingly strict emission regulations make a considerable number of researches about the emission of fossil fuel-powered engines springing up. It is urgent to review them to manifest the pollutants and their control technologies for future study and practice. This review discusses the air pollution and greenhouse gases generated by burning the two different types of fossil fuels, diesel and gasoline, the mechanisms of creating those pollutants, and the techniques used to control them in recent years. Finally, a short discussion on possible future techniques and recommendations is provided.

2. Diesel, gasoline, and engines

Diesel and gasoline emissions are affected by engine operating factors (load, speed, spark timing, AFR, and fuel compositions (specifically the C/H atom ratio) (**Wallington et al., 2006**)). Understanding the exhaust emission of these fuels needs a comprehensive view of both fuel and engine.

Substantial changes in global car sales of gasoline and diesel are anticipated over the next few years. In this case, cars with the gasoline engine are expected to reduce from 78% in 2019 to 44% in 2030, and diesel engines from 14% to 4% for the same period (Breakdown of global car sales, 2020). These reductions could result from regulations and policies enacted in the US and other western countries that facilitate the manufacture and use of hybrid cars (**Breakdown of global car sales, 2020**; **Borlaug et al., 2021**).

2.1. Diesel and gasoline

Diesel is the heavier portion of the distillation tower of the petroleum refinery, mainly composed of C_{10} to C_{22} , which are slightly branched paraffin and naphthene. It is denser than gasoline and has about 15% more energy by volume, while gasoline has better energy per unit mass. The main characteristics of diesel and gasoline are listed in **Table 1**. Diesel has a high content of aromatics (about 35%) that is usually slow in diesel combustion owing to their low cetane number. Diesel has a dimensionless cetane number to measure its ignition performance or quality. Cetane number of diesel ranges from 0 to 100, premium diesel has a cetane number between 47 and 52, and due to the standards of the USA and other countries, it should be higher than 45 (**Eagan et al., 2019**). Although the higher number of C_{10+} can make a poor cold-flow characteristic for low-temperature diesel uses, they can enhance the desired cetane number (as it has lower ignition delay) (**Chen et al., 2018a**). However, having a higher number of naphthene causes a lower cetane number but better cold-flow characteristics (see **Table 2**).

Gasoline is mainly composed of C₄ to C₁₂ compounds, containing a blend of hydrocarbon families, including 30% aromatics, 8% naphthenes, 16% paraffin, 30% isoparaffins, and 16% olefins (**Shrivastav et al., 2017**). RON is an identifier of gasoline resistance to auto-ignition/knocking quality and is the most vital gasoline use parameter with values from 0 to 120. The lowest *RON* of gasoline is 87, the middle *RON* is usually 89-90, and the premium gasoline has RON between 95 and 96 (**Mabood et al., 2017**; **Gasoline explained, 2020**).

2.2. Diesel- and gasoline-powered engines

Diesel and gasoline-powered engines are internal combustion engines (an integral part of the climate problem (**Ueckerdt et al., 2021**)), a type of heat engine in which fuel is burned with an oxidizer, typically air, in a combustion chamber.

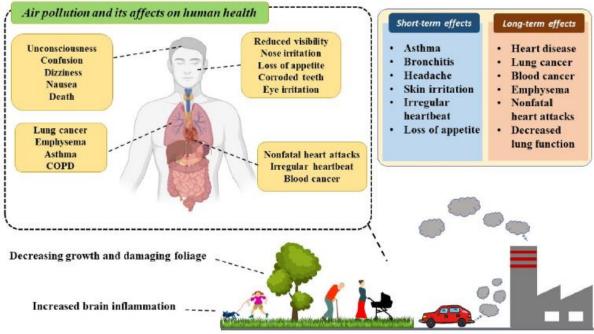


Fig. 1. Air pollution and its adverse effects on human health.

Because of the emissions created by this type of engine, many nations have declared plans to phase out internal combustion engine cars and promote electric vehicles (as the difference between hybrid electric vehicles and internal combustion engines is comparatively smaller (Jenn, 2020)) in response to the Paris Agreement (Yang et al., 2021a). However, it is expected that the internal combustion engine will continue to play a significant role in the following decades. Furthermore, internal combustion engine efficiency increases are possible since most spark-ignition engines' efficiency is generally 25-35%, but compression-ignition diesel engines are around 40-50% (Chu and Majumdar, 2012).

Diesel engines have also been used for maritime transportation in addition to the common. Therefore, the environmental issues triggered by the emission in coastal areas should also be considered (**Hoang and Pham, 2018**). IMO, the EU, EPA, the MARPOL (limits NOX and SOX), and the Ministry of Environmental Protection of China have fulfilled regulations to reduce the emitted pollution from marine diesel engines.

One of the main problems in diesel- and gasoline-powered engines is metallic alloy corrosion. In those engines' types, several factors, such as using biobased fuels (due to their water and free fatty acids) (Hoang and Pham, 2019; Hoang et al., 2020) and gasoline and diesel blended with alcohols (Edwin Geo et al., 2019), cause this problem. Compared with pure diesel, using alcohols in the fuel cause washing and removing the lubrication oil, which is a source of elements a metal, increasing the concentration of metal and elements in the *PM* (Ghadikolaei et al., 2021). Moreover, due to the higher oxygen contents of alcohols than petroleum-based fuels, using them as additives for diesel and gasoline can increase lubricating oil oxidation through combustion (higher oxygen content and fatty acid, more problematic regarding the corrosion) (Hoang et al., 2019).

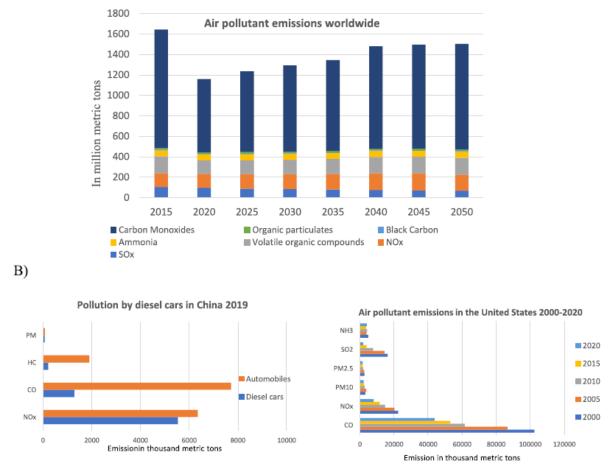


Fig. 2. Air pollution emissions worldwide (by all sectors) (A) and emitted in China and US (B) (Emissions in the U, 2019; Air pollutant emissions worldwide from, 2020)

3. Emission pollutants

3.1. Greenhouse gases

The emission of CO_2 that the main *GHC* emitted from the complete combustion of fossil fuel in engines is determined by theAFR, fuel consumption, and fuel composition (specifically the C/H atom ratio). Moreover, a higher oxygen level of fuel helps the reaction with carbon monoxides to create CO_2 , which can be done by a catalyst or naturally (**Deutschmann and Grunwaldt, 2013**).

 N_2O , another greenhouse gas, is often raised as a by-product in *SCR* systems (that are used to reduce NO_x emissions), as a by-product of NH_3 oxidation, or as a result of the thermal breakdown of NH_4NO_3 that creates when NH_3 and NO_2 combine react (eq. (1) and (2)) (Preble et al., 2019).

$$NH_4NO_3 \rightarrow N_2O + 2H_2O$$
 (1)

$$2NO_2 + 2NH_3 \rightarrow N_2 + NH_4NO_3 + H_2O$$
 (2)

N₂O is not only harmful to human health (inactivation of vitamin B₁₂) but impacts climate change as a greenhouse gas and also contributes to the depletion of stratospheric ozone (**Jablonska and Palkovits**, **2019**).

Policymakers are considering the reduction of these GHG emissions not only through the use of current CO_2 (such as carbon capture and storage) in different industries but also through the replacement with new types of energy and technologies (**Babacan et al., 2020**).

Table 1 Chemical and physical properties of diesel and gasoline fuels (Shrivastav et al., 2017; Eagan et al., 2019;Khorramshokouh et al., 2016).

Fuel	Density (g.m/L)	Net heating value (MJ/L)	Freezing point (°C)	Latent Energy (KJ/Kg)	Max Aromatic Content (%)	Flash Point (°C)	Boiling point (°C)
Gasoline	0.735	31.8	-73.33	350-400	30	-40	40-250
Diesel	0.837	36.2	0	250	35	45	130-160

Reference Fuel	Engine Type	Operating Condition	Emission Control Technology	The influence of technology on the CO2 emission	Ref
Diesel	single-cylinder, four-stroke, water-cooled, CRDi	Different brake power	Using different plant oils (camphor, cedarwood, wintergreen oil, and lemon peel oil	All of the additives could reduce CO ₂ by up to 25%. Cedarwood and wintergreen oils had a bigger influence on this reduction than other additives	EdwinGeo et al. (2021)
Diesel	single cylinder, 4S VCR DI test engine	Various engine load	Nerium-based catalytic converter and avocado oil as an additive	Higher avocado oil content caused a reduction of up to 15% in CO ₂ emissions. Higher content (higher than 10%could have a negative influence. Higher engine load resulted in higher CO ₂	Hemanandh et al. (2021)
Diesel	single cylinder, four-stroke, diesel engine	Different brake mean effective pressures and additive contents	Thermol-D as a multi-functional fuel additive	1.5% Thermol-D could reduce CO ₂ up to 10%. Biodiesel had around 10% more CO ₂ emissions compared to pure diesel	Ashok et al. (2020a)
Diesel	1-liter single-cylinder engine system modified from modified from 6-liter, 6- cylinder heavy-duty diesel engine	Different operating load conditions as well as different substitution ratios	Different combustion modes (homogeneous charge compression ignition, dual-fuel premixed charge compression ignition, and premixed charge compression ignition	DF-PCCI combustion caused more than a 14% reduction in CO ₂ . When the Substitution ratio increased, CO ₂ emissions reduced. So, an increase in operating load conditions triggered higher CO ₂ . HCCI and PCCI caused higher CO ₂ due to low combustion quality	Shim et al. (2020)
Gasoline	Three types of engines	Different speeds	Different vehicles: EV, Plug-in Hybrid Electric Vehicle	in the lower speed, EV showed the lowest CO ₂ emission, while in the high speed, it recorded the highest amount. From the middle to high speed, Plug-in Hybrid Electric caused the lowest CO ₂ emission that could meet EPA standards	Rahman et al. (2021)
Gasoline	Electric DC-type dynamometer, a two-stroke uniflow gasoline engine	0–40% of ethanol	Ethanol	Although it was expected to increase CO_2 emission, ethanol could reduce this emission due to the lower carbon content of gasoline + ethanol than pure gasoline	Kaya (2022)
Gasoline	Pour-stroke SI engine	Different lambda and engine load	Methanol + Hydrogen	Blending 20% of methanol didn't affect the emissions of CO ₂ , while hydrogen caused a reduction of up to 5%. Higher engine load and lambda triggered increased CO ₂ emissions.	Sarıkoç (2021)

 Table 2 The influence of different technology for CO2 mitigation

 CO_2 emissions are expected to reduce slightly in the following decades. Researchers on carbon monitoring anticipate this reduction to meet the 1.5 and 2 °C targets (Liu et al., 2022a); however, the emissions of another *GHG*, N₂O, are expected to increase slightly from 2030 to 2050 (Fig. 3). Regarding the 1.5 °C limits, there are multiple views; one is reflected in research on carbon monitoring, which suggests that the opportunity to meet that target is missed, while IPCC AR6 still has comparatively

optimistic scenarios. This difference could be due to data collection time. Carbon monitoring used NRT CO₂ data, while IPCC AR6 used data from 2018 to 2019 (Liu et al., 2022a; IPCC, 2021).

The emission of CO_2 from fossil fuel combustion is to reduce the emissions of *GHGs*, including regulations from *EPA* and the Paris and Glasgow agreements; however, a steeper reduction is required to mitigate climate change (**Brown and Caldeira, 2017**). One such agreement was the Paris agreement of the UNFCC or COP21, with an outcome to limit the maximum allowed global temperature rise to 2 °C (preferable to 1.5 °C). After five years, in November 2021, the COP26 meeting in Glasgow reduced the target to 1.5 °C above pre-industrial levels by 2050 (Cop26 explained, 2021); however, research indicates more considerable reductions are needed to address climate change (**Masood and Tollefson, 2021**).

The other regulation to be mentioned is the IMO guidelines, which issue regulations to control the emissions, especially CO₂ emissions (that announced to make 50% reduction in CO₂ emissions by 2050 (**Wang et al., 2022a**)), security, and safety of global maritime shipping. These policy guidelines are important nowadays due to the latest forecast that expected higher CO₂ emissions in the future from this shipping system. In this case, technologies should be used to meet these regulations (**Hoang et al., 2021b**). For this, several methods, such as recovering waste heat from marine engines (**Ampah et al., 2021**), can influence the fuel economy in this system.

3.2. Carbon monoxides

CO is a poisonous, odorless, and colorless gas that is generated when carbon-containing fuels are burned incompletely. *CO* is approximately 250 times more likely than oxygen to bind to the hemoglobin's heme group and remove oxygen from hemoglobin, limiting blood's ability to transport oxygen (**Zazzeron et al., 2019**). *CO* from internal combustion engines indicates whether the combustion is complete. High *CO* emission (that can cause bladder cancer) from the exhaust signifies incomplete combustion and waste of chemical energy provided to the combustion chamber (**Atarod et al., 2021**).

Engine Type	Techniques for emission reduction	Studied Regulations	Ref
A 4-stroke marine diesel engine (WD10C190–15) with HSDF (3.09% m/m S) was used	EGR and scrubber system	NO _x emissions under IMO Tier III, PM emissions increased. The results could pass the emission requirements of the different countries	Wang et al. (2022b)
4-cylinder compression ignition types	heavy EGR, high boosting, and advanced injection timing	with advanced injection timing EURO-VI emission regulation was met after more than 80% reduction in NO _x . By heavy EGR and high boosting, EURO-VI emission regulation was met after around an 80% reduction in NO _x .	Ju et al. (2021)
4 Stroke & In-line 4 Cylinder, water- cooled, non-road used	DOC and DPF	China's national emission regulation was met with around 24% conversion in NO _x after using DPF, which was reduced by five orders.	Hu et al. (2021a)
YN4PL mode, 4-cylinder, water-cooled, turbocharged	CDPF and DOC	Regarding NO _x , China-IV emission regulations were met with after-treatment. For PM, China-III emission regulation was met without after treatment, but a combination of DOC and CDPF could meet China-IV emission regulations	Zhang et al. (2023)
12.6 L heavy-duty diesel engine from FAWDE	SCR after- treatment	NOx and PM emissions were met by the CARB	Shiyu et al. (2022)
CRDi, A single-cylinder version of the 6-cylin- der diesel engine	SCR and DOC (biodiesel 50% soybean methyl ester)	By SCR, NO _x emissions met the Euro VI emission standards. With DOC, the amount of CO and UHC emitted was in the range of Euro VI standards	(2022) Kim et al (2016)

 Table 3 The influence of engine and fuel technologies on the different emissions regulations.

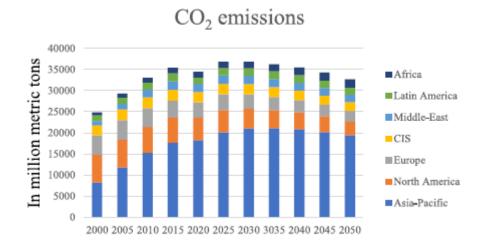


Fig. 3. The amount of CO₂ emission from 2000 to 2020 and forecast to 2050 (Regional carbon dioxide, 2021).

3.3. Nitrogen oxides

The oxidation of N₂ to NO₂ and *NO* is known as NO_x (**Chen et al., 2018b**). NO_x in gasoline and diesel engines is produced by the interaction of N₂ and O₂ at temperatures exceeding 1500 °C during fuel combustion (**Farrauto et al., 2019**). Anthropogenic NO_x are important pollutants responsible for substantial environmental issues and millions of premature deaths due to ozone as an oxidizing agent hurting the human respiratory system (**Farrauto et al., 2019**).

 NO_x contributes to photochemical smog production, acid rain, acceleration of climate change, and stratospheric ozone depletion (**Li et al., 2019**). Although NO_x emissions were reduced widely, the rate of roadside NO₂ emission was not reduced as much as expected (**Grange et al., 2017**). Long-term NO₂ exposure can lead to various severe health concerns, including heart and cardiovascular disease, diabetes, and hypertension (**Ogen, 2020**). Moreover, several studies have shown that the cities with higher concentrations of NO₂ have higher rates of COVID-19 fatalities (**Ogen, 2020**; **Yao et al., 2021**), although some studies raised limitations in that work. Some suggested that several atmospheric parameters contribute to the COVID-19 pandemic (**Contini and Costabile, 2020**), while others concluded that atmospheric aerosols in cities with higher air pollution are the main contributors (**Prather et al., 2020**).

Regulations have been made to limit NOx emissions and become more stringent over time. For gasoline-powered engines, euro 4, euro 5, and euro 6 standards limited NO_x release at 0.08, 0.06, and 0.06 g/km, respectively. For diesel-powered engines, euro 4, euro 5, and euro 6 limited this emission to 0.25, 0.18, and 0.08 g/km, respectively. According to Europe and USA regulations, NO_x controllers should be used in heavy-duty diesel and gasoline engines to meet the standards (**Yang et al., 2021b**).

3.4. Unburned hydrocarbons

UHC are one of the primary pollutants that result from incomplete combustion and are released into the atmosphere along with another combustion byproduct. As complete combustion is facilitated by high temperature, high oxygen levels, and enough reaction time, *UHC* emission is reduced. Diesel engine efficiency is also decreased as *UHC* levels rise. The primary sources of *UHC* emission are evaporation, crankcase ventilation, and exhaust. Wall quenching and crack effect are the key

determinants of gasoline engine production. When the engine is cold-starting or warming up, the primary cause of *UHC* emission is likewise large-volume quenching (**Zhao et al., 2022a**).

The most dangerous types of UHC are *PAHs*, which can be present in particles as well as gases, are common air pollutants produced by incomplete combustion of biomass and fossil fuels, and have negative (carcinogenic, mutagenic, and immunosuppressive) impacts on human health (**Fayyazbakhsh and Pirouzfar, 2016**).

3.5. Particulate matters

PM emissions are a combination of liquid and solid particles in the air, some of which are visible, while the smallest and most harmful are not visible. Annually millions of deaths around the world are linked to *PM* emissions. Mass concentration, particle size, and particle composition are three factors that characterize the *PM* and its harmful impacts (**Daellenbach et al., 2020**). *BC*, *OC*, *UHC*, and some physicochemical substances are the main components of PM emissions, although particles are made of hundreds of chemical components.

Another critical component of PM is also known as soot. Soot has a variety of climate effects: by absorbing SW radiation, soot particles warm the Earth-atmosphere system, lowering relative humidity, modifying atmospheric stability, and changing the process of cloud formation processes (Lohmann et al., 2020).

BC absorbs light from all wavelengths of the sun and heats the air, while *OC* or brown carbon can absorb only *UV* and blue wavelengths. *OC* has a short lifetime (around hours) due to further photochemical reactions, whereas *BC* has a longer lifetime (around weeks) compared to other pollutants (**Yu et al., 2019**). Gasoline and diesel combustion can emit *BC*, *OC*, and other aerosols that can act as nuclei of condensation cloud, changing the characteristics of clouds.

 PM_{10} , which includes particles with diameters no larger than 10 μ m, about 1/7 the diameter of a human hair, can trigger lung problems, among many other health concerns. **Fig. 4** represents the concentration of PM_{10} in the USA from 1990 to 2020, which shows a sensible reduction, especially in the last two years.

 $PM_{2.5}$ or fine particles contain particles with diameters no larger than 2.5 μ m and are generated mainly through wood-burning or gasoline and diesel exhaust emission that increases the risk for a wide range of health impacts and growing evidence for impacts on dementia (**Livingston et al., 2020**). Premature deaths caused by $PM_{2.5}$ are shown in **Fig. 5** by WHO regions and sectors (**Romanello et al., 2021**). It can be seen that there are slight reductions in most regions; however, more endeavor is required to reduce this factor even more.

In the Americas, premature mortality is lower than in other regions. This is due to reduced fine particles by 70% (because of USA regulation for limited pollution from vehicles) since 1981, which led to lower infant mortality, higher income, and improved life expectancy and productivity (**Colmer et al., 2020**). Recent research shows that even with improvement in air pollution quality and clean-air policies, human health remains adversely affected and premature deaths may increase in the future (**Liu et al., 2022b**).

3.6. Interaction of pollutants

The pollutants emitted from the exhaust could interact and influence each other. Although *CO* is not a *GHG*, it influences tropospheric chemistry. The *OH* radicals will oxidize *CO* to make HO₂, which then combines with nitrogen oxides-rich surroundings to form O₃. HO₂ destroys O₃ in the absence of NO_x (**Jain et al., 2021**). The final product of *CO* in the atmosphere is CO₂, the exact final product of the techniques used to reduce emissions (such as using catalysts and blending alcohols as an oxygenated additive with diesel or gasoline) (**Datye and Votsmeier, 2021**; **Chen et al., 2021**).

When NO_x , UHC, and VOCs combine with sunlight, a combination of pollutants called photochemical smog creates a brown cloud over cities. It contains anthropogenic air pollutants, organic compounds, ozone, and nitric acid, which are stuck near the earth due to temperature inversion. The main problems related to photochemical smog are foul odor owing to gaseous compounds, health problems, and plant damage. Internal combustion that generates NO_x primarily influences the creation of photochemical smog. In this regard, NO emitted as an exhaust emission reacts with oxygen in the presence of ultraviolet, creating ozone. Moreover, the emission of hydrocarbons (hydrocarbons with more than two carbons) in the presence of sunlight and other organic compounds causes several chemical reactions, leading to photochemical smog creation (**Brusseau et al., 2019**).

4. Techniques for emission control

Three techniques are used to meet the ever-stricter pollution regulations: in-cylinder purification, exhaust gas after-treatment, and fuel technologies (**Mohd Noor et al., 2018**; **Ni et al., 2020**). To choose one of those techniques, several factors such as how old the diesel engine is, the level of pollution, and cost should be considered. One of those techniques is using biodiesel to address environmental issues and meet the abovementioned regulations. It is beneficial due to its lower pollution, renewability, and compatibility with existing engines. Reduction of emissions can be divided into three categories (fuel modification, engine, and after-treatment technologies) as well as techniques used for CO₂ reduction.

4.1. Techniques for CO₂ control

Several techniques have been used to reduce CO₂, such as CO₂ conversion and CO₂ capture, additives, catalyst, etc. One of the most important catalysts or adsorption materials is *MOF*s (Jiang et al., 2020; Trickett et al., 2017; Li et al., 2021a). *MOF* is a tool for creating porous materials and precisely engineering their interiors to address the world's environmental and energy issues (Furukawa et al., 2013). Different metals can be used in this technique, such as titanium (Padial et al., 2020), aluminum (Kurisingal et al., 2020), and copper (Jablonka et al., 2021). Although MOF is not used to reduce the rate of CO₂ emissions of diesel and gasoline, it is a promising material to reduce this gas broadly. Researchers have investigated different methods such as the conversion of CO₂ to alcohols (although cost still limits the use of this technique because it requires a catalyst) (Zhuang et al., 2018; Li and Yu, 2021; Gao et al., 2017), *DAC*, and *CCS* to reduce CO₂ emission (Madhu et al., 2021). However, fossil fuel combustion is an effective dependent solution. With COVID-19 restrictions, the reduction in the use of fuels caused lower CO₂ emissions than before (Weir et al., 2021; Tollefson, 2021). This reduction happened suddenly and was the biggest reduction since the global financial crisis in 2009 (Forster et al., 2020; Davis et al. Ciais).

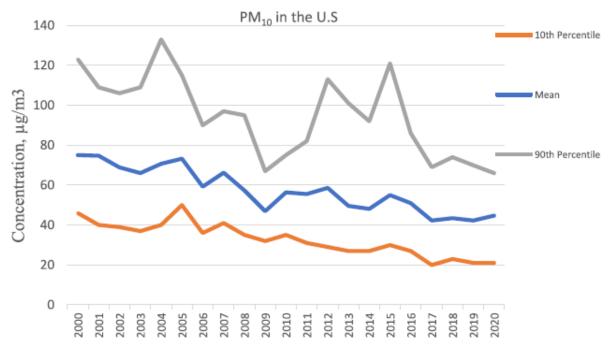
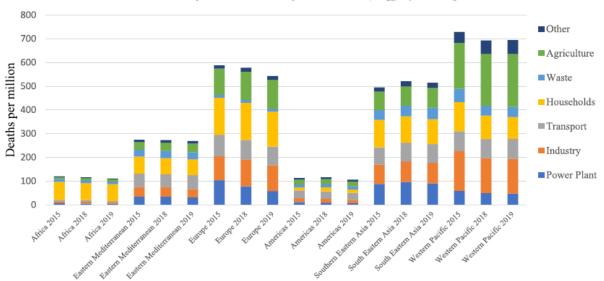



Fig. 4. The trend of PM_{10} in the USA atmosphere (United States environmental protection agency (EPA), 2021). The study reported a 26% reduction in the levels of PM_{10} from 1990 to 2020.

Premature deaths attributable to exposure to ambient fine particulate matter (PM2 5), by WHO regions and sectors

Fig. 5. Premature deaths caused by PM₂₅ worldwide, by WHO sectors and regions (Romanello et al., 2021).

4.2. Engine technology for emission control

According to enhanced fuel efficiency, the *GDI* engine has become a favored technology as it injects the fuel directly into the combustion chamber with high pressure (even over 300 bar (**Lee and Park, 2020**; **Jiang et al., 2017**; **Jiang et al., 2019**)). Although *GDI* has several advantages, such as lower CO₂, higher output power, and greater economic performance than *PFI*, it has some drawbacks, such as higher particle concentration emission (about twice more than *PFI* engines (**Chan et al., 2020**)) (**Kalwar et al., 2020**). Accordingly, due to the stringent emission standards (especially regarding the

emissions of CO_2 as it generated less CO_2 than *PFI* and diesel engines), *PFI* is not as efficient as *GDI* nowadays.

Regarding innovative technologies, like GDI for gasoline engines, CRDi technology for diesel is used to reduce emissions, which is an injection system found in the state-of-the-art diesel engines (**Mariappan et al., 2021**). This system can provide a flexibility level to control emissions, fuel consumption, and engine power (**Jayabal et al., 2022**). *HCCI*, *PCCI*, and *LTC* are examples of *CRDi* engines' benefits that use high injection pressure. On the other hand, higher injection pressure causes higher combustion temperature, leading to NO_x creation.

 NO_x reduction was first handled by EGR. This method enhances engine heat capacity and reduces the maximum temperature achieved, triggering a condition with the lower formation of NO through the reaction between N₂ and O₂. Moreover, EGR temperatures also influence the emissions of CO, UHC, and NO_x ; higher EGR temperature causes higher NO_x emissions but lower CO and UHC emissions.

4.3. Fuel modification for emission control

One of the earliest control methods is blending oxygenated additives with fuel, such as ethanol and butanol. Blending alcohols with gasoline started as a technique to improve the octane number of gasoline and reduce the pollutants (**Ruddy et al., 2019**). For example, a blend of 10% ethanol and 90% gasoline (*E*10), which is approved by *EPA* (because of its possibility to reduce even the emissions of CO_2 as the carbon content of ethanol + gasoline is lower than that of pure gasoline), is commonly used as gasoline due to its higher octane number and lower exhaust emissions than pure gasoline; however, these additives negatively influence the cetane number of diesel. Consequently, using such additives requires a secondary additive to eliminate the problem related to the cetane number of diesel. In this case, the cetane number improver can solve this problem, and its market is expected to grow with a *CAGR* of 5.2% from 2018 to 2023 due to several strict regulations implemented to reduce air pollution (**Cetane Number Improver, 2021**). Blending alcohols leads to the completed oxidation of *CO* to CO₂.

As listed in **Table 6**, alcohols can reduce the emissions of *CO* due to their higher oxygen contents than pure diesel and gasoline. In this regard, methanol can reduce the *CO* more than any other alcohols. However, it is not a suitable additive due to its poisonous characteristics and higher potential for engine corrosion problems than other alcohols. On the other hand, due to the higher oxygen content of the fuel, the oxidization of *CO* to CO_2 will be enhanced and could make the fuel, especially diesel, non-standard in case of *GHG* emissions.

Blending oxygenated additives (almost alcohols) with diesel and gasoline fuel is also one of the earliest methods for PM reduction, which leads to fuel combustion to completion due to oxygen content improvement. This can enhance the octane number of gasoline, causing high-quality combustion and lower CO₂ emission. However, in ethanol use, compatibility problems in traditional engines and lower energy density are reported as the main drawbacks (**Deneyer et al., 2018**).

Moreover, blending alcohols, of which the most practical is ethanol, causes further problems, such as enhancing local ozone and NO_x pollution (compared with gasoline) and physical condition for diesel fuel (problems related to volatility and miscibility) (**Eagan et al., 2019**; **Salvo and Geiger, 2014**). Moreover, CO_2 and NO_x emissions are enhanced by blending alcohols with diesel fuel. It can be concluded that the primary key issues of biodiesel are the problems mentioned above of alcohol as well as the problems related to the blending of vegetable and plant oils (due to the competition of using these oils in food and food technology) (**Zhou et al., 2018**). Regarding the use of ethanol as gasoline engine fuel (in the USA and Brazil), the main problem is corrosion of engines and pipes because ethanol absorbs water from the air. Moreover, it has only about 70% of gasoline's energy content (**Peralta-Yahya et al., 2012**).

Another drawback is reducing heat value and enhancing the latent heat of vaporization of the fuel by alcohols, especially ethanol. These factors can lead to higher *UHC* emissions in both gasoline- and diesel-powered engines. It is axiomatic that more ethanol or methanol leads to lower *UHC* emissions. However, increasing alcohol contents can lead to higher heat of vaporization, lower volatility, and causing partial combustion during the cold transient time (make lots of misfires), causing higher *UHC* emissions.

4.4. Aftertreatment for emission control

The engine technologies that can fuel medication cannot entirely remove the emission of pollutants. For gasoline engines, TWC is still the dominant controller for gaseous pollutants (NOx, CO, and UHC), while for non-gaseous pollutants, GPF (for solid and liquid particles) and TWC for liquid phase particles have been proven as efficient techniques. For diesel engines, DOC has been shown to be a practical system for reducing gaseous pollutants. Moreover, two after-treatment systems for diesel engines, Selective *SCR* and *LNT*, can reduce the NO_x in the fuel-lean exhaust. For *PM* reduction, *DPF* has proven to be an effective system; however, it causes to enhance the CO_2 emissions owing to its high required fuel consumption (**Leach et al., 2020**).

For the stoichiometric exhaust emitted from gasoline engines, TWC is the prevailing technique (often combined with EGR) to simultaneously lower NO_x , CO, and UHC emissions using a single catalyst (**Getsoian et al., 2019**). In the technique, each pollutant requires a specific catalyst component. For instance, Pt and/or Pd are promising and efficient for the oxidation reaction of CO and UHC (**Xie et al., 2021**; **Kothari et al., 2021**), while Rh is more suitable for the reduction of NO_x (**Nagao et al., 2015**; **Heo et al., 2020**). However, TWC cannot control the NO_x emission from lean burn engines like diesel engines due to high air/fuel ratios of exhausts. SCR and NSR have been specially developed to control NO_x emissions with high air/fuel ratios (**Beale et al., 2015**).

In the *SCR* system, the emitted NO_x was selectively reduced into N₂ by feeding NH₃ or urea. Smallpore Cu-exchanged zeolites are effective *SCR* catalysts that can enrich the exhaust gas stream with NH₃ to minimize *NO* emissions (**Becher et al., 2021**). These de- NO_x reactions on *Cu* catalysts are sensitive structurally, by which NH₃ reacts with *NO* to form N2 on atomically dispersed *Cu* species (**Liu and Corma, 2021**). However, the overoxidation of NH₃ or the incomplete reduction of NO_x could create a *GHG*, N₂O (**Livingston et al., 2020**). In the *SCR* system, the slipped NH₃ is also an air pollutant. An *ASC* can be added as a short zone directly after the *SCR* to convert the ammonia exiting the *SCR* zone to nitrogen. The *ASC* increases the conversion of NH₃ in its NH₃ oxidation layer (*AOC*), which uses a *Pt* catalyst on a supported oxide (**Bendrich et al., 2022**).

The *SCR* with a warmed-up engine shows a promising performance (even more than 90% reduction); however, during cold-start, the emissions of NO_x would be beyond the emission regulations such as EURO 6 (**Praveena and Martin, 2018**; **Mera et al., 2021**). Researchers have developed several methods to overcome this problem, such as dual layers *SCR* and *ACCT* (**Gao et al., 2021a**). Dual layers *SCR* can be beneficial due to its structure containing two active phases in two separate layers. *ACCT* is another technique that showed promising performance in reducing NO_x emissions during cold-start; however, its high price limits its use (**Gao et al., 2021b**).

One of those technologies is to store emitted NO_x until a high operating temperature is reached using PNA (with PGMs). Dual layer monolith catalysts are one of those types that showed high performance for absorbing NO_x at low temperatures and desorbing them at high temperatures (**Azzoni et al., 2022**; **Selleri et al., 2018**). The stored NO_x can be released at high temperatures and is further reduced in the downstream SCR (**Ji et al., 2017**). Furthermore, the stored NO_x can also be reduced in rich-burn conditions in the LNT system. LNT, also known as NSR (not for gasoline-powered engines), primarily uses a cutting-edge catalytic system pioneered by Toyota (Pt/BaO/Al₂O₃) (**Takahashia et al., 1996**). NO is initially oxidized to NO_2 on the Pt sites through the lean-burn period in this system. In the following step, Pt/BaO/Al₂O₃ catalysts or other NSR catalysts have a storage component such as K, Ba, and Sr that stores NO_x by producing nitrates and/or nitrites. When the engine exhaust changes to a short fuel-rich cycle, the stored NO_x is released and reduced to N_2 on the NSR technology requires an optimized lean/rich switching strategy, increasing the system's complexity.

For the current catalytic de- NO_x systems, the NO₂/ NO_x ratio is a crucial factor. In the *SCR* system, the ratio of NO₂ to NO_x in the exhaust gas affects the selectivity of the main reactions, which are Standard *SCR* (Eq. (3)), Fast *SCR* (Eq. (4)), and NO₂ *SCR* (Eq. (5)) (Bendrich et al., 2018)

$$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$$
 (3)

$$2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O \tag{4}$$

$$4NH_3 + 3NO_2 \rightarrow 3.5 N_2 + 6H_2O$$
 (5)

Maximum NO_x conversion of *SCR* usually occurs when NO_2/NO_x ratio is 0.5. It should be noted that a higher NO_2 value causes further reactions, which results in higher N_2O (Eq. (6)).

$$2NH_3 + 2NO_2 \rightarrow N_2 + N_2O + 3H_2O$$
 (6)

The NO₂/ NO_x ratio for the *SCR* system can be controlled by the upstream *DOC*, which can convert a part of NO to NO₂ by the oxidation catalysts therein (**Chatterjee et al., 2009**). Moreover, designing the *SCR* catalyst formulations to improve the oxidation activity of NO to NO₂ could enhance the fast-*SCR* reaction at low-temperatures, for example, by loading manganese oxides (**Li et al., 2021b**), cobalt oxides (**Irfan et al., 2008**) or iron oxides (**Zhang et al., 2021**).

The NO₂/NO_x ratio is also a determinative factor for NO storage in PNA and LNT because NO₂ is more easily adsorbed on catalysts rather than NO. The catalyst loading noble metals, such as Pt (**Theis and Lambert, 2015**), Pd (**Onrubia-Calvo et al., 2020**), or Rh (**Castoldi et al., 2019**), are able to convert NO to NO₂, increasing the capacity for NO_x storage at low temperatures. Furthermore, some noble metalfree catalysts, for instance, Co-SSZ-13, Ce/BEA (**Wu et al., 2022**) and mesoporous LaCoO₃ perovskite (**Xie et al., 2022**), were developed to enhance NO_x storage in a similar way (see **Table 4**).

It is worth mentioning that hydrogen-fueled engines, the most promising clean internal combustion engines without CO_2 emission, emit more NO_x compared to the general fossil-fueled engines (**Dhyani** and **Subramanian**, 2019). In this case, several researchers have tried reducing this emission by reducing the excess air ratio and delaying injection timing during the cold start, which usually omits

the highest amount of NO_x (**Xu et al., 2018, 2019**). Different techniques that have been developed to control NO_x emissions from hydrogen-fueled engines are summarized in **Table 5**, and most of them belong to engine technology. One of these techniques is using EGR, which is beneficial in NO_x reduction and cost optimization due to the reduction of throttling losses in *SI* engines. However, to improve efficiency, it is better to limit the EGR amount. In this case, after-treatment systems such as TWC would be required to reduce NO_x to the standard level (**Fischer et al., 2017**). X is another factor that can be controlled for NO_x reduction. Excess air ratio is a crucial element influencing engine combustion and emission characteristics, especially NO_x emissions as the air-fuel ratio is the most important factor influencing the NO_x formation (**Mingrui et al., 2017**). The formation of NO_x is a function of the λ/φ . The best condition for a high amount of NO_x is when the λ/φ is at a stoichiometric air-fuel ratio (**Xu et al., 2018**). Combining these techniques with a relative after-treatment system like SCR, the NO_x emissions can be reduced to near zero (**Stepien, 2021**).

A method for eliminating *CO* is *DOC*, catalytic converters for diesel-powered engines to reduce *HC*, *CO*, and part of *PM*. *CO* oxidation by the catalyst is a necessary process, such as the Haber Bosch process that was used firstly by *Pt* (Beniya and Higashi, 2019). *DOC* converts *HC* and *CO* to water and CO₂ and is also used to oxidize *NO* to NO₂. Later, NO₂ oxidizes soot in *DPF* (Kothari et al., 2021; Agote-Aran et al., 2021). *DOC* can absorb oxygen to their catalytic site, and *CO* can be absorbed on the surface, favoring *CO*. Lastly, they can react and make CO₂ (Fig. 6A (Deutschmann and Grunwaldt, 2013)). *SACs* are also promising catalysts for reducing *CO*. These catalysts show significant potential for increased noble metal utilization, remarkable selectivity, and excellent catalytic efficiency; and are effective at low temperatures; and can reduce the demand for *PGMs* (Qiao et al., 2011). The usage of *SACs'* metals is almost 100%, as they are comparatively environmentally friendly and cost-effective, favored by industry in some cases (Li et al., 2020). Another factor that makes this catalyst particularly interesting is that it can be used in advanced engines with lower exhaust temperatures (<150 °C) (Nie et al., 2017). However, *DOC* fails to control the emission of *NOx* and soot.

A summary of different techniques that have been used to control *CO* and *UHC* emissions are listed in **Tables 6** and **7**.

Regarding PM, the most straightforward method is physically trapping PM using particulate filters, including DPF for diesel-powered engines and GPF for gasoline-powered engines. DPF and GPF can serve as support SCR and TWC catalysts by coating, respectively, to simultaneously remove other pollutants.

Typical *DPF* is constructed from cordierite, *SiC*, or Al_2TiO_5 (**Buschow, 2001**). It is a honeycomb structured device consisting of ordered square channels through which the diesel exhaust gas permeates into the walls, trapping the soot particles within the porous wall as well as over the inlet channel surface, as shown in **Fig. 7**. The soot particles deposited on the monolith channels are oxidized into CO_2 at temperatures of exhaust gases.

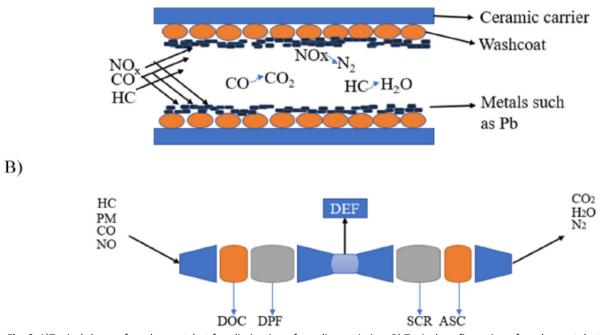
The regeneration of *DPF* is inevitable following the problem that the accumulated soot particles need to be combusted periodically to decrease the back pressure of systems, prevent plugging and maintain economic efficiency (**Yang et al., 2022**). There are two kinds of regeneration processes: active one and passive one. For active regeneration, the temperature of the exhaust gases is increased through injecting more fuel or electrically heating. To trigger passive regeneration, the activation energy of the soot combustion is reduced by chemical methods. For instance, combining a *DPF* with catalysts is an efficient passive regeneration technique, and highly active oxidation catalysts play a crucial role. The catalysts coated on *DPF* or upstream *DOC* can promote *NO* oxidation to NO₂ with strong oxidizing properties.

Table 4 The influence of different emission control technologies on the emissions and other factors of diesel- and gasoline-powered engines.

Fuel	Engine Type	Operating Condition	Emission Control Technology	Influence on emissions and other properties	Ref
Diesel	A 4-stroke marine diesel engine (WD10C190-15) with HSDF (3.09% m/m S) was used	Load from 25% to 100%	EGR and scrubber system	EGR scrubber causes 98% PM reduction. The problem (PM emissions) regarding using the EGR technology in the marine engine has been solved with this new technique	Wang et al. (2022b)
Diesel	4-stroke, 2-cylinder, constant- speed, CRDI turbocharged CI engine	1500 rpm engine speed, 1.5 \pm 0.3 bar turbocharged pressure	New CRDI/HSD, Delphi, Dual fuel filter injection system as well as Methanol as an additive	The new injection system lowered the smoke opacity while it caused an enhancement in NO _x emissions. EGR was the solution to overcome this problem. The reduction in soot and NOx was made by bypassing turbocharged air and port injection of 30–50% of methanol	Agarwal et al. (2022)
Diesel	4-cylinder, turbocharged, and intercooler CRDI engine	Different boost pressure as well as various AB content in the fuel	Multicylinder CRDI engine and AB as an additive	In the CRDI engine, increasing boost pressure caused a reduction in UHC, NO_x , OO_2 , smoke, and CO emissions. Increasing AB% enhanced the brake power, then reduced it (the oppositive behavior for BSPC has occurred)	Singh and Sandhu (2021)
Biodiesel	Four cylinders, direct injection, four-stroke, water-cooled	Using ANCF catalysts in various power as well as studying the influence of biodiesel on emissions	Fe ₂ O ₃ -based DOC and SCR catalyst	Smoke remained stable at low power but increased at high power when they used ANCF. UHC emissions were reduced by ANCF. Biodiesel reduced CO emissions. Using ANCF caused a reduction in excessive air factors, but it could increase the BSFC	Zhang et al. (2021)
Diesel	4-cylinder, water-cooled, turbocharged, electronic, agricultural diesel engine	Different catalyst loadings	DOC coupled with a CDPF	DOC and CDPF could reduce CO and UHC, especially with a higher engine load. DOC reduced PM by 34%, while CDPF could reduce it by 90%. Both of them enhanced NOx emission. The fuel consumption enhancement was negligible with the after-treatment system, while the engine power enhanced significantly, especially at higher speed and lower engine load	Zhang et al. (2022)
Diesel	4 stroke & in-line 6 cylinders	Different speed and load	After treatment: DOC + DPF/ POC + SCR + ASC	UHC, PM, and NO _x emissions could be reduced by DPF more than POC (without more CO ₂ generation).NO _x emission was reduced effectively by SCR. DOC oxidized NO into NO2 but didn't influence NO _x emission and just changed the composition	Feng et al. (2022)
Gasoline	2.4 L naturally aspirated GDI	Different operating temperatures	Using the TWC catalyst system to reduce the emissions of NO _x	NO _x reached the lowest amount when the mixture of 5% alumina and 75% Pd/Ba/CeO ₂ was used as NO _x storge material. PGM ration had limited influence on emission, but higher PGM contents resulted in more NOx storage	K and LEE (2012)
Gasoline	Air-cooled, 4-stroke, V-2 cylinder, horizontal PTO shaft, OHV	Different air/fuel of HE and different water content of HE	Hydrous ethanol	Raising water content up to 30% cause a reduction of up to 50% of NO _x conversion. More water content didn't reduce NO _x more. Higher air/fuel of HE causes the high lean condition, triggering lower NO _x emissions. The lower content of HE (HE 5%) showed higher brake thermal efficiency. But higher content reduced the efficiency and enhanced NO _x removal efficiency	Al-Harbi et al. (2022)
Gasoline	Combined injection 4-cylinder SI engine.	Different ethanol volume fractions, different EGR ratios as well as different excess air ratios	EGR, direct EDI plus GPI	A Higher EGR ratio dropped NO_x emission significantly while a higher excess air ratio resulted in higher NO_x emission. A higher excess air ratio triggered lower CO emissions. Accumulation mode particle number and nucleation mode particle number were reduced and then raised with increasing EGR and EDI	Zhao et al. (2022b)
Gasoline	In-line, 4-cylinder, water cooling, combined port- plus direct-injection system SI, GDI	Different excess air ratios, EGR, and CO ₂ dilution rates	EGR dilution at half-load, stoichiometric and lean-burn	An increase in EGR and CO_2 dilution rate reduced the emissions of soot and NO_x but enhanced UHC and CO emissions. Higher excess air rates reduced NO _x , CO, and soot emissions but enhanced UHC emissions. Slightly reduction in maximum heat release rate by increasing EGR and CO2 dilution rates	Gong et al. (2022)

Table 5 Different methods used in hydrogen-fueled engines to control NO_x emissions.

Engine Type	Operating Condition	Emission Control Technology	The influence of technology on the NOx emission	Ref
A single-cylinder engine based on a 4-stroke diesel engine	Different EGR% and engine speeds	EGR	High levels of EGR cause reduced NO _x emissions and also enhance engine torque.	Tsujimura and Suzuki (2019)
Hydrogen/diesel dual-fuel in an inline 4-cylinder water-cooled diesel direct injection engine	Different EGR% and H ₂ energy share	EGR	Higher levels of EGR resulted in lower NO _x emissions. The model is also useable for gasoline/hydrogen engines.	Kumar et al. (2018)
A multi-cylinder SI engine fueled with hydrogen	Different EGR rates and WHR	EGR and water injection	An increase in WHR and EGR causes a reduction in the emissions of NO_{x^*} The influence of WHR is more than EGR	Dhyani and Subramanian (2019)
A 1.6L commercial gasoline engine with four cylinders	The different times during cold-start and different excess air ratios	Controlling excess air coefficient	Adopting H_2 -rich combustion in cold-start is an excellent method of lowering NO_x . Moreover, a decrease in excess air can sharply reduce NOx emissions.	Xu et al. (2018)
A 2.3 L, 4 St, PFI hydrogen engine with a turbocharger	Different engine speeds and equivalence ratios	TWC and control the equivalence ratio	From an equivalence ratio of 0 to around 0.6 and higher than 0.9, the emissions of NO _x are at the standard level. A high equivalence ratio in H ₂ combustion in the presence of TWC can reduce NO _x emissions.	he Luo et al. (2019)
A single-cylinder hydrogen research engine	Different equivalence ratios,	Boosting lean-burn technology and intake valve timing retardation	Zero ppm NO _x emission was achieved by using boosting lean burn technology. Intake valve timing can control the backfire, which influences the emissions of NO _x ,	Lee et al. (2014)
A single-cylinder DOHC sparkignition engine	Different intakevalve opening timing and boosting pressures	Using supercharger, lean- burn, and late intake valve opening	In ultra-lean burn, high boosting pressure and low equivalence cause to reduce the NO _x emissions to the standard level	Lee et al. (2010)


Table 6 The influence of different techniques on UHC emissions.

Reference Fuel	Engine Type	Additive or Used Technology	Operating Condition	Influence on UHC emission	Ref
Gasoline +	single-cylinder engine based on a	Blending gasoline and diesel	Different EGR rates,	Higher ignition delay, intake pressure, and	Han et al.
Diesel	 1.7 L four-cylinder direct- injection 	in various contents as well as EGR	ignition delays, and gasoline contents	EGR, resulted in higher UHC. Higher gasoline content causes lower UHC.	(2012)
Gasoline	SI, 4-stroke, 998	Ethanol as well as TWC as an	Different ethanol	Higher ethanol causes lower UHC, but to a	Iodice et al.
		aftertreatment system	percentage	point. By increasing ethanol more than 20%, UHC can be reduced	(2016)
Gasoline	Maruti Suzuki make four stroke	Ethanol-H ₂ O ₂	Different ethanol and	10% of Ethanol reduced the UHC. Higher	V Barboza
	three-cylinder MPFI engine		H ₂ O ₂ contents	H ₂ O ₂ resulted in lower HC	et al. (2022)
Gasoline	V6HCCI/SI model, GDI engine	A prototype three zones	SI mood (before using	UHC and CO reduction by conversion was	Hasan et al.
		monolith catalyst	catalyst) and HCCI (after using catalyst)	around 90%	(2016)
Diesel	A single cylinder, four stroke,	Fe ₂ O ₃ based DOC and SCR	Different engine torque.	At low torque, just ATCF caused reduction in	Resitoglu
	water cooled, direct injection Kirloskar TV1 diesel engine		ATCF and ANCF	UHC, while in high torque all both catalytic systems trigger lower UHC	et al. (2020)
Diesel	Kirloskar, cylinder (One), CRDI	Hexanol/hydrogen additives	Different engine loads and	Higher hexanol and EGR% causes higher	Seelam et al.
	vertical water-cooled Diesel engine		EGR%	UHC, higher load% triggers lower UHC.	(2022)
Diesel	A single cylinder, four stroke, air	WCO biodiesel, gasoline and	Different engine load	The best additive was kerosene with more	Gad and
	cooled, direct injection diesel engine	kerosene		than 70% reduction (10%), gasoline and biodiesel also caused reduction in UHC	Ismail (2021)

The presence of NO₂ can transform the reaction mode from solid—solid—gas (cata-lyst-soot-O₂) into solid—gas—solid (catalyst-NO₂-soot). NO₂ can further oxidize soot particles under the temperature of 350 °C of the exhaust gas, achieving the regeneration of *DPF* (Li et al., 2021c), that is, NO₂-assisted regeneration which is extensively used in heavy-duty vehicles (Jiaqiang et al., 2016).

The catalysts are generally coated on *DPF* to catalyze the combustion of soot particles, called *CDPF*. Noble metal catalysts for soot combustion have been extensively developed for their excellent activity and stability, such as Pt/Fe₂O₃ (Yang et al., 2021c) and Rh/CeO₂ (Lee et al., 2021), although their poor thermal stability represents a problem. Recently, various cost-effective catalysts such as transition metals (Yang et al., 2021c; Cui et al., 2020), alkali metals (Liu et al., 2018; Wang et al., 2021b, 2021c), ceria-based oxides (Wei et al., 2020; Grabchenko et al., 2020), and perovskite-type (Zeng et al., 2020) oxides have been investigated for catalytic soot combustions. Besides optimizing the intrinsic catalytic activity, structure improvement is also a feasible solution to provide sufficient contact points through enhancing the soot-catalyst contact efficiency. Two main strategies are present: (1) introducing

macropore into the catalyst, such as 3DOM structures (Mei et al., 2020; Zhao et al., 2021), porous nanotubes (Fang et al., 2020), and nanoflower structures (Wang et al., 2020); and (2) selecting a suitable substrate to increase the surface area, to provide more O_2 activation sites on the catalyst (Wu et al., 2019).

A)

Fig. 6. A)Typical shape of modern catalyst for elimination of gasoline emission, B) Typical configuration of modern catalyst for eliminating diesel emission (**Wang and Olsson, 2019**). DOC is used to eliminate *CO* and *UHC*; then particulates are removed by *DPF*. Later, *SCR* is used to remove *NO_x*. The last part is the *ASC* applied to eliminate excess ammonia.

Table 7 The influence of different factors on the emission of CO in gasoline- and diesel-powered engines.

Fuel	Engine	CO influencer	Additive content (%) or condition	Influence of CO emission (%)	Main outcomes	Ref.
Gasoline	EW 10 J4 (RFR), Max power: 137 hp/6000 rpm Max Torque:	Bioethanol	3	-18.2	Bioethanol raised the ratio of oxygen in fuel that cause to complete combustion and	Jhang et al. (2020)
	19.8 kg-m/4100 rpm		6	-25	reduce the rate of CO, while it causes its oxidize into CO ₂	()
Gasoline	spark-ignition engine with LRB. Max Power: 1.5 KW	Bioethanol and bio-acetone	3.5–3.5	-53	The influence of bio-acetone was more than bioethanol in reduction of CO emissions	Elfasakhany (2020)
			5-5	-67		
Gasoline	turbocharge direct injection	Methanol	10	pprox -10	Higher oxygen content of the additives	Tian et al.
	spark ignition. Four cylinder			@4000 rpm	means higher reduction in CO emission. In	(2020)
	and Orthostichous	Ethanol	10	≈8 @4000 rpm	the lower speed (1000r/min or lower), CO emission is almost zero	
		Butanol	10	≈ -6		
				@4000 rpm		
Diesel	A single cylinder, four stroke,	Diesel oxidation catalyst	At load 5 Nm	≈ -42	DOC is able to convert CO to CO ₂ The higher	Nadanakumar
	water cooled	with Alumina, cerium oxide and barium oxide mixed with phosphoric as a wash coat	At load 10 Nm	-25	load means lower oxygen in combustion chamber that lead to incomplete combustion that causes higher CO emission	et al. (2020)
Diesel	4.45L turbocharged, in-line 4	DOC	At load 10	≈ -82	Due to higher selectivity of CO than UHC in	Hu et al. (2021b)
	cylinder diesel engine	CDPF	Nm and	≈ -90	DOC, the efficiency of this catalyst for	
		DOC + CDPF + SCR	1650 rpm	≈ -95	reducing CO emission is almost 100%. Changes in the speed was negligible in the emission of CO	
Diesel	Single cylinder, 4 S Diesel,	D-Thermal	1 ml	≈ -21	Higher transformation of CO to CO ₂ gas by	Ashok et al.
	Constant-speed, direct-		2 ml	≈ -26	adding D-Thermal and also reduction in	(2020b)
Biodiesel	injection, Compression		1 ml	≈ -30	ignition delay (higher cetane number)	
	Ignition engine		2 ml	≈ -34		
Diesel	1.9 MultiJet Diesel Engine,	neem seed	5	≈ -7	the reduction in CO by plant oils might be	Oni and
	Transverse (4 in line)		10	pprox -10	due to too big droplets in a diesel engine or	Oluwatosin
		Camelina	5	≈ -13	inadequate turbulence or swirl formed in the	(2020)
			10	≈ -15	combustion chamber. Moreover, higher	
					amount of plant oils means higher amount of oxygen in combustion chamber that cause to	
					burn more carbon molecules	
Gasoline	single cylinder, four strokes, water cooled, variable compression ratio and PFI equipped spark ignition engine	Lemon peel oil	20	≈ -11	The temperature after combustion is higher when the load in higher and it means lower CO emission.	Biswal et al. (2020)

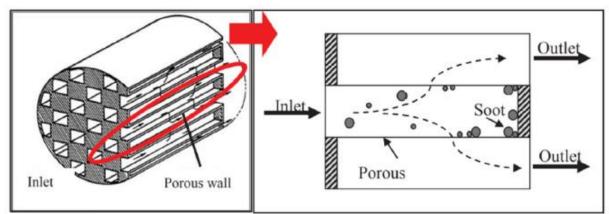


Fig. 7. Functioning of typical *DPF* (Mokhri et al., 2012).

Conventionally thermal catalysis can reduce the combustion temperatures of diesel soot to within the exhaust temperatures (300-500 °C), and thereby the emitted soot can be continuously removed. However, the exhaust temperatures are often within 100-200 °C due to the frequency of idling of the urban diesel vehicles in traffic jams, while the ignition temperatures for most catalytic soot combustion are >200 °C, and the higher temperatures are required to maintain the combustion. Recently, some technologies have been developed to promote the combustion of soot. One is that NTPtechnology can

simultaneously remove *PM* and *NO*_x from *DPF* (**Ji et al., 2020**). *NTP* technology can achieve oxidative *PM* decomposition at a relatively low temperature (>180 °C) due to the extremely high active groups such as *O* and *O*₃ (**Liu et al., 2021**). Recently, an electrification strategy was developed for catalytic soot combustion based on the principle of electro-thermal heating on the contact interface of conductive catalysts and soot. Voltages are applied to the catalyst-soot mixture, forming passing electric currents, and Joule heating is generated on the interfaces, triggering soot combustion. The catalysis strategy breaks through the reaction temperature limits, decreasing the ignition temperature for 50% of soot conversion to <75 °C (Fig. 8) (Mei et al., 2021).

5. Conclusion and future prospect

Although there are movements toward renewable energies, the use of gasoline and diesel fuels remains high such that eliminating the use of fossil fuels is challenging. In this case, modifying the engines, fuels, and exhausts can improve the environmental impact of the above-mentioned technologies and meet emission regulations for pollutants control, while green energies are simultaneously developed. Although using alternative fuels such as ethanol in some countries (such as Brazil) has received significant attention, the benefits of using such fuels are still hindered by challenges. Applying alcohol (as an additive) to reduce the most dangerous pollutants has been shown to be more practical.

This technology still needs progress in the case of energy for diesel engines. Moreover, these types of additives cause to increase in the oxygen content of fuel that is leading to higher NO_x and CO_2 emissions. As combustion and the environmental performance of alcohols are still high (regarding *CO* and soot), it is also worth making new studies to reduce NO_x and CO_2 emissions. In the case of NO_x emissions, different technologies such as EGR have been used to overcome this problem, but there should be a focus on the emissions of CO_2 to meet the new stringent regulations.

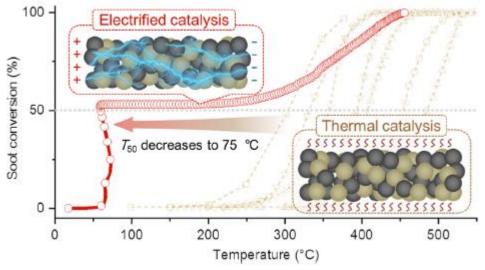


Fig. 8. Comparison of soot ignition temperature of electro-thermal heating catalysis and conventional heating catalysis (Mei et al., 2021).

Using catalysts to filter and oxidize dangerous pollutants is an advanced technique to address them. DOC, DPF, SCR, ASC, SAC, GPF, and TWC are different catalysts used for gasoline and diesel engines thus far. For example, TWC, as a gasoline after-treatment step operated with stoichiometric air-fuel ratio, CO, NO_x , and UHC are converted to N₂, CO₂, and H₂O.

Understanding the potential of reducing air pollutants and greenhouse gases by additive, engine modification, or catalysts is critical to minimizing the harm from energy production to human health and the environment. Moreover, each technique could be supplemented with techno-economic analyses to understand its impacts best. In addition, working on new types of metal alloys, such as blending different metals, is important to prevent engine corrosion. Moreover, the new research should consider not only studying the optimization of the new fuel types, such as hydrogen/biofuel blends but also their influence on engine corrosion and overcoming this problem. In addition, studying new combinations of after-treatment technologies would be beneficial not only for emission (PM, NO_x , CO, and UCH) reduction simultaneously but also for overcoming problems caused by metal alloys and even thinking about the engine performance and fuel properties as the following priorities. It is worth mentioning that nowadays, electric and hybrid propulsion systems are of actual value due to energy problems the world is struggling with. In this case, new studies are required to study the performance improvement of these types of systems regarding energy usage and air pollution reduction.

Moreover, it is axiomatic that human health and saving our planet are two factors that deserve attention in shifts to clean energy and improvements in the use of traditional fuels, such as through technological development or penalties (e.g., economic penalties).

References

Agarwal, A.K., Kumar, V., Ankur Kalwar, A.J., 2022. Fuel injection strategy optimisation and experimental performance and emissions evaluation of diesel displacement by port fuel injected methanol in a retrofitted mid-size genset engine prototype. Energy 248, 123593. https://doi.org/10.1016/j.energy.2022.123593.

Agote-Arán, M., Elsener, M., Schutze, F.W., Schilling, C.M., Sridhar, M., Katsaounis, E., Krocher, O., Ferri, D., 2021. Understanding the impact of poison distribution on the performance of Diesel oxidation catalysts. Appl. Catal. B Environ. 299 https://doi.org/10.1016/j.apcatb.2021.120684.

Air pollutant emissions worldwide from 2015 to 2050, by compound, 2020. Statista. htt ps://www.statista.com/statistics/1014091/air-pollutants-emissions-worldwide-by-c ompound/.

Al-Harbi, A.A., Alabduly, A.J., Alkhedhair, A.M., Alqahtani, N.B., Albishi, M.S., 2022. Effect of operation under lean conditions on NOx emissions and fuel consumption fueling an SI engine with hydrous ethanol-gasoline blends enhanced with synthesis gas. Energy 238, 121694. https://doi.org/10.1016/j.energy.2021.121694.

Ampah, J.D., Yusuf, A.A., Afrane, S., Jin, C., Liu, H., 2021. Reviewing two decades of cleaner alternative marine fuels: towards IMO's decarbonization of the maritime transport sector. J. Clean. Prod. 320, 128871 https://doi.org/10.1016/). jclepro.2021.128871.

Anenberg, S.C., Miller, J., Minjares, R., Du, L., Henze, D.K., Lacey, F., Malley, C.S., Emberson, L., Franco, V., Klimont, Z., Heyes, C., 2017. Impacts and mitigation of excess diesel-related NO x emissions in 11 major vehicle markets. Nature 545, 467-471. https://doi.org/10.1038/nature22086.

Aresta, M., Dibenedetto, A., Angelini, A., 2014. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem. Rev. 114, 1709-1742. https://doi.org/10.1021/cr4002758.

Ashok, B., Nanthagopal, K., Chyuan, O.H., Le, P.T.K., khanolkar, K, Raje, N., Raj, A., Karthickeyan, V., Tamilvanan, A., 2020a. Multi-functional fuel additive as a combustion catalyst for diesel and biodiesel in Cl engine characteristics. Fuel 278, 118250. https://doi.org/10.1016/j.fuel.2020.118250.

Ashok, B., Nanthagopal, K., Chyuan, O.H., Le, P.T.K., khanolkar, K, Raje, N., Raj, A., Karthickeyan, V., Tamilvanan, A., 2020b. Multi-functional fuel additive as a combustion catalyst for diesel and biodiesel in Cl engine characteristics. Fuel 278, 118250. https://doi.org/10.1016/j.fuel.2020.118250.

Atarod, P., Khlaife, E., Aghbashlo, M., Tabatabaei, M., Hoang, A.T., Mobli, H., Nadian, M. H., Hosseinzadeh-Bandbafha, H., Mohammadi, P., Roodbar Shojaei, T., Mahian, O., Gu, H., Peng, W., Lam, S.S., 2021. Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/ diesel emulsion fuel. J. Hazard Mater. 407, 124369 https://doi.org/10.1016/j. jhazmat.2020.124369.

Azzoni, M.E., Franchi, F.S., Usberti, N., Nasello, N.D., Castoldi, L., Nova, I., Tronconi, E., 2022. Dual-layer AdSCR monolith catalysts: a new solution for NOx emissions control in cold start applications. Appl. Catal. B Environ. 315, 121544 https://doi.org/10.1016/j.apcatb.2022.121544.

Babacan, O., De Causmaecker, S., Gambhir, A., Fajardy, M., Rutherford, A.W., Fantuzzi, A., Nelson, J., 2020. Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage. Nat. Energy 5, 720-728. https://doi.org/10.1038/s41560-020-0646-1.

Beale, A.M., Gao, F., Lezcano-gonzalez, I., Peden, C.H.F., Szanyi, J., 2015. Chem Soc Rev Recent advances in automotive catalysis for NO x emission control by small-pore microporous materials. Chem. Soc. Rev. https://doi.org/10.1039/C5CS00108K.

Becher, J., Sanchez, D.F., Doronkin, D.E., Zengel, D., Meira, D.M., Pascarelli, S., Grunwaldt, J.D., Sheppard, T.L., 2021. Chemical gradients in automotive Cu-SSZ-13 catalysts for NOx removal revealed by operando X-ray spectrotomography. Nat. Catal. 4, 46-53. https://doi.org/10.1038/s41929-020-00552-3.

Bendrich, M., Scheuer, A., Hayes, R.E., Votsmeier, M., 2018. Unified mechanistic model for Standard SCR, Fast SCR, and NO2 SCR over a copper chabazite catalyst. Appl. Catal. B Environ. 222, 76-87. https://doi.org/10.1016/j.apcatb.2017.09.069.

Bendrich, M., Opitz, B., Scheuer, A., Hayes, R.E., Votsmeier, M., 2022. Selective catalytic reduction: adding an ammonia slip catalyst mitigates dosing errors. Can. J. Chem. Eng. 100, 1439-1447. https://doi.org/10.1002/cjce.24293.

Beniya, A., Higashi, S., 2019. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590-602. https://doi.org/10.1038/s41929-019-0282-y.

Biswal, A., Kale, R., Teja, G.R., Banerjee, S., Kolhe, P., Balusamy, S., 2020. An experimental and kinetic modeling study of gasoline/lemon peel oil blends for PFI engine. Fuel 267, 117189. https://doi.org/10.1016/j.fuel.2020.117189.

Borlaug, B., Muratori, M., Gilleran, M., Woody, D., Muston, W., Canada, T., Ingram, A., Gresham, H., McQueen, C., 2021. Heavy-duty truck electrification and the impacts of depot charging on electricity distribution systems. Nat. Energy 6, 673-682. https:// doi.org/10.1038/s41560-021-00855-0.

by fuel technology Breakdown of Global Car Sales in 2019 and 2030, 2020. https://www .statista.com/statistics/827460/global-car-sales-by-fuel-technology/. Brown, P.T., Caldeira, K., 2017. Greater future global warming inferred from Earth's recent energy budget. Nature 552, 45-50. https://doi.org/10.1038/nature24672.

Brusseau, M.L., Matthias, A.D., Comrie, A.C., Musil, S.A., 2019. Chapter 17 - atmospheric pollution. In: Brusseau, M.L., Pepper, I.L., Gerba, C.P. (Eds.), Environ. Pollut. Sci., third ed. Academic Press, pp. 293-309. https://doi.org/10.1016/B978-0-12-814719-1.00017-3.

Buschow, K.H.J., 2001. Encyclopedia of Materials : Science and Technology. Elsevier. https://www.worldcat.org/title/encyclopedia-of-materials-science-andtechnology/oclc/256878065.

Castoldi, L., Matarrese, R., Daturi, M., Llorca, J., Lietti, L., 2019. Al2O3-supported Pt/Rh catalysts for NOx removal under lean conditions. Appl. Catal. Gen. 581, 43-57. https://doi.org/10.1016/j.apcata.2019.05.013.

Cetane Number Improver (2-EHN) Market - Forecast(2021 - 2026, 2021. https://www.in dustryarc.com/Report/6439/Cetane-Improver-Market-Research-Report.html.

Chan, J.H., Tsolakis, A., Herreros, J.M., Kallis, K.X., Hergueta, C., Sittichompoo, S., Bogarra, M., 2020. Combustion, gaseous emissions and PM characteristics of DiMethyl Carbonate (DMC)-gasoline blend on gasoline Direct Injection (GDI) engine. Fuel 263, 116742. https://doi.org/10.1016/j.fuel.2019.116742.

Chatterjee, D., Burkhardt, T., Rappe, T., Guthenke, A., Weibel, M., 2009. Numerical simulation of DOC+DPF+SCR systems: DOC influence on SCR performance. SAE Int. J. Fuels Lubr. 1, 440-451. September 11, 2022. http://www.jstor.org/stable/ 26272021.

Chen, W.T., Zhang, Y., Lee, T.H., Wu, Z., Si, B., Lee, C.F.F., Lin, A., Sharma, B.K., 2018a. Renewable diesel blendstocks produced by hydrothermal liquefaction of wet biowaste. Nat. Sustain. 1, 702-710. https://doi.org/10.1038/s41893-018-0172-3.

Chen, J.G., Crooks, R.M., Seefeldt, L.C., Bren, K.L., Morris Bullock, R., Darensbourg, M. Y., Holland, P.L., Hoffman, B., Janik, M.J., Jones, A.K., Kanatzidis, M.G., King, P., Lancaster, K.M., Lymar, S.V., Pfromm, P., Schneider, W.F., Schrock, R.R., 2018b. Beyond fossil fuel-driven nitrogen transformations. Science 80-, 360. https://doi. org/10.1126/science.aar6611.

Chen, Z., He, J., Chen, H., Geng, L., Zhang, P., 2021. Comparative study on the combustion and emissions of dual-fuel common rail engines fueled with diesel/ methanol, diesel/ethanol, and diesel/n-butanol. Fuel 304, 121360. https://doi.org/ 10.1016/j.fuel.2021.121360.

Chu, S., Majumdar, A., 2012. Opportunities and challenges for a sustainable energy future. Nature 488, 294-303. https://doi.org/10.1038/nature11475.

Colmer, J., Hardman, I., Shimshack, J., Voorheis, J., 2020. Disparities in PM2.5 air pollution in the United States. Science 80 (369), 575-578. https://doi.org/10.1126/ science.aaz9353.

Contini, D., Costabile, F., 2020. Does air pollution influence COVID-19 outbreaks? Atmosphere 11, 377. https://doi.org/10.3390/ATMOS11040377.

Cop26 Explained, UN Clim. Chang. Conf. UK, 2021, 2021. https://ukcop26.org/cop 26-goals/.

Cui, B., Zhou, L., Li, K., Liu, Y.Q., Wang, D., Ye, Y., Li, S., 2020. Holey Co-Ce oxide nanosheets as a highly efficient catalyst for diesel soot combustion. Appl. Catal. B Environ. 267, 118670 https://doi.org/10.1016/j.apcatb.2020.118670.

Daellenbach, K.R., Uzu, G., Jiang, J., Cassagnes, L.E., Leni, Z., Vlachou, A., Stefenelli, G., Canonaco, F., Weber, S., Segers, A., Kuenen, J.J.P., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, J.L., Prévot, A.S.H., 2020. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 587, 414-419. https://doi.org/10.1038/s41586-020-2902-8.

Datye, A.K., Votsmeier, M., 2021. Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. 20, 1049-1059. https://doi.org/10.1038/s41563-020-00805-3.

S.J. Davis, Z. Liu, Z. Deng, B. Zhu, P. Ke, T. Sun, R. Guo, C. Hong, B. Zheng, Y. Wang, O. Boucher, P. Gentine, P. Ciais, Carbon Dioxide Emissions Rebound from the COVID-19 Pandemic, (n.d.) 1-7.

Deneyer, A., Peeters, E., Renders, T., Van den Bosch, S., Van Oeckel, N., Ennaert, T., Szarvas, T., Komnyi, T.I., Dusselier, M., Sels, B.F., 2018. Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nat. Energy 3, 969-977. https://doi.org/10.1038/s41560-018-0245-6.

Deutschmann, O., Grunwaldt, J.D., 2013. Abgasnachbehandlung in mobilen Systemen: stand der Technik, Herausforderungen und Perspektiven. Chem.-Ing.-Tech. 85, 595-617. https://doi.org/10.1002/cite.201200188.

Dhyani, V., Subramanian, K.A., 2019. Control of backfire and NOx emission reduction in a hydrogen fueled multi-cylinder spark ignition engine using cooled EGR and water injection strategies. Int. J. Hydrogen Energy 44, 6287-6298. https://doi.org/ 10.1016/j.ijhydene.2019.01.129.

Eagan, N.M., Kumbhalkar, M.D., Buchanan, J.S., Dumesic, J.A., Huber, G.W., 2019. Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nat. Rev. Chem 3, 223-249. https://doi.org/10.1038/s41570-019-0084-4.

Edwin Geo, V., Jesu Godwin, D., Thiyagarajan, S., Saravanan, C.G., Aloui, F., 2019. Effect of higher and lower order alcohol blending with gasoline on performance, emission and combustion characteristics of SI engine. Fuel 256, 115806. https://doi.org/ 10.1016/j.fuel.2019.115806.

EdwinGeo, V., Fol, G., Aloui, F., Thiyagarajan, S., Jerome Stanley, M., Sonthalia, A., Brindhadevi, K., Saravanan, C.G., 2021. Experimental analysis to reduce CO2 and other emissions of CRDI CI engine using low viscous biofuels. Fuel 283, 118829. https://doi.org/10.1016/j.fuel.2020.118829.

Elfasakhany, A., 2020. Gasoline engine fueled with bioethanol-bio-acetone-gasoline blends: performance and emissions exploration. Fuel 274, 117825. https://doi.org/ 10.1016/j.fuel.2020.117825.

Emissions in the U.S. And China, 2019. https://www.statista.com/topics/3185/us-gree nhouse-gasemissions/.

Eom, J., Hyun, M., Lee, J., Lee, H., 2020. Increase in household energy consumption due to ambient air pollution. Nat. Energy 5, 976-984. https://doi.org/10.1038/s41560-020-00698-1.

Fang, F., Zhao, P., Feng, N., Wan, H., Guan, G., 2020. Surface engineering on porous perovskite-type La0.6Sr0.4CoO3-8 nanotubes for an enhanced performance in diesel soot elimination. J. Hazard Mater. 399, 123014 https://doi.org/10.1016/). jhazmat.2020.123014.

Farrauto, R.J., Deeba, M., Alerasool, S., 2019. Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal. 2, 603-613. https://doi.org/10.1038/s41929-019-0312-9.

Fayyazbakhsh, A., Pirouzfar, V., 2016. Investigating the influence of additives-fuel on diesel engine performance and emissions: analytical modeling and experimental validation. Fuel 171, 167-177. https://doi.org/10.1016/j.fuel.2015.12.028.

Fayyazbakhsh, A., Pirouzfar, V., 2017. Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance. Renew. Sustain. Energy Rev. 74 https://doi.org/10.1016Zj.rser.2017.03.046.

Feng, R., Hu, X., Li, G., Sun, Z., Deng, B., 2022. A comparative investigation between particle oxidation catalyst (POC) and diesel particulate filter (DPF) coupling aftertreatment system on emission reduction of a non-road diesel engine. Ecotoxicol. Environ. Saf. 238, 113576 https://doi.org/10.1016/j.ecoenv.2022.113576.

Fischer, M., Kreutziger, P., Sun, Y., Kotrba, A., 2017. Clean EGR for gasoline engines -innovative approach to efficiency improvement and emissions reduction simultaneously. In: WCXTM 17 SAE World Congr. Exp. SAE International. https://doi.org/10.4271/2017-01-0683.

Forster, P.M., Forster, H.I., Evans, M.J., Gidden, M.J., Jones, C.D., Keller, C.A., Lamboll, R.D., Le Queré, C., Rogelj, J., Rosen, D., Schleussner, C.F., Richardson, T.B., Smith, C.J., Turnock, S.T., 2020. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Change 10, 913-919. https://doi.org/10.1038/s41558-020-0883-0.

Fujita, T., Toda, K., Karimova, A., Yan, S.F., Naka, Y., Yet, S.F., Pinsky, D.J., 2001. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat. Med. 7, 598-604. https://doi.org/10.1038/87929.

Furukawa, H., Cordova, K.E., Keeffe, M.O., Yaghi, O.M., 2013. The chemistry and applications of metalorganic frameworks the chemistry and applications of, science. https://doi.org/10.1126/science.1230444 (80-.). 341.

Gad, M.S., Ismail, M.A., 2021. Effect of waste cooking oil biodiesel blending with gasoline and kerosene on diesel engine performance, emissions and combustion characteristics. Process Saf. Environ. Protect. 149, 1-10. https://doi.org/10.1016/j. psep.2020.10.040.

Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., Zhong, L., Qiu, M., Yang, C., Cai, J., Wei, W., Sun, Y., 2017. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9, 1019-1024. https://doi.org/ 10.1038/nchem.2794.

Gao, J., Chen, H., Liu, Y., Li, Y., Li, T., Tu, R., Liang, B., Ma, C., 2021a. The effect of aftertreatment techniques on the correlations between driving behaviours and NOx emissions of a passenger cars. J. Clean. Prod. 288, 125647 https://doi.org/10.1016/j.jclepro.2020.125647.

Gao, J., Chen, H., Liu, Y., Li, Y., 2021b. Impacts of De-NOx system layouts of a diesel passenger car on exhaust emission factors and monetary penalty. Energy Sci. Eng. 9, 2268-2280. https://doi.org/10.1002/ese3.1001.

Gasoline Explained, 2020. https://www.eia.gov/energyexplained/gasoline/octane-in-d epth.php.

Getsoian, A. (Bean), Theis, J.R., Paxton, W.A., Lance, M.J., Lambert, C.K., 2019. Remarkable improvement in low temperature performance of model three-way catalysts through solution atomic layer deposition. Nat. Catal. 2, 614-622. https://doi.org/10.1038/s41929-019-0283-x.

Ghadikolaei, M.A., Wong, P.K., Cheung, C.S., Ning, Z., Yung, K.F., Zhao, J., Gali, N.K., Berenjestanaki, A.V., 2021. Impact of lower and higher alcohols on the physicochemical properties of particulate

matter from diesel engines: a review. Renew. Sustain. Energy Rev. 143, 110970 https://doi.org/10.1016/j. rser.2021.110970.

Gong, C., Si, X., Liu, F., 2022. Comparative analysis on combustion and emissions between CO2 and EGR dilution GDI engine at half-load, stoichiometric and lean-burn conditions. Fuel 309, 122216. https://doi.org/10.1016/j.fuel.2021.122216.

Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., La Parola, V., Liotta, L.F., Vodyankina, O.V., 2020. The role of metal-support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl. Catal. B Environ. 260, 118148 https://doi.org/ 10.1016/j.apcatb.2019.118148.

Grange, S.K., Lewis, A.C., Moller, S.J., Carslaw, D.C., 2017. Lower vehicular primary emissions of NO2 in Europe than assumed in policy projections. Nat. Geosci. 10, 914-918. https://doi.org/10.1038/s41561-017-0009-0.

Han, D., Ickes, A.M., Bohac, S.V., Huang, Z., Assanis, D.N., 2012. HC and CO emissions of premixed low-temperature combustion fueled by blends of diesel and gasoline. Fuel 99, 13-19. https://doi.org/10.1016/j.fuel.2012.04.010.

Hasan, A.O., Abu-Jrai, A., Al-Muhtaseb, A.H., Tsolakis, A., Xu, H., 2016. HC, CO and NOx emissions reduction efficiency of a prototype catalyst in gasoline bi-mode SI/HCCI engine. J. Environ. Chem. Eng. 4, 2410-2416. https://doi.org/10.1016/j. jece.2016.04.015.

He, P., Liang, J., Qiu, Y. (Lucy), Li, Q., Xing, B., 2020. Increase in domestic electricity consumption from particulate air pollution. Nat. Energy 5, 985-995. https://doi.org/10.1038/s41560-020-00699-0.

he Luo, Q., Bin Hu, J., gang Sun, B., shui Liu, F., Wang, X., Li, C., zhi Bao, L., 2019. Effect of equivalence ratios on the power, combustion stability and NOx controlling strategy for the turbocharged hydrogen engine at low engine speeds. Int. J. Hydrogen Energy 44, 17095-17102. https://doi.org/10.1016/j. ijhydene.2019.03.245.

Hemanandh, J., Purushothaman, M., Venkatesan, S.P., Ganesan, S., Gautam, S., Kandoi, S., 2021. Influence of nerium based catalytic converter in di diesel engine for emission reduction using avocado oil. Mater. Today Proc. 44, 3861-3865. https://doi.org/10.1016/j.matpr.2020.12.849.

Heo, I., You, Y.W., Lee, J.H., Schmieg, S.J., Yoon, D.Y., Kim, C.H., 2020. Urealess NOx reduction by carbon monoxide in simulated lean-burn exhausts. Environ. Sci. Technol. 54, 8344-8351. https://doi.org/10.1021/acs.est.9b07935.

Hinckley, E.L.S., Crawford, J.T., Fakhraei, H., Driscoll, C.T., 2020. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 13, 597-604. https://doi.org/10.1038/s41561-020-0620-3.

Hoang, A.T., Pham, V.V., 2018. A review on fuels used for marine diesel engines. J. Mech. Eng. Res. & Dev. 41, 22-23. https://econpapers.repec.org/RePEc:zib:zjmer d:v:41:y:2018:i:4:p:22-23.

Hoang, A.T., Pham, V.V., 2019. A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil, Energy Sources, Part A Recover. Util. Environ. Eff. 41, 611-625. https://doi.org/10.1080/15567036.2018.1520344.

Hoang, A.T., Le, A.T., Pham, V.V., 2019. A core correlation of spray characteristics, deposit formation, and combustion of a high-speed diesel engine fueled with Jatropha oil and diesel fuel. Fuel 244, 159-175. https://doi.org/10.1016/j. fuel.2019.02.009.

Hoang, A.T., Tabatabaei, M., Aghbashlo, M., 2020. A review of the effect of biodiesel on the corrosion behavior of metals/alloys in diesel engines, Energy Sources, Part A Recover. Util. Environ. Eff. 42, 2923-2943. https://doi.org/10.1080/15567036.2019.1623346.

Hoang, A.T., Huynh, T.T., Nguyen, X.P., Nguyen, T.K.T., Le, T.H., 2021a. An analysis and review on the global NO2 emission during lockdowns in COVID-19 period, Energy Sources, Part A Recover. Util. Environ. Eff. 1-21. https://doi.org/10.1080/ 15567036.2021.1902431, 00.

Hoang, A.T., Nizetic, Sandro, Olcer, A.I., Ong, H.C., Chen, W.H., Chong, C.T., Thomas, S., Bandh, S.A., Nguyen, X.P., 2021b. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: opportunities, challenges, and policy implications. Energy Pol. 154 https://doi.org/10.1016/j.enpol.2021.112322.

Hoang, A.T., Foley, A.M., Nižetic, S., Huang, Z., Ong, H.C., Ol[^]er, A.I., Pham, V.V., Nguyen, X.P., 2022. Energy-related approach for reduction of CO2 emissions: a critical strategy on the port-to-ship pathway. J. Clean. Prod. 355 https://doi.org/ 10.1016/j.jclepro.2022.131772.

Hu, S., Deng, B., Wu, D., Hou, K., 2021a. Energy flow behavior and emission reduction of a turbocharging and EGR non-road diesel engine equipped with DOC and DPF under NRTC (non-road transient cycle). Fuel 305. https://doi.org/10.1016/j. fuel.2021.121571.

Hu, J., Liao, J., Hu, Y., Lei, J., Zhang, M., Zhong, J., Yan, F., Cai, Z., 2021b. Experimental investigation on emission characteristics of non-road diesel engine equipped with integrated DOC + CDPF + SCR aftertreatment. Fuel 305, 121586. https://doi.org/ 10.1016/j.fuel.2021.121586.

Iodice, P., Senátore, A., Langella, G., Amoresano, A., 2016. Effect of ethanol-gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: an experimental investigation. Appl. Energy 179, 182-190. https://doi.org/10.1016/j.apenergy.2016.06.144.

IPCC, 2021. Assessment Report 6 of the Intergovernmental Panel on Climate Change.

Irfan, M.F., Goo, J.H., Kim, S.D., 2008. Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process. Appl. Catal. B Environ. 78, 267-274. https://doi.org/ 10.1016/j.apcatb.2007.09.029.

Jablonka, K.M., Ongari, D., Moosavi, S.M., Smit, B., 2021. Using collective knowledge to assign oxidation states of metal cations in metal-organic frameworks. Nat. Chem. 13, 771-777. https://doi.org/10.1038/s41557-021-00717-y.

Jablonska, M., Palkovits, R., 2019. Perovskite-based catalysts for the control of nitrogen oxide emissions from diesel engines. Catal. Sci. Technol. 9, 2057-2077. https://doi. org/10.1039/c8cy02458h.

Jain, C.D., Singh, V., Akhil Raj, S.T., Madhavan, B.L., Ratnam, M.V., 2021. Local emission and long-range transport impacts on the CO, CO2, and CH4 concentrations at a tropical rural site. Atmos. Environ. 254, 118397 https://doi.org/10.1016/). atmosenv.2021.118397.

Jayabal, R., Subramani, S., Dillikannan, D., Devarajan, Y., Thangavelu, L., Nedunchezhiyan, M., Kaliyaperumal, G., De Poures, M.V., 2022. Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends. Energy 250, 123709. https://doi.org/ 10.1016/j.energy.2022.123709.

Jenn, A., 2020. Emissions benefits of electric vehicles in Uber and Lyft ride-hailing services. Nat. Energy 5, 520-525. https://doi.org/10.1038/s41560-020-0632-7.

Jhang, S.R., Lin, Y.C., Chen, K.S., Lin, S.L., Batterman, S., 2020. Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen. Energy 209, 118436. https://doi.org/10.1016Zj.energy.2020.118436.

Ji, Y., Xu, D., Bai, S., Graham, U., Crocker, M., Chen, B., Shi, C., Harris, D., Scapens, D., Darab, J., 2017. Pt- and Pd-promoted CeO2-ZrO2 for passive NOx adsorber applications. Ind. Eng. Chem. Res. 56, 111-125. https://doi.org/10.1021/acs. iecr.6b03793.

Ji, L., Cai, Y., Shi, Y., Fan, R., Wang, W., Chen, Y., 2020. Effects of nonthermal plasma on microstructure and oxidation characteristics of particulate matter. Environ. Sci. Technol. 54, 2510-2519. https://doi.org/10.1021/acs.est.9b06177.

Jiang, C., Xu, H., Srivastava, D., Ma, X., Dearn, K., Cracknell, R., Krueger-Venus, J., 2017. Effect of fuel injector deposit on spray characteristics, gaseous emissions and particulate matter in a gasoline direct injection engine. Appl. Energy 203, 390-402. https://doi.org/10.1016/j.apenergy.2017.06.020.

Jiang, C., Parker, M.C., Helie, J., Spencer, A., Garner, C.P., Wigley, G., 2019. Impact of gasoline direct injection fuel injector hole geometry on spray characteristics under flash boiling and ambient conditions. Fuel 241, 71-82. https://doi.org/10.1016/j. fuel.2018.11.143.

Jiang, Z., Xu, X., Ma, Y., Cho, H.S., Ding, D., Wang, C., Wu, J., Oleynikov, P., Jia, M., Cheng, J., Zhou, Y., Terasaki, O., Peng, T., Zan, L., Deng, H., 2020. Filling metal -organic framework mesopores with TiO 2 for CO 2 photoreduction. Nature 586. https://doi.org/10.1038/s41586-020-2738-2.

Jiaqiang, E., Xie, L., Zuo, Q., Zhang, G., 2016. Effect analysis on regeneration speed of continuous regeneration-diesel particulate filter based on NO2-assisted regeneration. Atmos. Pollut. Res. 7, 9-17. https://doi.org/10.1016/j.apr.2015.06.012.

Ju, K., Kim, J., Park, J., 2021. Numerical prediction of the performance and emission of downsized twocylinder diesel engine for range extender considering high boosting, heavy exhaust gas recirculation, and advanced injection timing. Fuel 302, 121216. https://doi.org/10.1016/j.fuel.2021.121216.

K, T.Y., Lee, S.H., 2012. Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a di diesel engine. Int. J. 13, 293-300. https://doi.org/ 10.1007/s12239.

Kalwar, A., Singh, A.P., Agarwal, A.K., 2020. Utilization of primary alcohols in dual-fuel injection mode in a gasoline direct injection engine. Fuel 276, 118068. https://doi.org/10.1016/j.fuel.2020.118068.

Kaya, G., 2022. Experimental comparative study on combustion, performance and emissions characteristics of ethanol-gasoline blends in a two stroke uniflow gasoline engine. Fuel 317, 120917. https://doi.org/10.1016/j.iuel.2021.120917.

Kempa, K., Moslener, U., Schenker, O., 2021. The cost of debt of renewable and nonrenewable energy firms. Nat. Energy 6, 135-142. https://doi.org/10.1038/s41560-020-00745-x.

Khorramshokouh, S., Pirouzfar, V., Kazerouni, Y., Fayyazbakhsh, A., Abedini, R., 2016. Improving the properties and engine performance of diesel-methanol-nanoparticle blend fuels via optimization of the emissions and engine performance. Energy Fuel. 30, 8200-8208. https://doi.org/10.1021/acs.energyfuels.6b01856.

Kikstra, J.S., Vinca, A., Lovat, F., Boza-Kiss, B., van Ruijven, B., Wilson, C., Rogelj, J., Zakeri, B., Fricko, O., Riahi, K., 2021. Climate mitigation scenarios with persistent COVID-19-related energy demand changes. Nat. Energy. https://doi.org/10.1038/ s41560-021-00904-8.

Kim, J., Kim, K., Oh, S., Lee, S., 2016. An assessment of the biodiesel low-temperature combustion engine under transient cycles using single-cylinder engine experiment and cycle simulation. Energy 95, 471-482. https://doi.org/10.1016/j. energy.2015.12.023.

Kothari, M., Jeon, Y., Miller, D.N., Pascui, A.E., Kilmartin, J., Wails, D., Ramos, S., Chadwick, A., Irvine, J.T.S., 2021. Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanoparticles. Nat. Chem. 13, 677-682. https://doi.org/10.1038/s41557-021-00696-0.

Kumar, M., Tsujimura, T., Suzuki, Y., 2018. NOx model development and validation with diesel and hydrogen/diesel dual-fuel system on diesel engine. Energy 145, 496-506. https://doi.org/10.1016/j.energy.2017.12.148.

Kurisingal, J.F., Li, Y., Sagynbayeva, Y., Chitumalla, R.K., Vuppala, S., Rachuri, Y., Gu, Y., Jang, J., Park, D.W., 2020. Porous aluminum-based DUT metal-organic frameworks for the transformation of CO2 into cyclic carbonates: a computationally supported study. Catal. Today 352, 227-236. https://doi.org/10.1016/j. cattod.2019.12.038.

Leach, F., Kalghatgi, G., Stone, R., Miles, P., 2020. The scope for improving the efficiency and environmental impact of internal combustion engines. Transport Eng. 1 https://doi.org/10.1016/j.treng.2020.100005.

Lee, Z., Park, S., 2020. Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure. Renew. Energy 149, 80-90. https://doi.org/10.1016/j. renene.2019.12.050.

Lee, K.J., Huynh, T.C., Lee, J.T., 2010. A study on realization of high performance without backfire in a hydrogen-fueled engine with external mixture. Int. J. Hydrogen Energy 35, 13078-13087. https://doi.org/10.1016/j.ijhydene.2010.04.078.

Lee, J., Lee, K., Lee, J., Anh, B., 2014. High power performance with zero NOx emission in a hydrogenfueled spark ignition engine by valve timing and lean boosting. Fuel 128, 381-389. https://doi.org/10.1016/j.fuel.2014.03.010.

Lee, J.H., Jo, D.Y., Choung, J.W., Kim, C.H., Ham, H.C., Lee, K.Y., 2021. Roles of noble metals (M = Ag, Au, Pd, Pt and Rh) on CeO2 in enhancing activity toward soot oxidation: active oxygen species and DFT calculations. J. Hazard Mater. 403, 124085 https://doi.org/10.1016/j.jhazmat.2020.124085.

Li, Y., Yu, J., 2021. Emerging applications of zeolites in catalysis, separation and host-guest assembly. Nat. Rev. Mater. 6, 1156-1174. https://doi.org/10.1038/ s41578-021-00347-3.

Li, J., Han, X., Zhang, X., Sheveleva, A.M., Cheng, Y., Tuna, F., McInnes, E.J.L., McCormick McPherson, L.J., Teat, S.J., Daemen, L.L., Ramirez-Cuesta, A.J., Schroder, M., Yang, S., 2019. Capture of nitrogen dioxide and conversion to nitric acid in a porous metal-organic framework. Nat. Chem. 11, 1085-1090. https://doi.org/10.1038/s41557-019-0356-0.

Li, Z., Chen, Y., Ji, S., Tang, Y., Chen, W., Li, A., Zhao, J., Xiong, Y., Wu, Y., Gong, Y., Yao, T., Liu, W., Zheng, L., Dong, J., Wang, Y., Zhuang, Z., Xing, W., He, C.T., Peng, C., Cheong, W.C., Li, Q., Zhang, M., Chen, Z., Fu, N., Gao, X., Zhu, W., Wan, J., Zhang, J., Gu, L., Wei, S., Hu, P., Luo, J., Li, J., Chen, C., Peng, Q., Duan, X., Huang, Y., Chen, X.M., Wang, D., Li, Y., 2020. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 12, 764-772. https://doi.org/10.1038/s41557-020-0473-9.

Li, J., Huang, H., Xue, W., Sun, K., Song, X., Wu, C., Nie, L., Li, Y., Liu, C., Pan, Y., Jiang, H., Mei, D., Zhong, C., 2021a. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 4, 719-729. https://doi.org/10.1038/s41929-021-00665-3.

Li, W.J., Li, T.Y., Wey, M.Y., 2021b. Preferred enhancement of fast-SCR by Mn/CeSiOx catalyst: study on Ce/Si promotion and shape dependence. Chem. Eng. J. 403 https://doi.org/10.1016/j.cej.2020.126317.

Li, Z., Li, S., Li, Z., Wang, Y., Li, Z., Li, M., Jiao, P., Cai, D., 2021c. Simulation study of NO2-Assisted regeneration performance of variable cell geometry catalyzed diesel particulate filter. Process Saf. Environ. Protect. 154, 211-222. https://doi.org/ 10.1016/j.psep.2021.07.028.

Liu, T., Abbatt, J.P.D., 2021. Oxidation of sulfur dioxide by nitrogen dioxide accelerated at the interface of deliquesced aerosol particles. Nat. Chem. https://doi.org/ 10.1038/s41557-021-00777-0.

Liu, L., Corma, A., 2021. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244-263. https://doi.org/10.1038/ s41578-020-00250-3.

Liu, T., Li, Q., Xin, Y., Zhang, Z., Tang, X., Zheng, L., Gao, P.X., 2018. Quasi free K cations confined in hollandite-type tunnels for catalytic solid (catalyst)-solid (reactant) oxidation reactions. Appl. Catal. B Environ. 232, 108-116. https://doi.org/10.1016/ j.apcatb.2018.03.049.

Liu, S., Liu, Y., Tang, D., Miao, Y., Cao, Z., Zhao, Z., 2021. Synergy of NTP-La1-xAgxMn1-yCoyO3-5 hybrid for soot catalytic combustion at low temperature. Plasma Chem. Plasma Process. 41, 1009-1019. https://doi.org/10.1007/s11090-021-10173-8.

Liu, Z., Deng, Z., Davis, S.J., Giron, C., Ciais, P., 2022a. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ. 6-8. https://doi.org/10.1038/s43017-022-00285-w, 0123456789.

Liu, Y., Tong, D., Cheng, J., Davis, S.J., Yu, S., Yarlagadda, B., Clarke, L.E., Brauer, M., Cohen, A.J., Kan, H., Xue, T., Zhang, Q., 2022b. Role of climate goals and clean-air policies on reducing future air pollution deaths in China: a modelling study. Lancet Planet. Health 6. https://doi.org/10.1016/S2542-5196(21)00326-0 e92-e99.

Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S.G., Dias, A., Fox, N., Gitlin, L.N., Howard, R., Kales, H.C., Kivimoaki, M., Larson, E.B., Ogunniyi, A., Orgeta, V., Ritchie, K., Rockwood, K., Sampson, E.L., Samus, Q., Schneider, L.S., Selb«k, G., Teri, L., Mukadam, N., 2020. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413-446. https://doi.org/ 10.1016/S0140-6736(20)30367-6.

Loh, N.D., Hampton, C.Y., Martin, A.V., Starodub, D., Sierra, R.G., Barty, A., Aquila, A., Schulz, J., Lomb, L., Steinbrener, J., Shoeman, R.L., Kassemeyer, S., Bostedt, C., Bozek, J., Epp, S.W., Erk, B., Hartmann, R., Rolles, D., Rudenko, A., Rudek, B., Foucar, L., Kimmel, N., Weidenspointner, G., Hauser, G., Holl, P., Pedersoli, E., Liang, M., Hunter, M.M., Gumprecht, L., Coppola, N., Wunderer, C., Graafsma, H., Maia, F.R.N.C., Ekeberg, T., Hantke, M., Fleckenstein, H., Hirsemann, H., Nass, K., White, T.A., Tobias, H.J., Farquar, G.R., Benner, W.H., Hau-Riege, S.P., Reich, C., Hartmann, A., Soltau, H., Marchesini, S., Bajt, S., Barthelmess, M., Bucksbaum, P., Hodgson, K.O., Struder, L., Ullrich, J., Frank, M., Schlichting, I., Chapman, H.N., Bogan, M.J., 2012. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 486, 513-517. https://doi.org/10.1038/ nature11222.

Lohmann, U., Friebel, F., Kanji, Z.A., Mahrt, F., Mensah, A.A., Neubauer, D., 2020. Future warming exacerbated by aged-soot effect on cloud formation. Nat. Geosci. 13, 674-680. https://doi.org/10.1038/s41561-020-0631-0.

Mabood, F., Gilani, S.A., Albroumi, M., Alameri, S., Al Nabhani, M.M.O., Jabeen, F., Hussain, J., Al-Harrasi, A., Boque, R., Farooq, S., Hamaed, A.M., Naureen, Z., Khan, A., Hussain, Z., 2017. Detection and estimation of Super premium 95 gasoline adulteration with Premium 91 gasoline using new NIR spectroscopy combined with multivariate methods. Fuel 197, 388-396. https://doi.org/10.1016/j. fuel.2017.02.041.

Madhu, K., Pauliuk, S., Dhathri, S., Creutzig, F., 2021. Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nat. Energy. https://doi.org/10.1038/s41560-021-00922-6.

Mariappan, M., Panithasan, M.S., Venkadesan, G., 2021. Pyrolysis plastic oil production and optimisation followed by maximum possible replacement of diesel with bio-oil/ methanol blends in a CRDI engine. J. Clean. Prod. 312, 127687 https://doi.org/ 10.1016/j.jclepro.2021.127687.

Masood, E., Tollefson, J., 2021. 'COP26 HASN'T SOLVED THE PROBLEM'. SCIENTISTS.

McLinden, C.A., Fioletov, V., Shephard, M.W., Krotkov, N., Li, C., Martin, R.V., Moran, M.D., Joiner, J., 2016. Space-based detection of missing sulfur dioxide sources of global air pollution. Nat. Geosci. 9, 496-500. https://doi.org/10.1038/ ngeo2724.

Mei, X., Xiong, J., Wei, Y., Zhang, Y., Zhang, P., Yu, Q., Zhao, Z., Liu, J., 2020. High-efficient non-noble metal catalysts of 3D ordered macroporous perovskite-type La2NiB'O6 for soot combustion: insight into the synergistic effect of binary Ni and B' sites. Appl. Catal. B Environ. 275 https://doi.org/10.1016/j.apcatb.2020.119108.

Mei, X., Zhu, X., Zhang, Y., Zhang, Z., Zhong, Z., Xin, Y., Zhang, J., 2021. Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts. Nat. Catal. 4, 1002-1011. https://doi.org/10.1038/s41929-021-00702-1.

Mera, Z., Fonseca, N., Casanova, J., López, J.M., 2021. Influence of exhaust gas temperature and airfuel ratio on NOx aftertreatment performance of five large passenger cars. Atmos. Environ. 244 https://doi.org/10.1016/j. atmosenv.2020.117878.

Mingrui, W., Thanh Sa, N., Turkson, R.F., Jinping, L., Guanlun, G., 2017. Water injection for higher engine performance and lower emissions. J. Energy Inst. 90, 285-299. https://doi.org/10.1016/j.joei.2015.12.003.

Mohd Noor, C.W., Noor, M.M., Mamat, R., 2018. Biodiesel as alternative fuel for marine diesel engine applications: a review. Renew. Sustain. Energy Rev. 94, 127-142. https://doi.org/10.1016/j.rser.2018.05.031.

Mokhri, M.A., Abdullah, N.R., Abdullah, S.A., Kasalong, S., Mamat, R., 2012. Soot filtration recent simulation analysis in Diesel Particulate Filter (DPF). Procedia Eng. 41, 1750-1755. https://doi.org/10.1016Zj.proeng.2012.07.378.

Motterlini, R., Otterbein, L.E., 2010. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 9, 728-743. https://doi.org/10.1038/nrd3228.

Nadanakumar, V., Jenoris Muthiya, S., Prudhvi, T., Induja, S., Sathyamurthy, R., Dharmaraj, V., 2020. Experimental investigation to control HC, CO & NOx emissions from diesel engines using diesel oxidation catalyst. Mater. Today Proc. 43, 434-440. https://doi.org/10.1016/j.matpr.2020.11.964.

Nagao, Y., Nakahara, Y., Sato, T., Iwakura, H., Takeshita, S., Minami, S., Yoshida, H., Machida, M., 2015. Rh/ZrP2O7 as an efficient automotive catalyst for NOx reduction under slightly lean conditions. ACS Catal. 5, 1986-1994. https://doi.org/10.1021/ cs5020157.

Navarro-Jaeón, S., Virginie, M., Bonin, J., Robert, M., Wojcieszak, R., Khodakov, A.Y., 2021. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem 5, 564-579. https://doi.org/10.1038/s41570-021-00289-y.

Nguyen, X.P., Hoang, A.T., O l^er, A.I., Huynh, T.T., 2021a. Record decline in global CO2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies, Energy Sources, Part A Recover. Util. Environ. Eff. 1-4. https://doi.org/10.1080/15567036.2021.1879969, 00.

Nguyen, H.P., Hoang, A.T., Nizetic, S., Nguyen, X.P., Le, A.T., Luong, C.N., Chu, V.D., Pham, V.V., 2021b. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: a comprehensive review. Int. Trans. Electr. Energy Syst. 31, 1-29. https://doi.org/10.1002/2050-7038.12580.

Ni, P., Wang, X., Li, H., 2020. A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines. Fuel 279. https://doi.org/10.1016/j.fuel.2020.118477.

Nie, L., Mei, D., Xiong, H., Peng, B., Ren, Z., Hernandez, X.I.P., DeLaRiva, A., Wang, M., Engelhard, M.H., Kovarik, L., Datye, A.K., Wang, Y., 2017. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 80 (358), 1419-1423. https://doi.org/10.1126/science.aao2109.

Ogen, Y., 2020. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 726, 138605 https://doi.org/ 10.1016/j.scitotenv.2020.138605.

Oni, B.A., Oluwatosin, D., 2020. Emission characteristics and performance of neem seed (Azadirachta indica) and Camelina (Camelina sativa) based biodiesel in diesel engine. Renew. Energy 149, 725-734. https://doi.org/10.1016/j. renene.2019.12.012.

Onrubia-Calvo, J.A., Pereda-Ayo, B., Caravaca, A., De-La-Torre, U., Vernoux, P., Gonzaólez-Velasco, J.R., 2020. Tailoring perovskite surface composition to design efficient lean NOx trap Pd-La1xAxCoO3/Al2O3-type catalysts (with A = Sr or Ba). Appl. Catal. B Environ. 266, 118628 https://doi.org/10.1016/j. apcatb.2020.118628.

Padial, N.M., Lerma-Berlanga, B., Almora-Barrios, N., Castells-Gil, J., Da Silva, I., De La Mata, M., Molina, S.I., Hernaóndez-Saz, J., Platero-Prats, A.E., Tatay, S., Martól-Gastaldo, C., 2020. Heterometallic titanium-organic frameworks by metal-induced dynamic topological transformations. J. Am. Chem. Soc. 142, 6638-6648. https://doi.org/10.1021/jacs.0c00117.

Peng, W., Wagner, F., Ramana, M.V., Zhai, H., Small, M.J., Dalin, C., Zhang, X., Mauzerall, D.L., 2018. Managing China's coal power plants to address multiple environmental objectives. Nat. Sustain. 1, 693-701. https://doi.org/10.1038/ s41893-018-0174-1.

Peralta-Yahya, P.P., Zhang, F., del Cardayre, S.B., Keasling, J.D., 2012. Microbial engineering for the production of advanced biofuels. Nature 488, 320-328. https://doi.org/10.1038/nature11478.

Prather, K.A., Prather, K.A., Wang, C.C., Schooley, R.T., 2020. Reducing transmission of SARS-CoV-2. Science 80 (6197), 1-5.

Praveena, V., Martin, M.L.J., 2018. A review on various after treatment techniques to reduce NOx emissions in a CI engine. J. Energy Inst. 91, 704-720. https://doi.org/ 10.1016/j.joei.2017.05.010.

Preble, C.V., Harley, R.A., Kirchstetter, T.W., 2019. Control technology-driven changes to in-use heavyduty diesel truck emissions of nitrogenous species and related environmental impacts. Environ. Sci. Technol. 53, 14568-14576. https://doi.org/ 10.1021/acs.est.9b04763.

Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., Liu, J., Li, J., Zhang, T., 2011. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634-641. https://doi.org/10.1038/nchem.1095.

Rahman, M.M., Zhou, Y., Rogers, J., Chen, V., Sattler, M., Hyun, K., 2021. A comparative assessment of CO2 emission between gasoline, electric, and hybrid vehicles: a Well-To-Wheel perspective using agent-based modeling. J. Clean. Prod. 321, 128931 https://doi.org/10.1016/j.jclepro.2021.128931.

Ramanathan, V., Carmichael, G., 2008. Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221-227. https://doi.org/10.1038/ngeo156.

Rao, N.D., Kiesewetter, G., Min, J., Pachauri, S., Wagner, F., 2021. Household contributions to and impacts from air pollution in India. Nat. Sustain. 1-9. https://doi.org/10.1038/s41893-021-00744-0.

Regional Carbon Dioxide (CO2) Emissions Worldwide from 2000 to 2020, with a Forecast until 2050, 2021. https://www.statista.com/statistics/1257778/global -emission-worldwide-region-outlook/.

Resitoglu, I.A., Altinisik, K., Keskin, A., Ocakoglu, K., 2020. The effects of Fe2O3 based DOC and SCR catalyst on the exhaust emissions of diesel engines. Fuel 262, 116501. https://doi.org/10.1016/j.fuel.2019.116501.

Romanello, M., McGushin, A., Di Napoli, C., Drummond, P., Hughes, N., Jamart, L., Kennard, H., Lampard, P., Solano Rodriguez, B., Arnell, N., Ayeb-Karlsson, S., Belesova, K., Cai, W., Campbell-Lendrum, D., Capstick, S., Chambers, J., Chu, L., Ciampi, L., Dalin, C., Dasandi, N., Dasgupta, S., Davies, M., Dominguez-Salas, P., Dubrow, R., Ebi, K.L., Eckelman, M., Ekins, P., Escobar, L.E., Georgeson, L., Grace, D., Graham, H., Gunther, S.H., Hartinger, S., He, K., Heaviside, C., Hess, J., Hsu, S.C., Jankin, S., Jimenez, M.P., Kelman, I., Kiesewetter, G., Kinney, P.L., Kjellstrom, T., Kniveton, D., Lee, J.K.W., Lemke, B., Liu, Y., Liu, Z., Lott, M., Lowe, R., Martinez-Urtaza, J., Maslin, M., McAllister, L., McMichael, C., Mi, Z., Milner, J., Minor, K., Mohajeri, N., Moradi-Lakeh, M., Morrissey, K., Munzert, S., Murray, K.A., Neville, T., Nilsson, M., Obradovich, N., Sewe, M.O., Oreszczyn, T., Otto, M., Owfi, F., Pearman, O., Pencheon, D., Rabbaniha, M., Robinson, E., Rocklov, J., Salas, R.N., Semenza, J.C., Sherman, J., Shi, L., Springmann, M., Tabatabaei, M., Taylor, J., Trinanes, J., Shumake-Guillemot, J., Vu, B., Wagner, F., Wilkinson, P., Winning, M., Yglesias, M., Zhang, S., Gong, P., Montgomery, H., Costello, A., Hamilton, I., 2021. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet 398, 1619-1662. https:// doi.org/10.1016/S0140-6736(21)01787-6.

Ruddy, D.A., Hensley, J.E., Nash, C.P., Tan, E.C.D., Christensen, E., Farberow, C.A., Baddour, F.G., Van Allsburg, K.M., Schaidle, J.A., 2019. Methanol to high-octane gasoline within a market-responsive biorefinery concept enabled by catalysis. Nat. Catal. 2, 632-640. https://doi.org/10.1038/s41929-019-0319-2.

Salvo, A., Geiger, F.M., 2014. Reduction in local ozone levels in urban Sao Paulo due to a shift from ethanol to gasoline use. Nat. Geosci. 7, 450-458. https://doi.org/ 10.1038/ngeo2144.

Sariko, S., 2021. Effect of H2 addition to methanol-gasoline blend on an SI engine at various lambda values and engine loads: a case of performance, combustion, and emission characteristics. Fuel 297, 120732. https://doi.org/10.1016/j. fuel.2021.120732.

Seelam, N., Gugulothu, S.K., Reddy, R.V., Burra, B., 2022. Influence of hexanol/hydrogen additives with diesel fuel from CRDI diesel engine with exhaust gas recirculation technique: a special focus on performance, combustion, gaseous and emission species. J. Clean. Prod. 340, 130854 https://doi.org/10.1016/j.jclepro.2022.130854.

Selleri, T., Gramigni, F., Nova, I., Tronconi, E., Dieterich, S., Weibel, M., Schmeisser, V., 2018. A PGMfree NO: X adsorber + selective catalytic reduction catalyst system (AdSCR) for trapping and reducing NOx in lean exhaust streams at low temperature. Catal. Sci. Technol. 8, 2467-2476. https://doi.org/10.1039/c8cy00343b.

Shim, E., Park, H., Bae, C., 2020. Comparisons of advanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel 262, 116436. https://doi.org/ 10.1016/j.fuel.2019.116436.

Shiyu, L., Boyuan, W., Zexian, G., Buyu, W., Zhaohuan, Z., Xiao, M., Chen-Teng, C., Peng, W., Xin, H., Xingyu, S., Shijin, S., 2022. Experimental investigation of urea injection strategy for close-coupled SCR aftertreatment system to meet ultra-low NOx emission regulation. Appl. Therm. Eng. 205, 117994 https://doi.0rg/IO.IOI6/j. applthermaleng.2021.117994.

Shrivastav, G., Khan, T.S., Agarwal, M., Haider, M.A., 2017. Reformulation of gasoline to replace aromatics by biomass-derived alkyl levulinates. ACS Sustain. Chem. Eng. 5, 7118-7127. https://doi.org/10.1021/acssuschemeng.7b01316.

Singh, M., Sandhu, S.S., 2021. Effect of boost pressure on combustion, performance and emission characteristics of a multicylinder CRDI engine fueled with argemone biodiesel/diesel blends. Fuel 300, 121001. https://doi.org/10.1016/j. fuel.2021.121001.

Smith, G.L., Eyley, J.E., Han, X., Zhang, X., Li, J., Jacques, N.M., Godfrey, H.G.W., Argent, S.P., McCormick McPherson, L.J., Teat, S.J., Cheng, Y., Frogley, M.D., Cinque, G., Day, S.J., Tang, C.C., Easun, T.L., Rudic, S., Ramirez-Cuesta, A.J., Yang, S., Schroder, M., 2019. Reversible coordinative binding and separation of sulfur dioxide in a robust metal-organic framework with open copper sites. Nat. Mater. 18, 1358-1365. https://doi.org/10.1038/s41563-019-0495-0.

Stepien, Z., 2021. A comprehensive overview of hydrogen-fueled internal combustion engines: achievements and future challenges. Energies 14. https://doi.org/10.3390/ en14206504.

Stokes, L.C., Warshaw, C., 2017. Renewable energy policy design and framing influence public support in the United States. Nat. Energy 2, 1-6. https://doi.org/10.1038/ nenergy.2017.107.

Su, H., Cheng, Y., Pooschl, U., 2020. New multiphase chemical processes influencing atmospheric aerosols, air quality, and climate in the anthropocene. Acc. Chem. Res. 53, 2034-2043. https://doi.org/10.1021/acs.accounts.0c00246.

Takahashia, N., Shinjoh, H., Iijima, T., Suzuki, T., Yamazaki, K., Yokota, K., Suzuki, H., Miyoshi, N., Matsumoto, S.I., Tanizawa, T., Tanaka, T., Tateishi, S.S., Kasahara, K., 1996. The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catal. Today 27, 63-69. https://doi.org/10.1016/0920-5861 (95)00173-5. Theis, J.R., Lambert, C.K., 2015. An assessment of low temperature NOx adsorbers for cold-start NOx control on diesel engines. Catal. Today 258, 367-377. https://doi.org/10.1016/j.cattod.2015.01.031.

Tian, Z., Zhen, X., Wang, Y., Liu, D., Li, X., 2020. Comparative study on combustion and emission characteristics of methanol, ethanol and butanol fuel in TISI engine. Fuel 259, 116199. https://doi.org/10.1016/j.fuel.2019.116199.

Tollefson, J., 2021. COVID curbed carbon emissions in 2020 - but not by much. Nature 589, 343. https://doi.org/10.1038/d41586-021-00090-3.

Trickett, C.A., Helal, A., Al-maythalony, B.A., Yamani, Z.H., Cordova, K.E., Yaghi, O.M., 2017. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Publ. Gr. 2, 1-16. https://doi.org/10.1038/ natrevmats.2017.45.

Tsujimura, T., Suzuki, Y., 2019. Development of a large-sized direct injection hydrogen engine for a stationary power generator. Int. J. Hydrogen Energy 44, 11355-11369. https://doi.org/10.1016/j.ijhydene.2018.09.178.

Ueckerdt, F., Bauer, C., Dirnaichner, A., Everall, J., Sacchi, R., Luderer, G., 2021. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nat. Clim. Change 11, 384-393. https://doi.org/10.1038/s41558-021-01032-7.

United States environmental protection agency (EPA), 2021. Particulate matter (PM10) trends. https://www.epa.gov/air-trends/particulate-matter-pm10-trends.

V Barboza, A.B., Mohan, S., Dinesha, P., 2022. On reducing the emissions of CO, HC, and NO x from gasoline blended with hydrogen peroxide and ethanol : optimization study aided with ANN-PSO. Environ. Pollut. 310, 119866 https://doi.org/10.1016/j. envpol.2022.119866.

Wallington, T.J., Kaiser, E.W., Farrell, J.T., 2006. Automotive fuels and internal combustion engines: a chemical perspective. Chem. Soc. Rev. 35, 335-347. https:// doi.org/10.1039/b410469m.

Wang, A., Olsson, L., 2019. The impact of automotive catalysis on the United Nations sustainable development goals. Nat. Catal. 2 https://doi.org/10.1038/s41929-019-0318-3.

Wang, Y., Wang, Y., Zhang, L., Zhang, C., Zhang, C., Xu, X., Xie, Y., Xie, Y., Chen, W., Chen, W., Wang, J., Wang, J., Zhang, R., Zhang, R., 2020. Promoting the generation of active oxygen over Ag-modified nanoflower-like a-MnO2for soot oxidation: experimental and DFT studies. Ind. Eng. Chem. Res. 59, 10407-10417. https://doi.org/10.1021/acs.iecr.0c01308.

Wang, C.C., Prather, K.A., Sznitman, J., Jimenez, J.L., Lakdawala, S.S., Tufekci, Z., Marr, L.C., 2021a. Airborne transmission of respiratory viruses. Science 80-, 373. https://doi.org/10.1126/science.abd9149.

Wang, M., Zhang, Y., Yu, Y., Shan, W., He, H., 2021b. Cesium as a dual function promoter in Co/Ce-Sn catalyst for soot oxidation. Appl. Catal. B Environ. 285, 119850 https://doi.org/10.1016/j.apcatb.2020.119850.

Wang, M., Zhang, Y., Yu, Y., Shan, W., He, H., 2021c. Synergistic effects of multicomponents produce outstanding soot oxidation activity in a Cs/Co/MnO xCatalyst. Environ. Sci. Technol. 55, 240-248. https://doi.org/10.1021/acs. est.0c06082.

Wang, Z., Jiang, Y., Han, F., Yu, S., Li, W., Ji, Y., Cai, W., 2022a. A thermodynamic configuration method of combined supercritical CO2 power system for marine engine waste heat recovery based on

recuperative effects. Appl. Therm. Eng. 200, 117645 https://doi.org/10.1016/j.applthermaleng.2021.117645.

Wang, Z., Zhang, X., Guo, J., Hao, C., Feng, Y., 2022b. Particle emissions from a marine diesel engine burning two kinds of sulphur diesel oils with an EGR & scrubber system: size, number & mass. Process Saf. Environ. Protect. 163, 94-104. https:// doi.org/10.1016/j.psep.2022.04.012.

Wei, Y., Zhang, Y., Zhang, P., Xiong, J., Mei, X., Yu, Q., Zhao, Z., Liu, J., 2020. Boosting the removal of diesel soot particles by the optimal exposed crystal facet of CeO2 in Au/CeO2 catalysts. Environ. Sci. Technol. 54, 2002-2011. https://doi.org/10.1021/ acs.est.9b07013.

Weir, B., Crisp, D., O'Dell, C.W., Basu, S., Chatterjee, A., Kolassa, J., Oda, T., Pawson, S., Poulter, B., Zhang, Z., Ciais, P., Davis, S.J., Liu, Z., Ott, L.E., 2021. Regional impacts of COVID-19 on carbon dioxide detected worldwide from space. Sci. Adv. 7, 1-10. https://doi.org/10.1126/sciadv.abf9415.

Wu, Q., Jing, M., Wei, Y., Zhao, Z., Zhang, X., Xiong, J., Liu, J., Song, W., Li, J., 2019. High-efficient catalysts of core-shell structured Pt@transition metal oxides (TMOs) supported on 3DOM-Al2O3 for soot oxidation: the effect of strong Pt-TMO interaction. Appl. Catal. B Environ. 244, 628-640. https://doi.org/10.1016/j. apcatb.2018.11.094.

Wu, Y., Wang, J., Chen, Z., Zhu, Y., Yu, M., Wang, C., Zhai, Y., Wang, J., Shen, G., Shen, M., 2022. A novel material for passive NO adsorber: Ce-based BEA zeolite. J. Rare Earths. https://doi.org/10.1016/jjre.2022.04.021.

Xie, S., Wang, Z., Tan, W., Zhu, Y., Collier, S., Ma, L., Ehrlich, S.N., Xu, P., Yan, Y., Xu, T., Deng, J., Liu, F., 2021. Highly active and stable palladium catalysts on novel ceria-alumina supports for efficient oxidation of carbon monoxide and hydrocarbons. Environ. Sci. Technol. 55, 7624-7633. https://doi.org/10.1021/acs.est.1c00077.

Xie, W., Xu, G., Zhang, Y., Yu, Y., He, H., 2022. Mesoporous LaCoO3 perovskite oxide with high catalytic performance for NOx storage and reduction. J. Hazard Mater. 431, 128528 https://doi.org/10.1016/jjhazmat.2022.128528.

Xu, P., Ji, C., Wang, S., Bai, X., Cong, X., Su, T., Shi, L., 2018. Realizing low Nox emissions on a hydrogenfuel spark ignition engine at the cold start period through excess air ratios control. Int. J. Hydrogen Energy 43, 21617-21626. https://doi.org/ 10.1016/j.ijhydene.2018.09.136.

Xu, P., Ji, C., Wang, S., Bai, X., Cong, X., Su, T., Shi, L., 2019. Realizing low emissions on a hydrogenfueled spark ignition engine at the cold start period under rich combustion through ignition timing control. Int. J. Hydrogen Energy 44, 8650-8658. https://doi.org/10.1016/j.ijhydene.2019.01.275.

Yang, X.G., Liu, T., Wang, C.Y., 2021a. Thermally modulated lithium iron phosphate batteries for massmarket electric vehicles. Nat. Energy 6, 176-185. https://doi.org/ 10.1038/s41560-020-00757-7.

Yang, Q., Wang, X., Wang, X., Li, Q., Li, L., Yang, W., Chu, X., Liu, H., Men, J., Peng, Y., Ma, Y., Li, J., 2021b. Surface reconstruction of a mullite-type catalyst via selective dissolution for NO oxidation. ACS Catal. 14507-14520. https://doi.org/10.1021/acscatal.1c03955.

Yang, Y., Zhao, D., Gao, Z., Tian, Y., Ding, T., Zhang, J., Jiang, Z., Li, X., 2021c. Interface interaction induced oxygen activation of cactus-like Co3O4/OMS-2 nanorod catalysts in situ grown on monolithic cordierite for diesel soot combustion. Appl. Catal. B Environ. 286, 119932 https://doi.org/10.1016Zj.apcatb.2021.119932.

Yang, W., Wang, Y., Wang, H., Zhang, Y., Peng, Y., Li, J., 2022. Water accelerates and directly participates soot oxidation: an isotopic study. Appl. Catal. B Environ. 302, 120837 https://doi.org/10.1016/j.apcatb.2021.120837.

Yao, Y., Pan, J., Liu, Z., Meng, X., Wang, W., Kan, H., Wang, W., 2021. Ambient nitrogen dioxide pollution and spreadability of COVID-19 in Chinese cities. Ecotoxicol. Environ. Saf. 208, 111421 https://doi.org/10.1016/j.ecoenv.2020.111421.

Yu, P., Toon, O.B., Bardeen, C.G., Zhu, Y., Rosenlof, K.H., Portmann, R.W., Thornberry, T.D., Gao, R., Davis, S.M., Wolf, E.T., De Gouw, J., Peterson, D.A., 2019. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent Persistent Plume. Science 80 (365), 587-590. https://doi.org/10.1126/science.aax1748.

Zazzeron, L., Fischbach, A., Franco, W., Farinelli, W.A., Ichinose, F., Bloch, D.B., Anderson, R.R., Zapol, W.M., 2019. Phototherapy and extracorporeal membrane oxygenation facilitate removal of carbon monoxide in rats. Sci. Transl. Med. 11, 1-11. https://doi.org/10.1126/scitranslmed.aau4217.

Zeng, L., Cui, L., Wang, C., Guo, W., Gong, C., 2020. In-situ modified the surface of Pt-doped perovskite catalyst for soot oxidation. J. Hazard Mater. 383, 121210 https://doi.org/10.1016/jjhazmat.2019.121210.

Zhang, Z., Ye, J., Tan, D., Feng, Z., Luo, J., Tan, Y., Huang, Y., 2021. The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel 290, 120039. https://doi.org/10.1016/j.fuel.2020.120039.

Zhang, Y., Lou, D., Tan, P., Hu, Z., Fang, L., 2022. Effect of catalyzed diesel particulate filter and its catalyst loading on emission characteristics of a non-road diesel engine. J. Environ. Sci. 126, 794-805. https://doi.org/10.1016/jjes.2021.12.028.

Zhang, Y., Lou, D., Tan, P., Hu, Z., Fang, L., 2023. Effect of catalyzed diesel particulate filter and its catalyst loading on emission characteristics of a non-road diesel engine. J. Environ. Sci. 126, 794-805. https://doi.org/10.1016/jjes.2021.12.028.

Zhao, P., Feng, N., Fang, F., Wan, H., Guan, G., 2021. Surface acid etching for efficient anchoring of potassium on 3DOM La0.8Sr0.2MnO3 catalyst: an integration strategy for boosting soot and NOx simultaneous elimination. J. Hazard Mater. 409, 124916 https://doi.org/10.1016/jjhazmat.2020.124916.

Zhao, Z., Huang, Y., Yu, X., Guo, Z., Li, M., Wang, T., 2022a. Effect of brown gas (HHO) addition on combustion and emission in gasoline engine with exhaust gas recirculation (EGR) and gasoline direct injection. J. Clean. Prod. 360, 132078 https://doi.org/10.1016/jjclepro.2022.132078.

Zhao, Z., Yu, X., Huang, Y., Shi, W., Guo, Z., Li, Z., Du, Y., Jin, Z., Li, D., Wang, T., Li, Y., 2022b. Experimental study on combustion and emission of an SI engine with ethanol/gasoline combined injection and EGR. J. Clean. Prod. 331, 129903 https://doi.org/10.1016/j.jclepro.2021.129903.

Zhou, Y.J., Kerkhoven, E.J., Nielsen, J., 2018. Barriers and opportunities in bio-based production of hydrocarbons. Nat. Energy 3, 925-935. https://doi.org/10.1038/ s41560-018-0197-x.

Zhuang, T.T., Liang, Z.Q., Seifitokaldani, A., Li, Y., De Luna, P., Burdyny, T., Che, F., Meng, F., Min, Y., Quintero-Bermudez, R., Dinh, C.T., Pang, Y., Zhong, M., Zhang, B., Li, J., Chen, P.N., Zheng, X.L., Liang, H., Ge, W.N., Ye, B.J., Sinton, D., Yu, S.H., Sargent, E.H., 2018. Steering post-C-C coupling selectivity

enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421-428. https://doi.org/10.1038/s41929-018-0084-7.