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Based on the analysis of conditions for a good distance function we found four rules that should be 

fulfilled. Then, we introduce two new distance functions, a metric and a pseudometric one. We have 

tested how they fit for distance-based classifiers, especially for the IINC classifier. We rank distance 

functions according to several criteria and tests. Rankings depend not only on criteria or nature of the 

statistical test, but also whether it takes into account different difficulties of tasks or whether it 

considers all tasks as equally difficult. We have found that the new distance functions introduced 

belong among the four or five best out of 23 distance functions. We have tested them on 24 different 

tasks, using the mean, the median, the Friedman aligned test, and the Quade test. Our results show 

that a suitable distance function can improve behavior of distance-based classification rules. 

 

1 INTRODUCTION 

In this work, we deal with distances in a multidimensional space. Especially, we deal with the distance 

from the given point (the query point 𝑥) in multidimensional space 𝑅d. In this way, the 𝑑-dimensional 

information is simplified to one-dimensional information, the distance. This is the cost we pay for this 

simplification. We show that this cost is not too high. The nearest neighbor method [5] remains popular 

and surprisingly effective and fairly often used up till now [1, 20, 22, 24, 30, 36, 38]. There is a lot of 

methods of classification based on the nearest neighbors [33]. The methods estimate the probability 

density at point 𝑥 of the data space by ratio 𝑖/𝑉i of number 𝑖 of points of a given class in a suitable ball 

of volume 𝑉i with its center at point 𝑥 [11]. These methods often optimize the best size of the 

neighborhood, i.e., the number i of points in the neighborhood of the point 𝑥 or size of volume 𝑉. 

Nearest neighbors methods use various means to enhance the classification quality. One of them is 

setting up weights of individual features via learning, e.g., [9, 26, 32, 34, 35]. Li, Chen and Chen [21] 

search for local probability centers rather than for local class density. There are techniques for 

improving the speed of nearest neighbors search, see [31, 37], techniques for dealing with high 

dimensional data [25], techniques for dealing with missing feature values [3], and techniques for 

dealing with uncertain data [2]. In [24], a guideline how to apply 𝑘-NN for classification tasks with the 

use of software package are given. Also, a proper selection of k is shortly discussed. 

Here, we use the Inverted Indexes of Neighbors Classifier (IINC) [17], see Section 2.4. It belongs among 

simple classifiers (data separators), eventually regressors, like the nearest neighbor rules 1-NN and 𝑘-

NN or the naive Bayes classifier. The IINC method is distance-based as 1-NN and k-NN. Thus, distance 

plays a crucial role and is given by a distance function, mostly metric in the 𝑅d. Another crucial role is 

played by the effective dimension of the data space. This is unknown for the 1-NN and 𝑘-NN methods. 

The IINC estimates probability of a class of a pattern or sample (a query point) according to a proper 

sum of reciprocals of indexes of neighbors of this sample; the nearest neighbor has 𝑖𝑛𝑑𝑒𝑥 1, the 

second nearest has 𝑖𝑛𝑑𝑒𝑥 2, and so on. It can be shown that with the use of reciprocals of indexes, we 

model scaling features of data and, at the same time, we correct errors caused by random placement 



of neighbors close to the query point. The ranking brings a similar advantage that has ranking statistics 

over standard statistics. Small variations are hidden in the same rank and eventually large changes 

influence the rank. Thus, there is a kind of robustness that brings also low classification error. The 

complexity of this method for large dataset is given by 𝑁 log 𝑁, where 𝑁 is the size of the learning set. 

The behavior of the method depends on the distance function, usually a metric in the 𝑅d. It appears 

that rather uncommon metrics are the best. In study [38], the six distance metrics are considered. An 

interesting finding is that for 𝑘 ≥ 6 the differences was essentially negligible for particular task of 

mapping of species-level biomass. For smaller 𝑘 the differences among distance functions are 

important. It can be found that an 𝐿1 (taxicab or Manhattan) metric is very good. The Euclidean metric 

L2 can be considered acceptable. On the other hand, for a particular task the IINC or the 𝑘-NN, with a 

distance function that generally (say, on average) is not good enough may work best. It was shown [1, 

38] that an uncommon metric is much better than the 𝐿1 and 𝐿2 metrics. It applies to the 1-NN as well 

as the IINC rules. A distance function may be dependent on rotation. The only rule that does not 

depend on rotational position of the coordinate system is the Euclidean metric. Another uncommon 

thing is that in some metrics a ball (or circle in 𝑅2) with a finite radius r need not have a finite volume 

at least for some values of 𝑟. Also, the distance function need not be a metric. A pseudo-metric that 

does not conform to the triangle inequality is sufficient. 

 

1.1 Problem Formulation 

There is a crucial fact that behavior of 𝑘-NN classifiers, i.e., in the end the classification error, is 

influenced by the concept of the classifier and by a distance function, usually the metric used. Recently 

the Hassanat metric was published in the Journal of American Science (Marsland Press) [13]. It can be 

shown that it is one of the best distance functions for distance-based classifiers. The other factor is the 

design of the nearest neighbor scheme. This is often limited to proper selection of 𝑘 in 𝑘-NN classifier, 

but more sophisticated schemes were published. One of them was published by Samworth in The 

Annals of Statistics (IMS) [32], the other is called the IINC and was published in the Journal of 

Classification (Springer) [17]. 

It was found that the use of the Hassanat metric with the IINC rule gives very good results compared 

with other distance functions and other nearest neighbor rules [13]. A question arises if there is 

another distance function giving generally better results. This question leads to another question, what 

are the conditions or rules for a “good” distance function. 

It can be found (see [7] and [8]) that the various distance functions have been designed according to 

certain specific needs, but none of them in terms of classification accuracy. 

We present here a systematic analysis conductive to the conditions that the distance function should 

meet in order to be a generally optimal distance function for distance-based classifiers. However, this 

requirement leads to a condition that cannot be fully met. It can only be partially accomplished. 

Therefore, this condition should include that the classification error must be minimal at least close to 

the threshold between classes. At the same time, this condition can be found too broad. Then, the 

distance function should follow major features, which have known distance functions that provide the 

best classification error. We are, therefore, looking for the conditions that the new distance function 

shoud have. 

This is derived in Sections 2.5 and 2.6 and summarized in Section 2.7. Suggestions for two new distance 

functions are given in Section 3. 



We concentrate here on distance functions and the IINC rule, as this rule was found to be the best 

among the other 𝑘-NN rules [1, 14]. 

At the same time, these references show that the distance functions have the same relative effect on 

the quality of classification for IINC and for 𝑘-NN. 

Our experience with practical tasks also leads to this. We use it without considering any data 

preprocesing, features or class weighting often used to get better results with a given rule and a 

distance function, usually the Euclidean metric. Of course, the techniques mentioned can be applied 

with success. 

Based on considerations above we present here two new distance functions. We prove that the first 

one is a metric one, and the other is a pseudometric one. We show some of their features, especially 

we show the fact that a ball in 𝑅d (a circle) has a very uncommon form and its volume can be infinite. 

Then, we explain the IINC method for classification. Using the IINC method and 23 different distance 

functions, we analyze how the classification error depends on the distance function used. For this 

purpose, we have tested the classifier on a set of 24 tasks. Having amassed enough data, we use simple 

comparisons like mean and median and the Friedman aligned test and the Quade test [6] for multiple 

comparisons. Finally, we rank the distance functions according to these criteria and tests getting a set 

of four or five best distance functions. The set includes also new distance functions introduced here. 

 

2 ANALYSIS 

2.1 The Datasets 

Dataset is usually represented as a real matrix with 𝑑 + 1 columns and 𝑁 rows. Each of the columns 

1 till d corresponds to a feature, the column No. 𝑑 +  1 contains a class mark. Each row corresponds 

to one sample, point, pattern, eventually event that consists of values of d features and a class mark. 

Generally, there is no ordering of rows, i.e., of samples; they follow one after another randomly and 

are indexed 1, 2,... 𝑁. Samples are often called points as each sample can be viewed as a point in a 𝑑-

dimensional space. The learning set 𝑈 has total 𝑁 =  𝑁(𝑈) samples. With classes the set 𝑈 is 

decomposed into disjoint sets 𝑈c; 𝑈 = 𝑈𝐶=1
𝐶 Uc, Uc ∩ 𝑈b = Ø; 𝑐, 𝑏 ∈ 1, 2,..., 𝐶; 𝑐 ≠ 𝑏, 𝐶 is the number 

of classes. Let the cardinality of set 𝑈c be 𝑁c𝛴𝑐=1
𝑐  𝑁c =  𝑁. Moreover, there is a testing set 𝑉 such that 

𝑈 ∩ 𝑉 = ∅. 

 

2.1.1 Learning and Testing Set 

There is a different terminology used in literature. Here, we speak about the learning set used for 

setting up the classifier, and the testing set (checking set) “never seen before” for evaluation of true 

classification capability. The learning set can be divided into the training set really used in setting up 

the classifier and validating set for validation of the previous setting cycle. We do not use this option 

here. 

 

2.1.2 Indexing Data and Neighbors’ Distances 

As we need to express, which sample is closer or further from some given sample 𝑥, we can rank 

samples of the learning set according to distance 𝑟i of sample 𝑋i from sample 𝑥. Therefore, let samples 

of 𝑈 be indexed (ranked) so that for any two samples 𝑥i,𝑥j ∈ 𝑈 there is 𝑖 <  𝑗 if 𝑟i < 𝑟j; 𝑖, 𝑗 = 1,2,... N, 



and class 𝑈c = {𝑥i ∈ 𝑈|𝑇(𝑥i) =  𝑐}. Of course, ranking depends on sample x and eventually metrics in 

𝑅d. 

From now on we use numbering of samples according to their order as neighbors of sample 𝑥; 𝑥i being 

the ith nearest neighbor of sample 𝑥. 

 

2.2 Metrics in 𝑅d 

A natural metric in 𝑅d is the Euclidean metric and (𝑅d, 𝜌𝐸) is a metric space. At the same time one uses 

another metric 𝜌x. This metric we use for stating distances between points in 𝑅d, for stating ranks of 

neighbors, and for defining geometrical objects. Their areas and volumes are computed in a standard 

way. For example, in (𝑅2, 𝐿1), i.e., in a two-dimensional space with Manhattan or taxicab metric, a 

“circle” with unit radius has the form of a diamond with edge √2. Its area computed in a standard way 

is equal to 2, whereas a circle in (𝑅2, 𝐿2) with unit radius has an area equal to 𝜋. 

 

2.3 Measure-dependency 

Metric as well as semimetric can be measure-dependent and then values of coordinates should be 

normalized. Normalization (sometimes called standardization) means transforming each feature, 

taken as a random variable, into a new variable with zero mean and unit standard deviation. Thus, 

individual features are comparable. Normalization is a practical issue; in analysis it is usually supposed 

that all features are of the same nature. 

 

2.4 IINC Rules 

A basic notion of the IINC rules is the distribution mapping exponent 𝑞. Suppose a fixed point 𝑥 and its 

distance to its nearest neighbor, the second nearest neighbor and so on. The distribution of individual 

points is given by the probability distribution of points in space 𝑅d. Imagine a graph where the order 

number of a neighbor as a function of distance from point 𝑥 is depicted. We call this dependence the 

distribution mapping function. If logarithmic scales on both coordinates are used, points are arranged 

approximately along a straight line. The slope of this straight line is called the distribution mapping 

exponent q. It is, in fact, the scaling exponent in the sense of the theory of fractals [23]. It can be proved 

that the average of all distribution mapping functions formed for all points of a set, is the correlation 

integral [12] and mean of distribution mapping exponents is close to the correlation dimension. It is 

clear that the distributon mapping exponent q describes behavior of data locally around point 𝑥 and 

the correlation dimension v globally for the whole set considered. This is the basis for the IINC rules. 

The local method (the L-rule) [15] is given by formula for probability that point 𝑥 is of class 𝑐 for 𝑥 ≠ 

𝑥1 (𝑥1 is the first nearest neighbor of 𝑥) 

 

 

 



and for 𝑥 =  𝑥1 there is 

 

Here, the two-class problem with the same a priori probabilities of both classes is considered. In this 

formula, the sum in the numerator goes over points of class 𝑐 (set 𝑈c), and the sum in the denominator 

goes over all points of the learning set 𝑈. 

The global method (G-rule) [16] is given by a similar formula with correlation dimension 𝑣 instead of 

the distribution mapping exponent 𝑞. 

The IINC rule uses the order numbers of neighbors (ranks) instead of 𝑟q. It holds [17] for x ≠ 𝑥1 

 

 

and for 𝑥 =  𝑥1 there is 

 

Note. Equation (3) can be written in form 

 

Where 

 

and 𝐻N is the 𝑁th harmonic number. 

We consider the same a priori probability of both classes here. It means, in practice, the same number 

of patterns of all classes in the learning set. If it is not so, the imbalance problem arises. This problem 

can be solved using “recomputation to one pattern”, i.e., by dividing individual 𝑆c’𝑠 by the number of 

patterns Nc of this class. In this way, we get formula for any number of classes numbered 0,1,... 𝐶 −

 1, where 𝐶 is the number of classes 

 

 

Bear in mind that the denominator is not a harmonic number here. 



It can be proven that the IINC represents the best neighbor class weighting scheme among all the 𝑘-

NN rules. The proof shows that any deviation of weight of the 𝑘th neighbor leads to an enlargement 

of the classification error. Representation of rank of a neighbor by the sum of the Heaviside step 

functions of differences of neighbors distances is used in the proof. For the Heaviside step function a 

smooth approximation is used. Then, a formula for the classification error of the IINC rule and the rule 

with slightly modified weight are compared. From this comparison it follows that any change of weight 

of a neighbor - positive or negative - leads to an enlargement of the classification error. 

 

2.5 The Distance Function and Conditions for Optimization 

For optimization of the distance function we use the standard procedure of setting up the first 

derivative of the function minimized, the error function, to zero. Naturally, unless the assumption of 

continuous second partial derivatives and concave form in the neighborhood of the minimum, i.e., 

positive second derivative. 

The classification error can be defined as 

 

where ℎ(. ) is the Heaviside step function, 𝑐x is the class of pattern 𝑥, and 𝑝(𝑐|𝑥) is the classifier’s 

estimate of the probability that pattern 𝑥 is of class 𝑐x; we write 𝑃̂ for short later. This is a functional 

over the function that gives an error of one query pattern times local density 𝑓 (𝑥), 

 

In the following, we omit the local density. The Heaviside step function can be approximated by 

 

 

where ∈ is the smoothing factor. The derivative is 

 

where 

 

 

 

 



We also write 

 

where 𝑟k is the rank of the pattern No. 𝑘 from the query point 𝑥 and it holds 

 

(To get rank of 𝑥k we sum out all points 𝑥i that are closer to point 𝑥 than is the 𝑥k. Then, the distance 

𝜌(𝑥, 𝑥j) < 𝜌(𝑥, 𝑥k) and the Heaviside step function is equal to 1, otherwise 0.) 

With the use of substitutions we get function 𝐿 as a function of vectors 𝑥k = {1𝑥k,2𝑥k,.. .d𝑥k}, 𝑥l = {1𝑥l,2𝑥l,.. 

.d𝑥l}, i.e., function of 2𝑑 scalar variables. These variables affect the classification error via the distance 

function 𝜌(.,.). Depending on 𝑥k or 𝑥l we have “two” distance functions 𝜌k = 𝜌(𝑥, 𝑥k) and 𝜌𝑙 = p(𝑥, 𝑥l) 

that we have to differentiate. We will need some derivatives 

 

 

at the same time 

 

because 𝑟k is function of 𝑥k as well as 𝑥j. Now, we need the derivative of the 𝑟k wrt.r𝑥k. There is 

 

where 

 

 

 

 



Similarly, 

 

 

where there is no sum. Now, we can write the derivative of 𝐿 by r𝑥k and r𝑋j: 

 

Here, we have one fixed 𝑘 and one fixed index 𝑟, and 𝑗 is such that 𝑋j runs over the whole learning set 

𝑈. In the following: 

 

there 𝑗 and index 𝑟 are fixed, and 𝑘 is such that 𝑥k runs over set 𝑈c of all patterns of class 𝑐 from the 

learning set 𝑈. 

 

2.6 Conditions for a Good Distance Function 

Equation (21) should be fulfilled for any pattern 𝑥. Unfortunately, only the constant function can have 

zero derivatives anywhere. We must limit ourselves to situations of most probable error. One can 

suppose that it arises where the class probability estimation p(c|x) is close to the decision threshold 8, 

usually 𝜃 = 1/2 in two class problems. This conjecture can be verified by comparison of distribution 

functions of classifier’s output before thresholding. The distribution functions for badly recognized 

patterns lie below the distribution function for well recognized ones. For badly recognized patterns 

the mean is close to 0.5, whereas the mean for well recognized patterns is substantially larger. It holds 

also for multiclass problems. Then, 𝑃̂(𝑐|𝑥) - 1/2 = 0 characterizes where we need to minimize the 

number of errors and then zero derivatives. So we have to discuss and  = 0 . 

From Equations (20) and (21) it follows 

and also 

 

 

 



2.7 Other Findings 

It can be found that some distance functions behave better than the 𝐿2 metric. We study here the 

Pearson, Hassanat, and Orloci distance functions. 

The Pearson distance function (a covariance dissimilarity) is given by 

 

It is nearly a metric. When testing with random points, one can find less than 10% violations of the 

triangle inequality. In the Pearson distance, 𝜌p = 0 if 𝑥1 = 𝑥2 = ⋯ = 𝑥d or 𝑦1 = 𝑦2 = ⋯ = 𝑦d even if 𝑥 ≠ 𝑦, 

i.e., the distance of a point to the point that has all coordinates the same is equal to 0. In two 

dimensions, a “circle” with center at 0 has form of hyperbolas 𝑦 =  ±2𝑟/𝑥, where 𝑟 is the radius. The 

area of a circle is infinite. 

The Hassanat metric [13] is defined as follows. Let 𝑀i = max (𝑥i ,𝑦i ) andmi = min(𝑥i ,𝑦i ). The metric is 

given by the formula 

Where 

 

For 𝑚i > = 0, and 

that is also 

 

for 𝑚i < 0 

It has been proved to be a metric on 𝑅d. The value of a distance is limited to 𝑑. If average is used instead 

of the sum in (25), then the distance is limited to 1. A “circle” with radius r in two dimensions has the 

form of hyperbolas as shown in Figure 1. This Figure shows “circles” with radii 0.4, 0.5, 0.8, 0.9, and 

1.0. At the top right one hyperbolic branch of a circle with radius 0.5 is depicted as a bold dashed line. 

Horizontal and vertical dashed lines indicate its asymptotes. It can be seen that “circles” with small 

radii have a finite area, while for large radii the area is infinite. For small radii the form reminds of the 

circles in the Manhattan metric, where the four edges are straight lines. A question arises as to what 

the ball looks like in multidimensional space. Figure 1 leads us to compare it to the sphere in the 

Manhattan metric. In the Manhattan metric, a 𝑑-dimensional sphere is actually a cube “standing on 

one corner”. This means that each of the d main diagonals is parallel to one coordinate axis. The ball 

in the Hassanat metric can be compared with a ball in the 𝐿1 metric. The difference lies in the fact that 



ball in the Hassanat metric has all the edges and all the planes bent in a hyperbolic way. The larger the 

radius of the sphere, the greater the deflection. 

Fig. 1. Two-dimensional balls (circles) in the Hassanat metric. Radii of balls from smallest to largest are 0.4, 0.5, 0.8, 0.9, and 

1.0. At the top right one hyperbolic branch of a circle with radius 0.5 is depicted as a bold dashed line. Horizontal and 

vertical dashed lines indicate its asymptotes. 

 

The Orloci metric (chord distance) is given by 

 

where (𝑥, 𝑦) is the scalar product and ||.||2 denotes the 𝐿2 norm. In the Orloci metric, the value of 

distance is limited to √2. It also holds 𝜌0 (𝑥, 𝑦) = 0 if 𝑥1 = 𝑥2 = ⋯ = 𝑥d and 𝑦1 = 𝑦2 = ⋯ = 𝑦d even if 𝑥 +

 𝑦. Moreover, in two dimensions a “circle” has the form of two straight lines that cross each other at 

point 0. 

It is also remarkable that distance functions that have a limited value to a margin have smaller errors 

than distance functions where the value of distance is unlimited, typically 𝐿p metrics. Note that the 

larger 𝑝 the worse; the preferable one is the 𝐿1 metric. This hypothesis leads to the “bounded 𝐿p” 

distance functions, especially bouded 𝐿1 and bounded 𝐿2 distance functions given by 

 

and 



 

The terms with 𝛼 (≈0.0001) serve for differentiation of distances of points with very large coordinate 

differences |𝑥j - 𝑦j |. Otherwise, all such points would appear to be at the same distance. These 

distance functions are not metrics, but there is a small percentage of the triangle inequality violations. 

It can be found that the classification results with bounded distance functions are better than with 

original ones, i.e., the 𝐿p metrics. 

In summary, there are conditions and findings 

(1) ∇𝜌𝑗 = 0, ∇𝑝𝑘 = 0 for 𝑥 for which 𝑃̂(𝑐|𝑥) - 1/2 = 0 holds. 

(2) The distance function should be a metric or nearly a metric, i.e., with small probability of the 

triangle inequality violations. 

(3) The distance function should be limited to a (relatively) fixed value. 

(4) A “circle” in two dimensions can have infinite area and should have the form as discussed 

above. 

 

3 RESULTS 

3.1 New Distance Functions 

A metric can be derived in the following way. In a vector space, there is a relation between norm and 

metric. It holds that if (𝑋, 𝜌) is a normed vector space with norm 𝜌 then 𝜌 : 𝑋 ∗ 𝑋 → 𝑅 defined by 𝜌(𝑥, 

𝑦) = ||𝑥 - 𝑦|| is a metric on 𝑋. Moreover, a metric associated with a norm has additional properties, 

the translation invariance and homogeneity. The Hassanat metric on Rd is not absolutely homogenous, 

then we cannot use construction above to derive a norm. Proceeding purely formally, we get formula 

as follows (a simplified Hassanat metric; we call it ℎ2 metric.) 

 

Note. It can be easily seen that due to the use of the absolute value in this formula there is no zero 

partial derivative according to any of coordinates 𝑋j, 𝑦j, j = 1, 2, … 𝑑 if 𝑋j = 𝑦j = 0. On the other hand, 

any “trick” to smooth the break of the absolute value will lead to zero derivative at the minimum. Thus, 

this condition can be easily fulfilled. 

 

3.2 Features of the h2 Metric 

3.2.1 Metric. 

Theorem 3.1. Function (29) is a metric in 𝑅d. 

Proof. First, to prove the nonnegativity it is sufficient to prove the nonnegativity of each summand. If 

 



 

then 

 

Second, 𝜌(𝑥, 𝑦) =  0 <=> 𝑥 =  𝑦. In our case from 

 

it follows |𝑥j - 𝑦j | =  0 and then 𝑥j = 𝑦j for every 𝑖 = 1, 2, … 𝑑. And from 𝑥j = 𝑦j it directly follows that 

Equation (30) holds. 

Third, the symmetry is apparent. 

Fourth, the triangle inequality has the form 

 

For short, we use symbol 𝑋𝑌 for term |𝑥j - 𝑦j | and analogously symbols 𝑋𝑍 and 𝑌𝑍. The equation 

above can be rewritten in the form 

 

Using a common denominator, there is 

 

Now, it suffices to prove that XY + YZ - 𝑋𝑍 ≥ 0 for every 𝑗 = 1, 2,... 𝑑. Here, 𝑋𝑌 = |𝑥j - 𝑦j | = 𝜌1 (𝑥j, 𝑦j) 

and similarly 𝑋𝑍 and 𝑌𝑍, then 𝜌1 is an 𝐿1 metric on 𝑅. Then, 𝑋𝑌 +  𝑌𝑍 −  𝑋𝑍 ≥ 0 and Equation (31) 

is a triangle inequality. Thus, Equation (29) is a metric on 𝑅d. 

 

3.2.2 Continuity 

In Equation (29), it is seen that it is continuous in 𝑅d. Due to the absolute value in the denominator the 

derivative is discontinuous in set 𝑆 = {𝑥, 𝑦 ∈ 𝑅d : 𝑋i = 𝑦i, 𝑖 = 1, 2,..., 𝑑} ⊂ 𝑅d × 𝑅d. In 𝑅d × 𝑅d - 𝑆 all 

derivatives of Equation (29) are continuous. See also Note in Section 3.1. 

 

 



3.2.3 A Circle in 𝑅2 

Let a “ball” (circle) ℬ(0, 𝑟) in 𝑅2 be centered at the origin. In the first quadrant, the distance of a point 

(𝑥, 𝑦) from point (0,0) is equal to 𝑟 and it holds 

 

A ball has the form of four hyperbolas of type 𝑦 =  1/𝑥 with asymptotes parallel with coordinate axes. 

Due to symmetry in other quadrants this ball looks similar. It can be also found that hyperbolas have 

horizontal and vertical asymptotes parallel to coordinate axes at the distance given by 

 

Thus, for radius 𝑟 = 0.5 asymptotes are identical with coordinate axes. For 𝑟 > 0.5, the distance of 

asymptotes is positive and the hyperbola in the first quadrant is shifted by this value to the right and 

up. For 𝑟 < 0.5 the asymptotes lie by this shift left and below the coordinate axes, and therefore the 

hyperbola crosses the coordinate axes in the distance 
2𝑟

1−𝑟
 from the origin. An equation for a circle ℬ(0, 

𝑟), 𝑟 <  1 in 𝑅2 is 

 

Such circles for several values of radius are depicted in Figure 2. For radii 𝑟 ≥ 0.5 the area (“volume”) 

is infinite, for 0 ≤ 𝑟 ≤ 0.5 the area 𝑉 is finite and it holds 

 

where 𝑏 =  2(1 −  𝑟) and the length of a “ray” of the star is 𝑠 = 
2𝑟

1−2𝑟
. These data in numbers are 

shown in Table 1. 

 

3.3 A Product Semimetric 

It seems that distance functions in which balls in 𝑅2 have the form of hyperbolas gave good results 

when used in classification tasks. The idea behind this distance function is to construct a distance 

function that would have a ball in the form of exact hyperbolas. Then, we define a distance function 

as a product of features differences. 



 

Fig. 2. Balls (circles) in 𝑅2 with radii 0.25, 0.35, and 0.4; ℎ2 metric. 

 

Table 1. Volume (Area) of a Ball in 𝑅2 and Length of “Ray” of the “Star” for Different Radii r of a Ball; the ℎ2 Metri 

 

if at least for one 𝑗 there is 𝑥j ≠ 𝑦j, and 

 

otherwise. 

 

 



3.4 Features of Product Semimetric 

3.4.1 Semimetric 

To demonstrate that Equations (34) and (35) is a semimetric suffice to show that it is, first, 

nonnegative, which is apparent from Equation (34). Second, 𝜌(𝑥, 𝑦) =  0 <=>  𝑥 =  𝑦 according to 

Equation (35). Third, the symmetry is apparent. Note that the triangle inequality does not hold but it 

does not hold in a small percentage of cases. 

 

3.4.2 Continuity 

In Equation (34) it is seen that it is continuous in 𝑅d. Due to the absolute value of the coordinates 

differences 𝑥j - 𝑦j the derivative is discontinuous in set 𝑆 = {𝑥, 𝑦 ∈ 𝑅d : 𝑥i =  𝑦i, 𝑖 = 1, 2,..., 𝑑} ⊂ 𝑅d × 

𝑅d .In 𝑅d × 𝑅d - 𝑆 all derivatives of Equation (34) are continuous. See also Note in Section 3.1. 

 

3.4.3 A Circle in 𝑅2 

Let a “ball” (circle) ℬ(0, 𝑟) in 𝑅2 be centered at the origin. In the first quadrant, the distance of a point 

(𝑥1, 𝑥2) from point (0,0) is equal to 𝑟 and it holds 

eventually, when a point is given as (𝑥, 𝑦) 

Generally in a 𝑑-dimensional space 

 

A circle in 𝑅2 has the form of four hyperbolas with asymptotes identical with coordinate axes. Equation 

for a circle ℬ (0, 𝑟), 𝑟 <  1 in 𝑅2 is 

The area (“volume”) is infinite for each radius 𝑟. 

 

4 APPLICATION IN CLASSIFICATION PROBLEMS 

The influence of the distance function used is demonstrated in computational experiments employing 

24 tasks from the Machine Learning Repository [10]. Characteristics of these tasks are given in Table 

2. The number of attributes not including the class mark ranges from 4 to 180. There are two to 26 

classes. Data originally from the UCI Machine Learning Repository were gained mostly from [28] 

(denoted by 𝑃 in the column Source in the Table). These datasets are ready for run with a classifier. 

Most of the tasks consist of 50 pairs of training and testing sets corresponding to 50fold cross 

validation. For the DNA, Letter and Satimage data a single partition into training and testing sets 

according to specification in the UCI-MLR was used. We also added the popular Iris dataset. We use 



them without Setoza class, i.e., with two classes Versicolor and Virginica only, and the remaining data 

were split into 10 pairs for 10-fold cross validation. 

New distance functions can be useful for a better functioning of the distance-based classifiers. 

According to the study [14], the best results with different metrics were reached for the IINC algorithm. 

Therefore, we present results for the IINC here. 

 

4.1 Selection of Distance Functions for Comparison 

The main source of not too common distance functions is book by 𝐸. Deza and 𝑀. 𝑀. Deza [7], ev. [8]. 

This is a great piece of work. Our conditions for selection were first, if it is applicable to Rd, and second, 

if it is computationally simple. It means without integral enumerations, solving equations, taking 

supremum and so on. This allows (with some licence) to use Cayley-Klein-Hilbert metric or Weierstrass 

metric ([7], p. 122), but excludes distance functions of type Harnack metric, Apollonian metric ([7], p. 

123), and many others. 

Table 2. Table of Basic Characteristics of Tasks from the UCI Machine Learning Repository Modified by Sources Cited 

Abbreviations for sources: 𝑃 - [28]; 𝑃2 - [27]; UCI MLR - [10]. Note (1): Iris data are used without Setoza class, i.e., two 

classes Versicolor and Virginica only. The last column gives the application, ev. the scientific field from which the data were 

derived. 

 

Into our selection, we included common metrics, Euclidean, Manhattan (𝐿1), 𝐿10 that simulates 𝐿∞, 

Mahalanobis distance and class dependent Mahalanobis distance. The last two are rather common but 



they do not fulfill the condition of a simple computation. They need evaluation of the inverse 

covariance matrix, eventually as many covariance matrices as there are classes. Moreover, difficulty 

arises in high dimensional tasks. To avoid these problems we use algorithm ainvl adapted from Matlab 

code according to [4]. 

Another distance functions sometimes considered in classification or machine learning tasks is the 

Orloci (chord) distance and very similar angular semimetric. Five distance functions were derived from 

various correlation coefficients as 1 - correlation coefficient. This way we got Pearson, jacknife, 

Goodman-Kruskal, Kendall, and Spearman distances. Remaining eight distance functions were selected 

from [7] according to criteria mentioned already. 

 

4.2 Results of Tests 

Summary of measurements is shown in Table 3. Rows in the table show results for individual tasks, the 

last line gives the mean. A total of 23 columns give classification errors for all the tasks for 23 distance 

functions, mostly metrics, with the IINC classifier. 

Table 3. Classiication Errors of the I INC Classifier with 23 Distance Functions for 24 Tasks - Part I 

 

The columns (distance functions) are ranked according to the mean classification error, the best (with smallest error) first 

(leftmost). 

 

These columns are ranked according to the mean classsification error, the best leftmost. In each row, 

there is one entry in bold showing the minimal classification error and the best distance function for a 



task. The last column of the Table gives classification errors for the support vector machine (SVM), 

implementation by 𝑇. Joachims [18, 19]. Data for other classifiers, the 1-NN and 𝑘 −NN type with or 

without learning can be found, e.g., in [14, 29]. 

Note. In Tables 3 and 4, one can find entries larger than 50%. To make it lesser than 50% one could 

use a complement to one, that means to interchange classes in the case of two-class problems. Since 

we think this is unfair we left things as they are. The cases of such a large classification error say simply 

that the task is hard for the classifier and the distance function used. It can be also found that this does 

not appear for the left (upper) half of the table, i.e., for distance functions that can be considered 

“better”. 

 

4.3 Statistical Evaluation 

For evaluation of distance functions we use statistical tests, the Friedman aligned test, and the Quade 

test, and also simple criteria, such as the mean classification error and quartiles, especially median. In 

statistical tests, we follow the methodology and recommendations according to [6]. That is why we do 

not describe these methods here. Note only that in both the Friedman aligned test and the Quade test 

one ranks all the entries of the table of classification errors (Tables 3 and 4). Both tests serve for 

multiple comparisons. The Friedman aligned test considers all the tasks equally important, whereas 

the Quade test takes into account the fact that some tasks are more difficult than others. In the Quade 

test, each problem is scaled, depending on the differences observed in classification performances. In 

this way, the Quade test gives a weighted ranking. 

Ranks for each distance function follow from each of the criteria and tests. These ranks are summarized 

in Table 5. In this Table, the distance functions are arranged in the same order as in Tables 3 and 4, 

i.e., according to mean classification error, the smallest mean error first. 

Table 5 shows how much rankings depend on the criteria chosen. There are six columns showing ranks 

according to six methods of evaluation of classification errors. It is seen here that ranking of distance 

functions depends on the criterion to a considerable extent. 

In Table 5, the 𝐿1, Hassanat, ℎ2, and ℎ3 distance functions form a group apparently better than the 

rest of the distance functions and the SVM. The leading role of these four distance measures may 

slightly change according to the set of tasks used for comparison. In any case, one of these distance 

functions will appear as best. 

On the other hand, this may, but need not, hold for a particular task. The best classification error and 

best distance function for each task are shown in bold in Tables 3 and 4. It is seen here that the first 

five distance functions are each best for two tasks from the total 24. Also Clark and Goodman-Kruskal 

distance functions are the best for the two tasks. At the same time, there are eight bold entries in the 

second half of the Table. It shows that a generally not too good distance function may be the best for 

a particular task. If a “good” distance function is the best, then the classification error for a “bad” 

distance function may be even ten times larger. In contrast to the best result for a “bad” distance 

function, results with any “good” distance function are usually only a little bit worse. One can conclude 

that if a “good” distance function is used, the “danger” of much better results with another distance 

function is very low. 

In this work, we use rankings based on two thorough statistical methods, the Friedman aligned test 

and the Quade test, and rankings according to simple criteria (three quartiles and mean), see Table 5. 

The mean has a known disadvantage in the fact that several large values may shift the mean to a larger 



value. On the other hand, quartiles, especially median, are robust estimators. The quartiles have also 

a simple quantitative interpretation. The rank in the first quartile says that a particular distance 

function is the “rank-best” for 1/4 of tasks. Here, with the 𝐿1 metric there are minimal errors in 1/4 of 

tasks. With the ℎ3 metric there are minimal errors in 50% of tasks. And with Pearson’s metric there 

are minimal errors in 3/4, i.e., in 18 from 24 tasks. 

 

Table 4. Classification Errors of the I INC Classifier with 23 Distance Functions for 24 Tasks - Part II 

 

The last column shows results obtained using SVM with best kernel for each task. NA means not available; SVM does not work 

for this task. 

 

  



Table 5. The Ranks of 23 Distance Functions According to Six Criteria and Statistical Tests 

Rows in this table, i.e., distance functions, are ranked according to the mean classification error in the same way how they are 

ranked in Tables 3 and 4. Individual columns give ranks of distance functions according to six criteria. Note the remarkable 

similarities between the columns. 

Considering the first and the third quartile as too weak and too tough, the mean and the median 

remain. In first four places, the Hassanat and ℎ3 metrics interchange their ranks. According to the 

mean, the Hassanat metric is the best, according to the median the ℎ3 pseudometric is the best. 

It can also be seen that the ranking according to the Friedman test and according to a simple mean are 

the same for distance functions ranked 1-11. The rankings 12-23 are very similar here. 

In contrast to this, there is a large difference between the Quade test and the Friedman aligned test, 

eventually the mean. The ranking according to the Quade test is closer to the ranking according to the 

median, eventually to the third quartile. Beside the advantages of the Quade test being thoroughly 

theoretically supported and taking task difficulties into account, it has a disadvantage in its difficult 

interpretation of the resulting ranking. 



From the point of view of weighting tasks according to their difficulties, the mean and the Friedman 

aligned test do not seem to be the best choice. Therefore, a slightly more time-consuming Quade test 

should be preferred. In the end, it appears simpler to rank distance functions according to the median 

that has the simple interpretation mentioned above. 

 

Fig. 3. Classification error as a function of the distance function. The distance functions are ranked according to the 

classification error for the IINC method. 

 

4.4 Practical Example 

Data we discuss here describe successes and faults in lending money. Clients are of two types: those 

to whom the money was provided and those to whom the loaned money was refused. Error in both 

case means loss. In the first case, money is simply lost; a person never pays or pays too late and does 

pay in full. In the latter case, the interest is lost. Moreover, almost certainly the client will not come 

again. The error in decision therefore has the same weight in both cases. The simplest criterion to 

minimize is the classification error. 

The goal of automation is to minimize decision errors with help of machine-learning. In this case, it is 

lazy learning, taking advantage of the entire learning set and updating immediately or at correct 

intervals as new data appears. Specifically, we present results with data where there are 2,000 cases 

used as a learning set, and 31,000 cases (samples) form a test set. Each client is characterized by seven 

parameters (features), e.g., money amount, city of residence, economic category, and years of 

employment. Figure 3 shows the comparison of the two distance-based classification methods and the 

ranking of distance measures described here. Distance functions are sorted by the IINC classification 

error. For this reason, the 1-NN classification error is not a monotonous function. On the other hand, 

there is a match between good and bad distance functions in both methods. As mentioned, it is a 

common rule, but it may not be the case. Also in this example, these groups correspond to the finding 

given in Section 4.3 and shown in Tables 3 and 4. 

 



5 CONCLUSION 

The IINC as well as the 𝑘-NN are distance-based classifiers. Then, their function depends on the 

distance function used. We introduced here two new distance functions, a metric one, denoted as ℎ2 

here, and a pseudometric one that we denote ℎ3. 

We tested these distance functions in a set of 23 different distance functions, mostly metrics for the 

IINC classification algorithm. Some of the 23 distance functions are little known and look unusually. 

We mean that they do not conform to our intuition how a geometric object should look like or what 

features it should have. For example, we accept that a ball in 𝐿1 metric has the form of a “diamond” 

and in the Lmetric the form of a cube with edges parallel with coordinate axes. These “balls” have a 

finite volume. But there are distance functions, even metrics, where a “ball” has infinite volume at 

least for some finite radii. On the other hand, some of the uncommon metrics give a very low 

classification error in some tasks when used in distance-based classifiers. 

When using a larger set of tasks, one can summarize classification errors of the IINC with various 

distance functions as shown in Tables 3 and 4. But a detailed inspection of this Table shows that some 

distance functions that are by far not the best in any ranking (see Table 5) can be the best for a 

particular task. Thus, to find the best distance function for a particular set of similar tasks, one should 

test all the distance functions. One may doubt if the best distance function thus found is really the 

best. Fortunately, the difference in the classification errors for the best and the second best, eventually 

the third best, is usually very low. So the chance that an unknown distance function would be much 

better than the best found for a particular task is also very low. 

It was shown in [14] that the behavior of other simple nearest neighbor rules (1-NN, 𝑘-NN) is very 

similar to behavior of the IINC classifier. Then, we can generalize that almost surely the influence of a 

distance function to the classification error is the same. It means that better distance function for a 

classifier is very probably a better distance function for other classifier. Thus, the new distance 

functions presented here can be used for the 𝑘-NN rules with success. 
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