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Parameter identification 
of a delayed infinite‑dimensional 
heat‑exchanger process based 
on relay feedback and root loci 
analysis
Libor Pekař  1,2*, Mengjie Song  3, Subhransu Padhee  4, Petr Dostálek  1 & 
František Zezulka  2

The focus of this contribution is twofold. The first part aims at the rigorous and complete analysis of 
pole loci of a simple delayed model, the characteristic function of which is represented by a quasi-
polynomial with a non-delay and a delay parameter. The derived spectrum constitutes an infinite 
set, making it a suitable and simple-enough representative of even high-order process dynamics. 
The second part intends to apply the simple infinite-dimensional model for relay-based parameter 
identification of a more complex model of a heating–cooling process with heat exchangers. Processes 
of this type and construction are widely used in industry. The identification procedure has two 
substantial steps. The first one adopts the simple model with a low computational effort using the 
saturated relay that provides a more accurate estimation than the standard on/off test. Then, this 
result is transformed to the estimation of the initial characteristic equation parameters of the complex 
infinite-dimensional heat-exchanger model using the exact dominant-pole-loci assignment. The 
benefit of this technique is that multiple model parameters can be estimated under a single relay 
test. The second step attempts to estimate the remaining model parameters by various numerical 
optimization techniques and also to enhance all model parameters via the Autotune Variation Plus 
relay experiment for comparison. Although the obtained unordinary time and frequency domain 
responses may yield satisfactory results for control tasks, the identified model parameters may not 
reflect the actual values of process physical quantities.

It is a well-known fact that dozens of industrial processes, including chemical ones, as well as social, economic, 
and other everyday systems are affected by latencies and delays1–6. Delays appear mainly due to mass, energy, and 
data transportation in the process and network interconnections, and their existence is closely related to distrib-
uted parameter systems. In modern discrete-time control systems, delays also arise from the human–machine 
interaction and signal sampling and processing7. As complex systems include internal feedback loops, internal 
delays must be considered along with the input–output ones; nevertheless, internal delays are often ignored 
when process modeling. However, such an approach can be unreasoning as the solution of partial differential 
equations (PDEs)—representing the reign of many industrial process models—often results in functions with 
lumped and distributed delays 8–10.

On the other hand, time-delay models (TDMs) may be very good estimators of some systems and processes 
dynamics, even if any significant physical delay is not supposed to appear in the process. TDMs have the form of 
functional differential equations, or more specifically, delay differential equations (DDEs), instead of PDEs. Even 
a simple TDM can express the dynamics of a high-order non-delay model11,12 with sufficient accuracy for control 
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design. However, these models are infinite-dimensional because of the transcendental form of the characteristic 
equation (CE)13. All infinitely many solutions of the CE constitute the TDM spectrum of characteristic values 
(or poles). The pole loci most significantly determine the dynamic and stability properties of the model14. The 
infinite nature of the TDM spectrum yields its advantages and disadvantages when estimating the actual system 
dynamics. The dominant (i.e., usually the rightmost) subset of poles can match the pole loci of a high order 
system; however, one must be careful about other (uncontrolled) TDM poles, especially of high-frequency ones.

Various methods and techniques for the TDM spectrum analysis and its pole loci estimation exist; see a survey 
by Pekař and Gao15. We do let provide the reader with just a few. If TDMs have the so-called commensurate delays 
solely, pole loci can be determined analytically via the Lambert W function16. However, this is the only exact 
method besides the direct solution of the CE via the analysis of the distribution of the roots of the corresponding 
CE in the frequency domain, see, e.g., the work by Amrane et al.17. The family of numerical methods includes 
a wide variety of approaches and techniques that are based on, e.g., the mapping of real and imaginary parts of 
CEs solutions18, bifurcation analysis of DDEs19, full discretization of TDMs3, continuation property of TDMs 
pole loci7 or on structural properties of a class of functional Vandermonde matrices20.

TDMs pole loci analysis is closely related to the inverse problem of the (partial) spectrum assignment, i.e., 
the determination of the model parameter (or even delay) values so that a subset of the characteristic values 
match the prescribed positions while other poles are sufficiently away from the chosen loci. There, again, exist 
several computational methods as well as principles of how to select the desired loci. The direct root assignment 
is essentially the most straightforward technique that gives rise to the solution of a set of algebraic (linear or 
nonlinear) equations21, the dimension of which is given by the number of assigned roots, their multiplicity and 
complexity. Its computational simplicity is, however, ransomed by a danger of a possible existence of model poles 
located right from the prescribed ones, which yields a problem of the poles’ dominancy. Only a few tools ensure 
that the desired TDMs poles are dominant, e.g., a modified Nyquist stability criterion can be applied22, yet it is 
based on a graphical trial-and-reset procedure. Recently, several ad-hoc results for single17 and multiple real20,23 
prescribed poles or even single a complex conjugate pair24 guarantying their dominancy have been derived; 
however, they usually levy large computational burden. Alternatively, the root dominance can be a posteriori 
checked using the argument principle (i.e., the Mikhailov curve based) approach25 or via the solution of a special 
convolution integral26, which requires an advanced mathematical effort as well. Whenever the direct assignment 
is not satisfactory, a numerical spectrum optimization can be made, e.g., by the quasi-continuous shifting of the 
roots27,28 or using its combination with the minimization of a specific fitness function reflecting the remaining 
spectrum, robustness issues, etc.29–31. Unfortunately, a non-convex optimization problem must be solved in many 
cases, see, e.g.,32 and references therein.

The use of relay in the feedback control system represents a favorite system parameters’ identification and 
automatic controller tuning framework that have received a great deal of attention since the pioneering work 
by Åstrom and Hägglund33, where the ideal on/off relay was used to generate sustained (ultimate) oscillations. 
This parameter estimation framework enables to prevent the process output from drifting too far away from the 
reference signal (setpoint), which is required for many industrial processes. During recent decades, a multitude 
of derived techniques and methods have been developed34,35 that have found a great favor of practitioners, espe-
cially in chemical and process engineering36–41.

Three families of approaches to evaluate unknown model parameters34 exist. Namely, using a describing func-
tion (DF) represents the most common approach33,38,42. Roughly speaking, this function is a linear approximation 
(usually based on the Fourier series expansion) of the nonlinear relay behavior. Second, the curve fitting approach 
attempts to fit the feedback response in the time domain based on an analytic formulation of the response43–46. 
As third, the frequency fitting does the same yet in the frequency domain, which corresponds to the seeking of 
multiple frequency points, besides the ultimate case47–49.

It is known that a sufficiently accurate process model can reduce errors in controller tuning50. The ultimate 
gains obtained from the standard (on/off) relay feedback oscillation amplitudes can have errors of over 15%51. 
Besides, Jeon et al.52 pointed out that model parameters obtained from the sustained relay oscillations can be 
insufficient if there is a mismatch in the model order and process dynamics, which gives rise to the need for more 
complex models. However, as the original method suffers from significant errors in model parameters’ estima-
tion and only one (critical) point of the frequency characteristics (i.e., two model parameters) can be obtained 
from the test, researchers have developed methods to fit the parameters more precisely and/or to search for more 
frequency response points under one or more relay tests.

Regarding the former group of methods, improved accuracy can be obtained by compensating for the phase 
lag caused by the relay module53—which is suitable for higher-order processes or those with large input–output 
delay, by using a biased relay54, a relay with two-band hysteresis to reduce the oscillation frequencies55 or relays 
with multiple switching56,57 that prune the relay oscillation harmonics and the effect of the input nonlinearity. 
Unfortunately, the reduction of the oscillation frequencies increases the experimental times. Other techniques, 
e.g., attempt to obtain as sinus-like relay output as possible by using a relay with saturation35,58,59, to reduce the 
effect of noises and disturbances50,60, to apply the so-called area methods that integrate specifically modified 
time responses61 or to use asymmetrical limit cycle62 or a shape factor63. However, most methods suffer from 
the sensitivity to plant–model structural mismatch58.

The simplest approach how to obtain more frequency points is to perform more than one relay test using 
an additional integrator64,65, via the parasitic relay66, a relay with hysteresis67 or the biased relay42 that alter the 
DF68. Li et al.69 proposed a well-applicable method called the Autotune Variation (ATV) that introduces an arti-
ficial delay in an additional test following the standard relay experiment. The technique was further improved 
by Kim70, Marchetti and Scali38, and Scali et al.71. These methods are popular among practitioners due to their 
computational simplicity. However, multiple experiments may be time consumptive; therefore, researchers have 
attempted to gain information about more frequency points or other system dynamic features under a single relay 
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test. Even a purposefully induced asymmetry can be used to determine additional frequency response points 
without performing additional relay feedback tests72. Nevertheless, the given asymmetry may yield the termina-
tion of oscillations, which fails the relay test. Numerous other techniques exist, such as the shifting method51,73,74, 
the use of relay transient48,54,75 or the computation of weighting moments47,61.

Most of the linear process models used in literature when applying some of the relay-based identification 
experiments include input–output delays within First-Order plus Dead Time (FOPDT) or Second-Order plus 
Dead Time SOPDT models, either stable44–46,50,55,63,69,76 or unstable43,44,51,77–81 ones. The models are represented 
simply by a series of a delay-free low-order submodel and the delay element. However, FOPDT models can suffer 
from poor performances for some low-order processes with fast parasitic dynamics61. Besides, the delay value is 
hardly ever considered as significant or dominant, even if such an assumption is often unreasonable in practice82.

Surprisingly, not many results concern internal delays incorporated in TDMs. Parameter estimate of TDMs is 
more complicated than parameter estimate of standard models47. The pioneering work in this field was presented 
by Vyhlídal and Zítek12. The authors comprised a first-order-derivative model with one internal delay parameter 
within the standard relay test33. We do let call this TDM the Simple First-Order one (SFOTDM) for further pres-
entation. The identified SFOTDM was further used for internal model control design. These results were taken 
as a starting point for parameter estimation of a TDM of the continuous stirred-tank reactor. The parameter 
values are further enhanced by solving nonlinear objective functions governed by the difference of the model and 
measured responses in the time domain via an—optimization algorithm. Nevertheless, a relay was not used in 
the proposed design; the authors only referred to the awkward need to determine the input–output delay value 
before the relay test. Pekař and Prokop83 compared the use of the saturated relay42 and the limit-cycle evaluation 
using the exponential decaying followed by the discrete-time Fourier transform54,66. The authors considered a 
first-order-derivative TDM that included three non-delay parameters, one internal delay parameter, and the dead 
time as the model of a circuit system with heat exchangers84. An artificial delay was used for the additional relay 
test. In47, the method of moments64 was applied to the serial combination of the SFOTDM and a low-pass filter 
represented by the delay-free first-order submodel85, and to its high-order generalization that, however, does not 
represent a universal TDM. Two versions of the shifting technique (or, the shift transformation) were applied to 
the preceding model by Hofreiter74,86. The DF was based on the fundamental-harmonic (i.e., higher harmonics 
are neglected) Fourier series expansion of the shifted control (input) signal. A biased relay with hysteresis was 
used because of practical reasons; however, it was not explicitly included in the algorithm.

As this study concerns a circuit process with heat exchangers, it should also be noted that relay-based identifi-
cation experiments (followed by a controller design in many cases) have been applied to heat-exchanger systems. 
For instance, a case study on an autotuning control method for a cross-flow heat exchanger was published in87. 
Jin et al.88 presented a Ziegler-Nichols-based method based on using the ultimate gain (instead of on a nonlin-
ear element) to get the sustained oscillations. Some researchers use nonlinear models such as Wiener-type or 
Hammerstein-type89. The reader is also referred to37 and references therein.

Let us provide the reader with the motivation to perform the presented research. Models of industrial pro-
cesses usually include a large number of unknown parameters. Hence, when applying the above-celebrated 
relay-based identification tests in practice, multiple experiments and/or solutions of nonlinear optimization prob-
lems are usually needed (even for linear models). As mentioned above, we focus on a circuit process with heat 
exchangers with large input–output and internal delays84. Considering the simplest single-input single-output 
case, the derived model includes six non-delay parameters, one internal delay parameter, and two parameters 
in the input–output relation. Let us call the model as Heat-Exchanger TDM (HETDM) for further presentation. 
Therefore, any attempt to fit these nine parameter values (e.g., in the frequency domain) requires a good initial 
guess. Hence, the main idea of the presented research is to perform a two-step relay-feedback identification 
procedure. The SFOTDM is assumed in the first step, which requires a relatively low computational effort when 
estimating model parameters’ values. The second step adopts the identified SFOTDM in the sense that dominant 
characteristic values (poles) of the model coincide with the dominant poles of the analytically-derived HETDM. 
The pole assignment yields the determination of the characteristic function parameters. These values can either 
be fixed while remaining model parameters are then set from the single experiment data or they constitute the 
initial estimation that are further enhanced along with other undetermined parameters that do not depend on 
poles. As the bridge between the two basic steps, a thorough analysis of pole loci of the SFOTDM resulting in 
explicit and implicit formulae and a simple graphical procedure is made. This quasi-polynomial root analysis 
constitutes a substantial contribution to the presented paper.

Relay feedback experiments for both the used models use the standard (i.e., on/off) biased relay for the initial 
estimation of the ultimate gain and the computation of the process static gain90. However, the selected asymmetry 
is small enough not to affect the applied DF yet sufficient to determine the static gain. The relay with saturation42 
is applied to enhance the DF evaluation. This nonlinear element can estimate the DF precisely in the ideal case. 
In the second step (i.e., for the HETDM), single and multiple relay tests are made. The single test is performed to 
identify the transfer function numerator parameters that are not affected by pole loci. Contrariwise, the multiple 
test attempts to determine four frequency points via three additional experiments utilizing an artificial delay as 
per the ATV + technique38,69,71. The response ultimate data and the given DF are processed via the well-established 
Levenberg–Marquardt (LM) method91 and the Nelder–Mead (NM) algorithm92 to solve a certain nonlinear 
frequency-based constrained optimization problem. Several numerical scenarios are benchmarked. Namely, LM 
and NM techniques are compared when using a single relay test to determine transfer function numerator param-
eters. In addition, the NM algorithm is used to estimate eight model parameters when applying the ATV + test.

Contributions of the presented research can be summarized as follows:

1.	 Exact analytic rules to determine pole loci of the SFOTDM are derived.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9290  | https://doi.org/10.1038/s41598-022-13182-5

www.nature.com/scientificreports/

2.	 Saturated relay feedback experiment is performed on the SFOTDM. The detected pole loci are then set to 
the initial parameters’ guess for the HETDM (as a sufficiently accurate mathematical model of the circuit 
system with heat exchangers), which is enhanced via the LM method, under the single relay-test data.

3.	 Three scenarios are compared to determine the remaining model parameters and further enhance the already 
estimated ones via the ATV+ technique and the solution of a nonlinear optimization problem using the LM 
and NM algorithms.

4.	 An independent determination of numerator and denominator transfer function coefficients along with the 
pole loci assignment enables to reduce the number of necessary relay test for some of the scenarios.

The rest of the paper is organized as follows. “Methods and techniques” summarizes theoretical fundamentals 
of (retarded) TDM spectrum and feedback relay-based experiment, the model parameters’ identification using 
a DF, and the LM and NM methods. “Results” has two fundamental subsections. The first subsection provides 
the reader with a detailed analysis of the SFOTDM pole loci. The second one presents the HETDM and all steps 
of determining its parameter values. Namely, the mathematical model of the HETDM is introduced, then the 
reader is acquainted with the poles assignment, the transfer function numerator estimation using a single relay 
test, and the complete model parameters estimation via the ATV + technique. In “Discussion”, the obtained results 
are discussed. Finally, “Conclusions” concludes the paper.

The standard notation is used throughout the paper, i.e., C,N,R denote the sets of complex, natural (excluding 
zero) and real numbers, respectively, Rn

+ expresses the n-dimensional Euclidean space of positive real-valued 
vectors, Re(s) and Im(s) mean the real and imaginary parts of some s ∈ C , respectively. Superscript  T denotes 
the vector (matrix) transpose.

Methods and techniques
Retarded quasi‑polynomial and its spectrum.  Let us concisely introduce the Retarded Quasi-Polyno-
mial (RQP) form and its spectrum, i.e., the zero points9,14,15. A RQP has the following form

where s ∈ C is the Laplace transform variable, qij ∈ R are non-delay parameters, τij ∈ R+ with τi0 = 0 represent 
delays, and n ∈ N means the RQP order (of derivative).

Definition 1  The RQP spectrum is the set of RQP zeros, i.e.,

Proposition 1  It holds for � that

1.	 If exist i ≥ 0, j > 0 such that qij , τij  = 0 , then |�| = ∞ (i.e., the RQP spectrum is infinite).
2.	 RQP zeros sk ∈ � are isolated and function R

∑n−1
i=0 mi�

(

qij , τij
)

�→ sk ∈ C is continuous.
3.	 For any finite γ ∈ R , the subset �R = {s ∈ � : Res > γ } is finite, while �L = {s ∈ � : Res ≤ γ } is infinite. □

Note that the relation 
(

qij , τij
)

 → sk is not necessarily smooth; namely, in points where a multiple real root 
bifurcates into a complex pair.

Definition 2  The RQP spectral abscissa is defined as

Relay‑based parameter identification.  As introduced above, experimental plant identification using 
the relay (or another simple nonlinear element) method represents a widely used technique in various engineer-
ing and industrial applications. Consider a plant (the model of which is to be identified) under a relay feedback 
control, as depicted in Fig. 1. In the figure, r(t), e(t), u(t) , and y(t) mean the reference, control error, manipu-

(1)q(s) = sn +
∑n−1

i=0

∑mi

j=0
qijs

ie−τij s

(2)� :=
{

s : q(s) = 0
}

(3)α� := sup {Res : s ∈ �}

Figure 1.   A framework scheme of the relay feedback identification experiment.
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lated input and controlled output variables, and G(s) stands for the actual plant (process) dynamics. The choice 
of r(t) (usually of a constant value) enables to set the operating point.

If the relay parameters are appropriately set, the closed-loop system reaches sustained oscillations of period 
Tosc in a finite time. If the relay element does not cause a phase lag, the corresponding angular frequency 
ωosc = 2π/Tosc is supposed to be close to the so-called ultimate frequency ωu for which ImG

(

jωu

)

= 0 (more 
precisely ∡G

(

jωu

)

= −π ), j2 = −1 . However, as a model Gm(s)  cannot express the true dynamics G(s) exactly, 
it generally holds that ωosc  = ωu . Whenever the relay exposes a phase lag, ωosc < ωu.

By adopting the idea of the DF, one point G
(

jωosc

)

∈ C can be estimated, i.e., two parameters of Gm(s) can 
be determined. The relay DF, N(·) ∈ C , can be considered as a linear approximation of the relay gain. It is usu-
ally derived using a consideration that e(t) is a harmonic signal and u(t) is subject to a truncated Fourier series 
expansion. Then, for the sustained oscillations, it holds that

which enables to estimate parameters of Gm(s) . Note that (4) can be graphically interpreted as the intersection 
of the Nyquist plot of Gm(s) with the horizontal line −N−1(·) . The DF depends on the amplitude A of e(t) oscil-
lations and some other relay setting parameters.

On/off relay test.  Let us consider an asymmetrical biased two-level relay. Its static characteristics and the 
corresponding sustained oscillations (limit cycles) are displayed in Figs. 2 and 3, respectively.

In the figures, B+,B− are upper and lower relay output levels, respectively, for which the bias (shift) parameter 
reads δ = |B+ − B−|/2 , and ε ≥ 0 expresses the hysteresis parameter. The particular DF is

where B = (B+ + B−)/2 , see, e.g.67,68,73. Then, the ideal on/off relay gives rise to N(A, 0, 0) = N(A) = 4B/(πA).
In practice, the setting ε  = 0 is suitable when the feedback signal is affected by noise so that the switching 

relay rate can be reduced. The advantage of the option δ  = 0 lies, i.a., in the possibility to estimate the process 
static gain k = Gm(0) = G(0) as

(4)N(·)Gm

(

jωosc

)

= −1+ 0j ⇔

{ ∣

∣N(·)Gm

(

jωosc

)∣

∣ = 1
∡
(

N(·)Gm

(

jωosc

))

= −π

(5)
N(A, δ, ε) =

4B

πA

√

1−

(

δ

A

)2
(

√

1−
( ε

A

)2
− j

ε

A

)

,

δ, ε < A

(6)k =

∫ t0+Tosc
t0

y(θ)dθ
∫ t0+Tosc
t0

u(θ)dθ

Figure 2.   The static characteristics of the asymmetrical biased relay.
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for t0 satisfying that sustained oscillations start for some t < t0
35.

Purposefully induced asymmetry can also be used to estimate and attenuate the load disturbance42. However, 
it may stop oscillations so that the relay test fails. In addition, model parameter identification with asymmetric 
relay yields an estimation error of up to 40% in a FOPDT case50.

Relay with saturation.  Estimating the critical point at ωu (or any other ωosc ) does not provide an accurate 
enough parameter estimation for some processes, e.g., for those with significant time delays. For instance, an 
error of 23% for FOPDT models was reported59.

Model parameters identification can be improved by using saturation relay35,59. Its static characteristics and 
a sketch of the corresponding sustained oscillations (under the assumption of a harmonic output variable) are 
depicted in Figs. 4 and 5.

The saturation relay does not cause an abrupt step change at e(t) = ±ε , yet it provides a smooth transient 
around zero. The relay input e(t) is multiplied by ksat resulting in the relay output u(t) up to the limit B = ksatA

. The corresponding DF reads

Ideally, if the gain ksat is set optimally (i.e., A = A ), input and output signals has the same shape; hence, the 
DF Nsat

(

A,A
)

= ksat is exact. However, in real conditions, u(t) has a shape of the truncated sinusoidal wave 
with upper and lower limits. Not that the limit case ksat → ∞ yields the ideal relay, i.e. Nsat(A, 0) = N(A, 0, 0).

A saturation relay test should follow the standard relay experiment (see the preceding subsection). Once 
kosc = N(A, ·) is found, then it is set ksat = kminkosc , kmin > 1 . Originally, it was suggested to take kmin = 1.459. 
The higher the value is, the closer to the two-level signal u(t) is. Contrariwise, smaller values of kmin force u(t) 
to be closer to sinus-like waves; however, the relay takes a longer time or even can fail to generate sustained 
oscillation.

(7)Nsat

�

A,A
�

=
2B

π





1

A
sin−1

�

A

A

�

+

�

A2 − A
2

A2





Figure 3.   Sustained oscillations using the asymmetrical biased relay.

Figure 4.   The static characteristics of the saturation relay.
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ATV + technique.  One of the fundamental drawbacks of the original relay feedback test is that only a single 
point of the frequency characteristics can be determined, which allows estimating only two model parameters. 
The ATV + technique38,69,71 introduces an artificial delay τa > 0 to the serial link between the relay and the pro-
cess.

Every single value of τa causes the phase lag of ϕa = ωoscτa where ωosc means the corresponding angular 
frequency of sustained oscillations when the delay applies here. Then, the overall phase shift attributed to the 
process reads

Hence, by detecting ωosc and the corresponding amplitude A , another point on the process (model) Nyquist 
curve can be determined. Obviously, whenever a number of N  model parameters are needed to be resolved, 
then ⌈N/2− 1⌉ distinct τa s is required, where ⌈·⌉ means the ceiling function (i.e., the rounding upward to the 
nearest integer).

The original setting69 comes from the following idea. The goal is to identify a point located at 45° distance 
from the negative real axis, i.e., ϕa = π/4 (under the assumption that ∡N(·) = 0 ). This point is expected to occur 
at frequency ωosc = 3/5ωu . It eventually yields the following condition and the setting result

The disadvantage of this technique is the prolongation of the relay feedback experiment. However, if the 
initial conditions are sustained oscillations, it lasts a significantly shorter time to restore the oscillations than 
starting from a constant steady state.

Parameter optimization methods.  To solve (2) for given roots sk , (4), and (8), two well-established 
optimization algorithms are adopted. Their concise description to acquaint the reader follows.

Levenberg–Marquardt method.  Consider a set of nonlinear differentiable functions f =
(

f1, f2, . . . fn
)T , 

C× R
m
�
(

x, p
)

�→ fi
(

x, p
)

∈ R , i = 1, 2, . . . , n , where x is a function variable, and p =
(

p1, p2, . . . , pm
)T

∈ R
m 

expresses the set of function parameters. Then, the set of algebraic functions

where 0 = (0, 0, . . . , 0)T , can be iteratively solved via

where

(8)∡G
(

jωosc

)

= −π − ∡N(·)+ ϕa

(9)τa
3

5
ωu =

π

4
⇒ τa =

5π

12
ωu

(10)f = 0

(11)

k+1p = kp+�kp

�kp = −
(

k
�+ k

�diag
(

k
�

))−1[

J
(

x, kp
)]T

f
(

x, kp
)

Figure 5.   Sustained oscillations using the saturation relay.
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J means the Jacobian of f  with respect to p , k expresses the iteration step, and � > 0 is an adjustable parameter 
(the so-called damping factor)93. Solution (11) and (12) attempts to solve the nonlinear least-squares problem, i.e.,

The value of � (the so-called damping factor) may vary during iterations. One of the framework strategies is 
to decrease its value as the residual sum on the right-hand side of (13) ( Res

(

p
)

 ) decreases, and vice versa. Let 
us introduce the multiplicative factor κ > 0 as k+1

� = k
�κ . Particular choices of 1�, 1p , and κ are discussed in 

“Relay-based parameter identification of heat-exchanger process”.
A disadvantage of the LM algorithm is that the solution may converge to a local minimum (as for other 

Newton-type methods) or it may even diverge (especially, if � is set inappropriately).

Nelder–Mead method.  Assume an unconstrained optimization problem, first

The idea of the NM method92 is to iteratively search for the optimal solution by moving a variable-shape 
simplex in the space of p . The simplex vertices represent the so-called test points. Once the initial simplex 
1S =

(

1p1,
1p2, . . . ,

1pm+1

)

 is selected, its vertices are re-ordered such that f
(

1pi
)

≤ f
(

1pi+1

)

, i = 1, 2, . . .m 
(i.e., 1p1 represents the best solution estimation) and set k = 1 . Then, the center of the subvector 
kS̃ =

(

kp1,
kp2, . . . ,

kpm
)

 is computed

The worst-valued vertex is reflected through kpc as kpr = kpc + γr
(

kpc −
kpn+1

)

, γr > 0 . Then, four sce-
narios can happen:

1.	 If f
(

kp1
)

≤ f
(

kpr
)

< f
(

kpm
)

 , then set a new simplex k+1S =
(

kp1,
kp2, . . . ,

kpm,
kpr

)

.
2.	 If f

(

kpr
)

< f
(

kp1
)

 , compute the expanded point kpe = kpc + γe
(

kpr −
kpc

)

, γe > 1 . On condition that 
f
(

kpe
)

< f
(

kp1
)

 , set k+1S =
(

kp1,
kp2, . . . ,

kpm,
kpe

)

 , else k+1S =
(

kp1,
kp2, . . . ,

kpm,
kpr

)

.
3.	 If f

(

kpm
)

≤ f
(

kpr
)

< f
(

kpm+1

)

 , the outer contraction is done as kpoc = kpc + γoc
(

kpr −
kpc

)

 , 0 < γoc < 1 . 
Whenever f

(

kpoc
)

< f
(

kpr
)

 , set k+1S =
(

kp1,
kp2, . . . ,

kpm,
kpoc

)

 , else perform the shrinkage as

4.	 If f
(

kpr
)

≥ f
(

kpm+1

)

 , compute the inner contraction kpic = kpc + γic
(

kpm+1 −
kpc

)

 , 0 < γic < 1 . On con-
dition that f

(

kpic
)

< f
(

kpm+1

)

 , set k+1S =
(

kp1,
kp2, . . . ,

kpm,
kpic

)

 , else shrink the simplex using (16).

Then k = k + 1 , re-order simplex vertices, and calculate (15), etc.
If, however, inequality constraints

on a subset p̃ ⊆ p are required, one may use the concept of barrier functions. That is, instead of the objective 
function f

(

p
)

 as in (14), the extended function �
(

p
)

 is subject to the optimization procedure

where β > 0 and fb
(

p̃
)

> 0 must be sufficiently small as soon as all gj
(

p̃
)

≪ 0 ; otherwise, the value of fb
(

p̃
)

 
increases considerably until fb

(

p̃
)

→ ∞ as gj
(

p̃
)

→ 0−.

Results
Root loci analysis of the simple quasi‑polynomial.  In this subsection, a thorough zero loci analysis of 
the SFOTDM12 is provided. The derived results then serve for the pole assignment of the HETDM giving rise to 
the initial parameters setting of its CE (see “Parameter estimation of the heat-exchanger process model via pole 
assignment”). The model reads

where 0 < T ,ϑ , τ , k < ∞.
Although pole loci properties of the SFOTDM were studied in the past, according to the authors’ best knowl-

edge, a complete image and a thorough exact guide on finding the dominant subset of its spectrum has not been 

(12)k
� =

[

J
(

f
(

x, kp
))]T

J
(

f
(

x, kp
))

(13)popt = lim
k→∞

kp = arg
p

min
∑n

i=1

(

fi
(

x, p
))2

=: arg
p

Res
(

p
)

(14)min f
(

p
)

∈ R, p ∈ R
m

(15)kpc =
1

m

∑m

i=1

kpi

(16)k+1S = γs
kS, 0 < γs < 1

(17)gj
(

p̃
)

< 0, j = 1, 2, . . . , n

(18)�
(

p
)

= f
(

p
)

+ βfb
(

p̃
)

(19)GSFOTDM(s) =
k

Ts + e−ϑs
e−τ s
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provided yet. For instance, Marshal, Gorecki, Walton, and Korytowski94 studied a generalized characteristic RQP 
of the SFOTDM with relative parameters ( T = 1,� = ϑ/T , θ = τ/T ), and they determined ranges in which 
the model is asymptotically stable, aperiodic, and periodic. Moreover, intersections of pole loci trajectories with 
the imaginary axis for the generalized model were determined. Analogous conditions for which the model is 
stable, overdamped, critically damped, and underdamped were presented in95. Asymptotic behavior of pole loci 
trajectories in infinity and nearby the imaginary axis were also studied in96.

Hence, our aim is to analyze the solution (or its rightmost subset) of the CE

in C and provide the reader with a simple guide how to compute these pole loci.

Lemma 1  12,94,96 All solutions of (20) lie in the open left half complex plane (LHP) if and only if

� □

Result (21) can also be formulated as � ∈ (0, 0.5π).

Lemma 2  12,94,96. There exists a double real root s1,2 = −1/ϑ in the spectrum of qSFOTDM(s) if and only if

In addition, there does not exist a solution of (20) or its pair si = α + ωj, si = α − ωj with

where the bar denotes the complex conjugate. □

Result (22) can also be formulate as � = e−1 . Let us introduce relative real and imaginary parts of a quasi-
polynomial root as α = −ϑα , ω = ϑω , respectively. Then the range (23) becomes

Lemma 2 means that qSFOTDM(s) has the rightmost double real root at α = 1 for � = e−1.

Lemma 3  96. The double dominant (i.e., rightmost) real root s1,2 = −1/ϑ (i.e., α = 1 ) becomes a complex con‑
jugate pair for �lim δ→0+ = e−1 + δ . Contrariwise, the double real root becomes a pair of single real roots for 
�lim δ→0+ = e−1 − δ . � □

Theorem 1  qSFOTDM(s) has a real dominant zero in the LHP for � =
(

0, e−1
)

 and a complex conjugate rightmost 
pair in the LHP for � =

(

e−1, 0.5π
)

 , where the particular root abscissa is within the range (23) (or (24), equiva‑
lently). � □

Proof   From Lemma 1, a negative root abscissa exists only for (23). If � ranges from 0 to e−1 , the rightmost real 
root moves from α = 0 to α = 1 due to Lemma 2 and Lemma 3. From Lemma 2, it is also known that there is 
the rightmost double real root for � = e−1 that bifurcates into a conjugate pair for � =

(

e−1, 0.5π
)

 . Eventually, 
this pair reaches the imaginary axis again for � = 0.5π as the only (i.e., the rightmost) quasi-polynomial root 
pair due to Lemma 1. � ■

In the following part of the subsection, dominant (and other) SFOTDM pole loci are investigated.

Lemma 4  96. Whenever s1,2 = ±ωj,ω �= 0 , it holds that ω = 1
T = (2k+1)π

2ϑ  (i.e., ω = � = 2k+1
2 π),k = 0, 1, 2, . . . . 

� □

Lemma 5  The double real s1,2 = −1/ϑ (i.e., α = 1 ) in � = e−1 is the only multiple real root of qSFOTDM(s) . � □

Proof   The double real root s1,2 = α must satisfy

where q′SFOTDM(s) =
dqSFOTDM (s)

ds  . Conditions (25) read

(20)CESFOTDM : qSFOTDM(s) = Ts + e−ϑs = 0

(21)
1

T
∈
(

0,
π

2ϑ

)

(22)
1

T
=

1

eϑ

(23)α ∈

(

−
1

ϑ
, 0

)

,ω ≥ 0

(24)α ∈ (0, 1),ω ≥ 0

(25)qSFOTDM(s)
∣

∣

s=α
= q′SFOTDM(s)

∣

∣

s=α
= 0
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The first formula of (26) can be rewritten as

The latter condition in (26) agrees with

By comparison (27) and (28), it can be deduced that α = 1 is the only double real root.
Now we must show that it is the only multiple root for any finite � . Such a root must satisfy (25) and 

simultaneously

Since ϑ  = 0 , only two solutions of (29) exist

The former solution in (30) yields the stability border due to Lemma 1 and α → ∞ from (27) and (28), which 
indicates a root at infinity. It is, however, in contradiction with (29). The latter possibility in (30) gives � → ∞ 
from (27) but � → −∞ from (28), which yields a contradiction again.

As an alternative of the proof, one can easily deduce that (28) and (29) are in contradiction.� ■

Lemma 6   Equation (20) can have only two real solutions (counting multiplicity). � □

Proof  Lemma 6 implies from Lemma 5 directly due to the root continuity (see Proposition 1). That is, a complex 
conjugate zeros of qSFOTDM(s) can bifurcate in a pair of distinct real roots only through a multiple pair.

Alternatively, distinct real solutions of (20) satisfy (27). Function α  → αe−α is unimodal with local and global 
maximum in α = 1 and the function value 1/e . This point agrees with Lemma 5. Otherwise, the function has two 
distinct intersections with the constant function � ∈

(

0, e−1
)

 for α ∈ (0,∞] . Hence, there is no real solution of 
(20) for � > e−1 . The situation is illustrated in Fig. 6.� ■

Theorem 2  Let � has a positive finite value. Then,

(a)	 If � > e−1 , complex conjugate (single) zeros si = α + ωj, si = α − ωj,ω > 0 , of qSFOTDM(s) are given by all 
solutions of the set of equations

(26)
Tα + e−ϑα = 0

T − ϑe−ϑα = 0

(27)
α +

1

T
e−ϑα = 0 ⇔ −

α

ϑ
+

1

T
e−ϑα = 0 ⇔ −α +�e−ϑα = 0

⇒ � =
α

eα

(28)1−�eα = 0 ⇔ � =
1

eα

(29)q(k)
SFOTDM

(s)
∣

∣

∣

s=α
= (−1)kϑk−1�eα = 0, k = 2, 3, . . .

(30)� = 0 or α → −∞

(31)α =
ω

tanω
, ω �= kπ , k = 1, 2, . . .

Figure 6.   Intersections of a constant function � and αe−α (Lemma 6).
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(b)	 If � ∈
(

0, e−1
)

 , complex conjugate zeros of qSFOTDM(s) are given by (31) and (32), and single real roots are 
given by the unique solution pair of

(c)	 If � = e−1 , complex conjugate zeros of qSFOTDM(s) are given by (31) and (32), and the multiple real root reads 
s1,2 = −ϑ−1 (i.e., α = 1).� □

Proof   Consider item a) first. From Theorem 1 and Lemma 6, there are no real solutions of (20). Complex con-
jugate ones have to satisfy

i.e., both the real and imaginary parts must be equal to zero

After some algebraic manipulation, conditions (35) become

By expressing �eα  from one equation und substituting it into another one, formula (31) is obtained where 
singularities are to be denied. Further, the latter equation in (36) gives

which yields (32) directly. Naturally, only positive right-hand sides of (37) are admissible to get real α values.
We know from Lemmas 5 and 6 and Theorem 1 that the only possible double real root bifurcates into a com-

plex conjugate pair for � > e−1 and there cannot exist another real root of qSFOTDM(s) . Note that only one root 
from the pair is sufficient to take due to the symmetry.

Assuming item b), a pair of single real roots exists due to Theorem 1. However, it is the only such a pair 
according to Lemma 6. A single real root must satisfy the first condition in (26), giving rise to (27), the result of 
which agrees with (33). However, complex conjugate zeros of qSFOTDM(s) must simultaneously exist due to its 
transcendental manner.

Regarding item c), the existence of the double real root is given by Lemma 2. Besides, there is no other real 
root of qSFOTDM(s) due to Lemma 5, yet si ∈ C\R as in (31) and (32) still exist.� ■

Theorem 2 does not consider multiple quasi-polynomial roots si ∈ C\R . The following proposition verifies 
that such roots can be neglected.

Proposition 2   Equation (20) does not admit a multiple pair solution si = α + ωj, si = α − ωj,ω > 0 . □

Proof  Any n-multiple si ∈ C\R must satisfy (35) and also

It is enough to show that a complex conjugate pair of multiplicity 2 does not exist, i.e., n = 1 . We proof a 
contradiction; hence, let there exists a double root si ∈ C\R that has to satisfy

which gives

The latter formula in (39) has two solutions: �eα = 0 or sinω = 0 . The first one is in the contradiction to the 
former condition in (39), whereas the second one yields

(32)α = ln

(

ω

� sinω

)

,α ∈ R

(33)� = αe−α ,α ∈ R

(34)qSFOTDM(s)
∣

∣

s=α+ωj
= 0

(35)
Tα + e−ϑα cos (ϑω) = 0

Tω − e−ϑα sin (ϑω) = 0

(36)
−α +�eα cosω = 0

ω −�eα sinω = 0

(37)eα =
ω

� sinω

(38)q
(k)
SFOTDM(s)

∣

∣

∣

s=α+ωj
= 0, k = 1, 2, . . . , n− 1

0 = q′SFOTDM
∣

∣

s=α+ωj
= T − ϑe−ϑ

∣

∣

s=α+ωj

= T − ϑe−αϑ cos (ωϑ)− jϑe−αϑ sin (ωϑ)

= T − ϑeα cosω − jϑeα sinω

(39)1−�eα cosω = 0
�eα sinω = 0

(40)sinω = kπ , k = 0, 1, . . .
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By substituting (40) into the first condition in (39), one gets �eα = 1 , which implies ω = sin (ω) from (36) 
or (37). That is, the unique solution ω = 0 means that the quasi-polynomial root is real, which gives a contra-
diction.� ■

Corollary 1 

(a)	 If  e−1 < � < π
2  ,  the r ightmost  zeros of  qSFOTDM(s) form a complex conjugate pair 

si = − α
ϑ
+ ω

ϑ
j, si = − α

ϑ
− ω

ϑ
j , given by the unique solution of the constrained optimization problem

(b)	 If � ∈
(

0, e−1
)

 , the rightmost zero of qSFOTDM(s) is a single real root given by the unique solution of

(c)	 If � = e−1 , the rightmost zero of qSFOTDM(s) is the double real root s1,2 = − 1
ϑ

 (i.e., α = 1).□

Proof  Regarding item a), the given range of � yields the rightmost complex solutions of (20) according to 
Theorem 1. Besides, its abscissa is within the range (24). All complex roots have their loci given by (31) and (32) 
of Theorem 2.

The only fact remaining to prove item a) is to show that ω ∈ (0, 0.5π) if and only if α = (0, 1) whenever 
� ∈

(

e1, 0.5π
)

 . From Lemma 3, lim
�→0.5π−

ω = 0.5π− and lim
�→e(−1)+

ω = 0 due to Lemma 2 (i.e., the complex pair 
becomes the double real qSFOTDM(s) zero).

(Necessity.) Now, we prove by contradiction that ω remains within the limit. Consider that α = (0, 1) . Let 
exist ω = 0 or ω = π

2  such that the first equation in (41) holds. The limit values are, respectively,

which is in contradiction to α = (0, 1).
The case ω < 0 can be omitted due to the root loci symmetry in C . Whenever ω > 0.5π , then there exists 

tanω < 0 , which implies α < 0 from (31), and we have a contradiction again.
(Sufficiency). It holds that ω < tanω for ω ∈ (0, 0.5π) , which gives α = (0, 1) directly.
Regarding item b), there exist two single real zeros of qSFOTDM(s) due to Lemma 6, the loci of which are given 

by (33) in Theorem 2. In addition, the right root from the pair determines the spectral abscissa for � ∈
(

0, e−1
)

 
from Theorem 1, which implies (42).

Item c) represents a reformulation of Lemma 2.� ■

(41)
min
0<α<1

α =
ω

tanω

s. t. :α = ln

(

ω

� sinω

)

,ω ∈
(

0,
π

2

)

(42)min
0<α<1

α = �eα

(43)

lim
ω→ π

2

α = lim
ω→ π

2

ω

tanω
= 0

lim
ω→0

α = lim
ω→0

ω

tanω
= lim

ω→0

1
1

cos2 ω

= 1

Figure 7.   Intersections of α1(ω) and α2(ω) to get si ∈ C\R (Theorem 2, Corollary 1).
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Remark 1  Corollary 1 can be extended to an unstable case; however, it is useless for this study. If needed, Theo-
rem 2 can be generally used. � □

To conclude this subsection, a graphical procedure to find all the roots of qSFOTDM(s) or the rightmost 
spectrum of the SFOTDM poles follows. Whenever condition of item b) of Theorem 2 is satisfied, real poles are 
found as per Fig. 6. Complex conjugate poles are given by (31) and (32) or (41), which can be graphically inter-
preted as intersections of real-valued functions α1(ω) = ω/ tanω and α2(ω) = ln (ω/(� sinω)) where values 
α2(ω) ∈ C\R determine “forbidden regions” of the function graph, see Fig. 7 for illustration.

The example figure is done for T = ϑ = � = 1 . Forbidden regions are highlighted in red. The circle indicates 
the position on the dominant complex conjugate pair according to (41).

Relay‑based parameter identification of heat‑exchanger process.  Infinite‑dimensional heat‑ex‑
changer process model.  The HETDM serves as a simulation testbed. The mathematical model arises from heat 
and mass balance equations that include delays and a thorough analysis of static and dynamic responses of the 
particular laboratory appliance (see Fig. 8). A concise description of the apparatus follows84 first. Positions in the 
figure correspond to the numbers in curly brackets.

The heat fluid circulates in the closed loop flowing through an instantaneous heater {1}, a long insulated 
coiled pipeline {2}, and a cooler {3}. The power input to the heater (that can be viewed as a solid–liquid flow 
heat exchanger) is continuously controlled in the pulse-width-modulation sense. Its maximum value is 750 W. 
The heated fluid temperature on the heater output {4} is only slightly affected when flowing through the 15 m 
long pipeline; however, the most significant loop delay is caused therein. The outlet temperature of the pipeline 
is measured by a platinum resistance Pt1000 thermometer {5}. The cooler is constructed as a radiator (i.e., a 

Figure 8.   The HETDM appliance.
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plate-and-fin heat exchanger) that can be considered as an indirect unmixed cross-flow heat exchanger from 
the process point of view. It is equipped with two cooling fans {6} (one of them is continuously controlled, while 
another is on/off type). The expansion tank compensates for the impact of the water thermal expansion {7}. 
The outlet temperature from the cooler is measured by Pt1000 again {8}. Finally, the continuously controllable 
magnetic drive centrifugal pump {9} serves for fluid circulation.

Despite its simplicity, the mathematical formulation of the HETDM and especially its dynamic properties 
are remarkable due to the model transcendental characteristic equation84. As the model is multivariable, the 
relation between the heater power input u(t) and the cooler outlet heat fluid temperature y(t) is selected as the 
most interesting input–output pair. Note that both quantities are considered as their deviations from a steady 
state. The analytically modelled linearized relation reads

which is a DDE where b0, b0τ , a2, a1, a0, a0ϑ ∈ R and τ , τ0,ϑ ∈ R+ express input/output delays and the state 
(internal) delay, respectively. The corresponding transfer function is

the denominator of which represents the model characteristic RQP (i.e., qHETDM ). In84, the following param-
eter values have been determined by a thorough and complex analysis of static and dynamic data

Let us take these data as a benchmark for the significantly more straightforward relay-based experiment. As 
the values arise from determined physical quantities of the process, they are assumed to be closed to the actual 
(true) real-life values.

Remark 2   The used Pt1000 thermometers have the guaranteed time constant T63 of 8 s, i.e., T90 ≈ 18.4 s. This 
additional dynamical latency has not been taken into account in analytically-derived model (44), and the true 
temperature values can be different from the measured ones. However, such negligence does not pose a serious 
problem with the model. First, plant delays τ ,ϑ caused by the thermal fluid transportation have significantly 
higher values, approx. ≈ 150 s. This means that possible sensor latencies have only a minor effect on the overall 
dynamics. Second, sensors’ latencies do not affect the internal delay of the model itself since they act only in the 
input/output relation; yet, they are included in the internal delay of the relay-feedback closed loop. If the system 
is considered linear (indeed, model (44) is a linearized formulation valid in the vicinity of an operating point), 
a sensor delay can be considered as the additional input/output delay of the model. As input/output delays are 
not derived analytically but based on measurements, the relay experiment data’s evaluation also covers these 
non-modeled latencies. Therefore, once the model is used for plant control, the plant model and the output signal 
for the feedback have the same value (in the ideal case).

Simple model parameter estimation using the relay‑based experiment.  The first step of the 
identification chain is estimating the SFOTDM parameters, especially those of qSFOTDM (20). It has three sub-
steps. First, the on/off relay with δ > 0 (and ε being sufficiently small), see (5), is used to estimate the static gain k 
in (19) as per (6). Second, the ideal relay ( δ = 0 ) is applied to get the initial estimation of oscillation data and the 
input/output delay value. Finally, the saturation relay is used to improve the accuracy of oscillation parameters, 
which yields the SFOTDM parameters from (4) and (7). All the substeps can be done within a single experiment, 
saving time since the transition from particular substantial oscillations to others takes less time than setting the 
oscillations from a constant steady state.

Let us use the notation τ → τs ,ϑ → ϑs for (19) to distinguish the SFOTDM parameters from those of the 
HETDM (for which no subscript is used). The combination of (4) and (7) can be solved analytically yielding12

where N·(A, ·) stands for either (5) or (7). However, it is inherently expected that the argument of cos−1 (·) is 
within the range [−1, 1] . Whenever it does not hold, a numerical solution of the combination of (4) and (7) have 
to be used instead of (47).

Set B = 100 , δ = 0.05 , and ε = 10−5 . The relay-test responses are displayed in Fig. 9. The arrows indicate 
when a particular relay starts to be used.

The eventual data from Fig. 9 are summarized in Table 1. Formula (19) gives k = 3.22× 10−2 . The value of 
τs can be estimated as the time interval between the switching point of u(t) and the peak time instant of y(t) . 
Hence, it can be measured that τs ≈ 136.7 s. Note that kmin = 1.4 has been taken for the saturation relay setting, 
which gives rise to ksat = 185.1 , A = 0.555.

As kN·(A, ·) cos (ωoscτs) = −2.72 (for the relay with saturation), (47) cannot be used. Hence, we attempt to 
apply the NM method to solve the minimization problem

(44)y(3)(t)+ a2ÿ(t)+ a1ẏ(t)+ a0y(t)+ a0ϑy(t − ϑ) = b0u(t − τ)+ b0τu(t − τ − τ0)

(45)GHETDM(s) =
b0 + b0τ e

−τ0s

s3 + a2s2 + a1s + a0 + a0ϑe−ϑs
e−τ s

(46)
a2 = 1.722× 10−1, a1 = 8.509× 10−3, a0 = 1.298× 10−4, a0ϑ = −7.022× 10−5,

b0 = −2.496× 10−7, b0τ = 2.173× 10−6, τ = 141, τ0 = 1.5,ϑ = 151

(47)T =
sin (ωoscϑs)− tan (ωoscτs) cos (ωoscϑs)

ωosc
, ϑs =

π − cos−1 (kN·(A, ·) cos (ωoscτs))

ωosc
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where GSFOTDM(s) is given (19), Nsat

(

A,A
)

 and ωosc are taken from Table 1. The barrier function is cho-
sen as fb(T ,ϑs , τs) = −

∑

x∈{T ,ϑs ,τs}
ln
(

1− e−x
)

 . The NM control parameters are set to γr = 1 , γe = 2 , 
γoc = γic = γs = 0.5 . The initial estimation reads

(48)

[T ,ϑs , τs]
∗ = argmin f (T ,ϑs , τs)

f (T ,ϑs , τs) :=
(∣

∣

∣Go,SFOTDM(s)
∣

∣

s=jωosc

∣

∣

∣− 1
)2

+
(

∡

(

Go,SFOTDM(s)
∣

∣

s=jωosc

)

+ π

)2

Go,SFOTDM(s) = Nsat

(

A,A
)

GSFOTDM(s)|

s. t. : −[T ,ϑs , τs] < 0

(49)1T =
1

ωosc
, 1ϑs =

πT

4
=

π

4ωosc

Figure 9.   Relay experiment responses (without an artificial delay).

Table 1.   Relay experiment data (without an artificial delay).

Relay used A(°C) N·(A, ·)(W/°C) Tosc(s) ωosc(rad/s)

On/off 0.989 128.68 363.9 1.727 × 10−2

Saturated 0.971 123.59 369.7 1.700 × 10−2
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The setting of 1T in (49) arises from the assumption that the inverse of ωosc ≈ ωu is close to the time constant 
of the delay-free system. The value of 1ϑs represents the mid-point of the stability interval (21). Two scenarios 
for many setting combinations of the initial simplex size and β in (18) are made. First, the fixed value τs = 136.7 
is assumed (i.e., only T ,ϑs are optimized). Second, all three parameters in (48) are to be found.

Among dozens of results (models), six of the most distinguished ones are summarized in Table 2. The results 
either minimize f (T ,ϑs , τs) in the frequency domain or integral absolute error (IAE) and integral time absolute 
error (ITAE) criteria in the time domain, or represent a trade-off of all the criteria values. Unit step responses (i.e., 
u = 1 W) are displayed in Fig. 10. The models in Table 2 are also equipped with Roman numerals to label them.

Results IV, V, and VI provide an outstanding cost function value in the frequency domain, yet a worse IAE 
criterion compared to the remaining results. However, results V and VI give the best ITAE value. Unsatisfactory 

Table 2.   SFOTDM parameter identification results.

Result # T(s) ϑs(s) τs(s) f
(

T∗,ϑ∗
s , τ

∗
s

)

IAE ITAE

I 202.937 0.592 136.7 0.237 313.7 2.248 × 105

II 229.612 25.110 136.7 0.263 309.5 2.226 × 105

III 219.654 16.385 136.7 0.248 311.9 2.239 × 105

IV 258.617 155.647 79.377 2.99 × 10–27 812.8 4.432 × 105

V 239.437 9.2304 106.869 1.74 × 10–5 314.2 2.067 × 105

VI 247.880 18.421 106.390 8.81 × 10–10 318.2 2.090 × 105

Figure 10.   Comparison of SFOTDM unit step responses (vs. the original process response).
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time-domain response of parameters IV can be due to an excellent characterization of the ultimate point 
GSFOTDM

(

jωu

)

= −N−1
sat

(

A,A
)

 but an erroneous estimation of the remaining Nyquist plot. Hence, we do let 
provide the reader with graphical comparisons of process and model Nyquist plots, see Fig. 11.

Note that the terminal frequency value in Fig. 11 is ωfin = 0.1 rad/s. As can be seen, time and frequency 
responses for models I, II, and III, and those for models V and VI almost coincide. Figure 11 also indicates that 
the fixed input/output delay value yields a worse estimation of the ultimate point (i.e., the model crossing point 
with the negative real axis is quite far from that of the original process characteristics). Moreover, results V and 
VI seem to give the closest frequency-domain responses to the original Nyquist plot. Hence, Table 3 provides root 
means squares (RMS) values to measure the error between the process and the models. Two terminal frequency 
values for RMS computation are chosen, ωfin = 0.1 and ωfin = ωosc = 1.7× 10−2 rad/s.

Figure 11.   Comparison of SFOTDM Nyquist plots (vs. the original process characteristics).

Table 3.   SFOTDM Nyquist plot RMS errors.

SFOTDM # I II III IV V VI

RMS ( ×10−3)ωfin = 0.1 2.639 2.611 2.621 5.545 3.852 3.846

RMS ( ×10−3)ωfin = 1.7× 10−2 3.272 3.288 3.279 9.078 2.378 2.419
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Data in Table 3 prove the above-introduced assumption that Models V and VI estimate the process frequency 
response reasonably on low frequencies (i.e., up to the oscillation frequency); however, they fail for higher ones. 
It is also worth noting that the estimation of the ultimate frequency is quite accurate since the true one is about 
ωu = 1.67× 10−2 rad/s.

Parameter estimation of the heat‑exchanger process model via pole assignment.  Now, mod-
els (results) in Table 2 serve as the initial estimates for HETDM parameters identification. Several scenarios 
are tested and compared after the HETDM dominant spectrum assignment according to the pole loci of the 
SFOTDM.

Initial denominator parameters estimation.  The rightmost spectra of SFOTDMs (see Table 2) poles are dis-
played in Table 4. These loci are computed via the technique presented in “Root loci analysis of the simple quasi-
polynomial”. From Table 4, it can be deduced that the rightmost pole has a decisive impact on the dynamic prop-
erties (by comparing the result for SFOTDM I, II, and III), since although the remaining spectra significantly 
differ, the model time is the same and frequency domain responses are almost identical. Besides, by comparing 
spectra of models III and VI that are very close to each other, different dynamic properties indicate a high impact 
of the value of τs.

The pole assignment problem can be characterized by the set of nonlinear algebraic equations to be solved

Since problem (50) includes five unknown parameters to be determined, the unique solution (under the 
assumption that the Jacobian of the qHETDM has the full rank) requires taking {s1, s2, s3, s4, s5} . However, it is not 
always possible. For instance, SFOTDM I has only two significant real poles (the rest are too far in the LHP), and 
complex conjugate pairs of other spectra cannot be decoupled. Hence, only less number than five of SFOTDM 
poles are taken in (50). It is also worth noting that whenever sk ∈ C\R , the qHETDM in (50) is split into its real 
and imaginary parts.

We use the LM method (see “Levenberg–Marquardt method”) for solving the pole assignment problem. Let 
us discuss the ideal initial parameters’ selection, 1p = 1(a2, a1, a0, a0ϑ ,ϑ)

T . Take the CEHETDM and divide both 
the sides by a0ϑ

Then, it is apparent that the setting

yields the CESFOTDM . However, such a solution is non-feasible and may result in an immature solution of (50). 
Therefore, several approximate feasible initial settings are eventually chosen.

The multiplicative parameter κ that alternates the damping factor � in iteration steps should increase � when 
the residual sum on the right-hand side of (13) increases and vice versa. Some authors suggest setting an asym-
metric �97. Hence, after some numerical experiments, we eventually set κ = 5 when stepping up and κ = 10 
when stepping down.

Due to numerous settings of 1�, 1p , a bunch of possible results is obtained. Selected results (i.e., qHETDM param-
eter values) and their residual sums Res

(

popt
)

 (see (13)) are provided to the reader in Table 5. Corresponding 

(50)
CEHETDM(s, a2, a1, a0, a0ϑ ,ϑ)|s={s1,s2,...}∈�SFOTDM

: qHETDM(s, a2, a1, a0, a0ϑ ,ϑ) = 0
∣

∣

s={s1,s2,...}∈�SFOTDM

(51)
1

a0ϑ
s3 +

a2

a0ϑ
s2 +

a1

a0ϑ
s +

a0

a0ϑ
+ e−ϑs = 0

(52)a2 = a0 → 0, a1 = a0ϑT , a0ϑ → ∞, ϑ = ϑs

Table 4.   Dominant pole SFOTDMs spectra.

SFOTDM # Spectrum �SFOTDM = {s1, s2, . . .}

I −4.942× 10−3,−13.3446, . . .

II
−4.929× 10−3,−1.3748× 10−1,

(

−1.7344± 2.9141j
)

× 10−1,
(

−1.9502± 5.4943j
)

× 10−1, . . .

III
−4.936× 10−3,−2.4265× 10−1,

(

−2.9039± 4.4398j
)

× 10−1,
(

−3.2267± 8.4042j
)

× 10−1, . . .

IV
(−4.293± 6.202)× 10−3,

(

−1.6585± 4.8337j
)

× 10−2,
(

−2.0340± 8.9391j
)

× 10−2,
(

−2.2685± 13.088j
)

× 10−2, . . .

V
−4.347× 10−3,−5.2336× 10−1,

(

−5.9124± 7.8066j
)

× 10−1,
(

−6.4586± 14.8720j
)

× 10−1, . . .

VI
−4.373× 10−3,−2.1612× 10−1,

(

−2.5852± 3.9490j
)

× 10−1,
(

−2.8722± 7.4755j
)

× 10−1, . . .
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dominant pole loci of the models are enumerated in Table 6. Note that the QPmR software package18 is utilized 
to compute the poles here.

It can be deduced that despite diverse results within each of six models (characteristic RQP) families (i.e., I 
to VI), the obtained dominant spectra are very close to each other. This yields multimodality of the optimization 
problem. Characteristic RQPs I-a to I-d, II-b, III-a, III-d, III-e, IV-b, V-c, and VI-a to VI-f give almost identical 
spectra to the original ones (i.e., those of SFOTDMs). These findings correspond to the values of Res

(

popt
)

 in 
Table 5. It is exciting to observe that even if a subset of two or four poles is prescribed, other one or two complex 
conjugate pairs coincide with the original spectrum. This feature proves the success of the assignment task and 
an excellent mapping between qSFOTDM and qHETDM parameters.

Now three different scenarios of how to set numerator parameters of the model transfer function (45) or even 
eventually alter all the transfer function parameters based on relay-experiment data follow.

Numerator parameters estimation using Levenberg–Marquardt method.  The first scenario adopts the LM 
method and utilizes data solely from the single relay test (i.e., without a necessity to perform additional experi-
ments) that should indicate the ultimate data (i.e., the critical point of the Nyquist curve). Once the parameters 
are determined as in “Initial denominator parameters estimation”, they are fixed. Hence, the HETDM transfer 
function numerator parameters are estimated to comply with conditions (4). The advantage of this scenario lies 
in fact that all the model parameters are found within a single test.

In more detail, the set of nonlinear algebraic equations to be solved reads

where ωosc holds when using the relay with saturation. As only two parameters can be determined by solving 
(53), two other ones need to be set a priori. Let τ = τs be fixed as in Table 2. As the static gain k = 3.22× 10−2 
is known, the following equality is substituted to (53)

(53)
ReGo,HETDM(s, b0, b0τ , τ0, τ)

∣

∣

s=jωosc
+ 1 = 0, ImGo,HETDM(s, b0, b0τ , τ0, τ)

∣

∣

s=jωosc
= 0

Go,HETDM(s, ·) = Nsat

(

A,A
)

GHETDM(s, ·)

(54)b0 = k(a0 + a0ϑ )− b0τ

Table 5.   HETDM characteristic RQP parameters after pole assignment.

qHETDM # a2 a1 a0 a0ϑ ϑ(s) Res
(

popt
)

I-a 1 2.0294 × 104 0.5003 99.4991 0.5933 4.923 × 10–9

I-b 0.1003 202.9372 4.8135 × 10–2 0.9517 0.6429 4.079 × 10–9

I-c 1 2.0294 × 103 0.5010 9.4998 0.6020 4.855 × 10–9

I-d 0.1 2.0294 × 103 4.9865 × 10–2 9.9498 0.5989 6.338 × 10–9

II-a 3.3354 × 103 3.5842 × 103 − 1.0924 16.5911 24.0343 7.252 × 10–7

II-b 69.1007 2.2958 × 103 2.8047 × 10–5 9.9987 25.0797 3.531 × 10–9

II-c 333.0099 356.8123 − 0.1088 1.6517 24.0316 6.774 × 10–7

II-d 32.9795 34.3082 − 0.0105 0.1588 24.0036 9.476 × 10–8

III-a 65.8610 2.2007 × 103 − 3.0638 × 10–4 10.0189 16.3554 4.291 × 10–9

III-b 1.7687 1.2524 − 2.0196 × 10–4 5.8940 × 10–3 14.8082 8.099 × 10–7

III-c 1.7199 2.1965 × 104 2.0309 × 10–2 99.9985 16.3852 7.866 × 10–8

III-d 66.9478 2.1995 × 103 − 3.2145 × 10–4 10.0138 16.3548 5.010 × 10–9

III-e 21.3333 221.6120 − 4.2925 × 10–5 1.0089 16.2890 4.502 × 10–9

III-f 1.7964 1.2943 − 1.9689 × 10–4 6.0801 × 10–3 14.8407 3.408 × 10–8

IV-a 0.2044 63.8564 − 5.6594 × 10–6 0.2469 155.6432 6.165 ×  × 10–7

IV-b 1.8438 2.4484 × 104 − 6.3932 × 10–3 94.6770 155.6457 1.237 × 10–8

IV-c 1.4218 1.0081 − 1.5547 × 10–7 3.8981 × 10–3 154.2347 7.703 × 10–7

IV-d 0.1054 64.5774 − 5.8458 × 10–6 0.2497 155.6448 5.002 × 10–7

V-a 1.6308 1.0445 − 3.4296 × 10–3 7.7139 × 10–3 6.6212 8.527 × 10–7

V-b 2.2298 1.8530 − 1.5718 × 10–3 9.2720 × 10–3 7.6344 2.249 × 10–7

V-c 39.7452 2.3944 × 104 0.1101 99.9959 9.2288 9.011 × 10–9

VI-a 65.2071 2.4823 × 103 9.7148 × 10–4 10.0141 18.3944 1.507 × 10–8

VI-b 0.4771 2.4787 × 104 2.0034 × 10–3 99.9955 18.4207 8.334 × 10–9

VI-c 8.6334 2.4788 × 104 1.9849 × 10–3 99.9988 18.4204 2.004 × 10–8

VI-d 0.8673 2.4786 × 104 2.0039 × 10–3 99.9922 18.4207 7.501 × 10–9

VI-e 65.1724 2.4791 × 103 9.7024 × 10–4 10.0012 18.3944 9.421 × 10–8

VI-f 22.4011 249.1720 9.1230 × 10–5 1.0052 18.3308 6.733 × 10–9
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qHETDM # Spectrum �HETDM = {s1, s2, . . .}

I-a −4.942× 10−3,−13.3446, . . .

I-b −4.942× 10−3,−13.3446, . . .

I-c −4.942× 10−3,−13.3446, . . .

I-d −4.942× 10−3,−13.3446, . . .

II-a
−4.929× 10−3,−1.3481× 10−1,

(

−1.7344± 2.9140j
)

× 10−1,
(

−1.9978± 5.5034j
)

× 10−1, . . .

II-b
−4.929× 10−3,−1.3748× 10−1,

(

−1.7344± 2.9141j
)

× 10−1,
(

−1.9502± 5.4943j
)

× 10−1, . . .

II-c
−4.929× 10−3,−1.3481× 10−1,

(

−1.7344± 2.9140j
)

× 10−1,
(

−1.9978± 5.5034j
)

× 10−1, . . .

II-d
−4.929× 10−3,−1.3481× 10−1,

(

−1.7344± 2.9141j
)

× 10−1,
(

−1.9978± 5.5034j
)

× 10−1, . . .

III-a
−4.936× 10−3,−2.4265× 10−1,

(

−2.9039± 4.4398j
)

× 10−1,
(

−3.2266± 8.4042j
)

× 10−1, . . .

III-b
−4.936× 10−3,−2.4265× 10−1,

(

−2.9039± 4.4398j
)

× 10−1,
(

−3.3332± 8.2918j
)

× 10−1, . . .

III-c
−4.937× 10−3,−2.4265× 10−1,

(

−2.9039± 4.4398j
)

× 10−1,
(

−3.2266± 8.4042j
)

× 10−1, . . .

III-d
−4.936× 10−3,−2.4265× 10−1,

(

−2.9039± 4.4398j
)

× 10−1,
(

−3.2266± 8.4042j
)

× 10−1, . . .

III-e
−4.936× 10−3,−2.4265× 10−1,

(

−2.9039± 4.4398j
)

× 10−1,
(

−3.2266± 8.4042j
)

× 10−1, . . .

III-f
−4.936× 10−3,−2.4265× 10−1,

(

−2.9039± 4.4398j
)

× 10−1,
(

−3.3325± 8.2958j
)

× 10−1, . . .

IV-a

(

−4.293± 6.202j
)

× 10−3,
(

−1.6585± 4.8337j
)

× 10−2,
(

−2.0339± 8.9392j
)

× 10−2,
(

−2.2684± 13.0089j
)

× 10−2

IV-b

(

−4.293± 6.202j
)

× 10−3,
(

−1.6585± 4.8337j
)

× 10−2,
(

−2.0340± 8.9392j
)

× 10−2,
(

−2.2684± 13.0088j
)

× 10−2

IV-c

(

−4.293± 6.202j
)

× 10−3,
(

−1.6585± 4.8337j
)

× 10−2,
(

−2.0339± 8.9390j
)

× 10−2,
(

−2.2682± 13.0082j
)

× 10−2

IV-d

(

−4.293± 6.202j
)

× 10−3,
(

−1.6585± 4.8337j
)

× 10−2,
(

−2.0339± 8.9392j
)

× 10−2,
(

−2.2683± 13.0089j
)

× 10−2

V-a
−4.347× 10−3,−5.2336× 10−1,

(

−5.9124± 7.8066j
)

× 10−1,
(

−9.3259± 15.5209j
)

× 10−1, . . .

V-b
−4.347× 10−3,−5.2336× 10−1,

(

−5.9124± 7.8066j
)

× 10−1,
(

−7.5211± 14.6316j
)

× 10−1, . . .

V-c
−4.352× 10−3,−5.2336× 10−1,

(

−5.9124± 7.8066j
)

× 10−1,
(

−6.4586± 14.8720j
)

× 10−1, . . .

VI-a
−4.373× 10−3,−2.1612× 10−1,

(

−2.5852± 3.9490j
)

× 10−1,
(

−2.8722± 7.4755j
)

× 10−1, . . .

VI-b
−4.373× 10−3,−2.1612× 10−1,

(

−2.5852± 3.9490j
)

× 10−1,
(

−2.8722± 7.4755j
)

× 10−1, . . .

VI-c
−4.373× 10−3,−2.1612× 10−1,

(

−2.5852± 3.9490j
)

× 10−1,
(

−2.8722± 7.4755j
)

× 10−1, . . .

VI-d
−4.373× 10−3,−2.1612× 10−1,

(

−2.5852± 3.9490j
)

× 10−1,
(

−2.8722± 7.4755j
)

× 10−1, . . .

Continued
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Hence, the parameter set in (53) eventually reads p = (b0τ , τ0)
T and b0 is then calculated using (54). The LM 

control parameters are set as in “Initial denominator parameters estimation”.
Table 7 displays the most distinguished results such that two parameters ‘ sets from each of the six pole spec-

trum families are selected. The corresponding Res
(

popt
)

 , IAE and ITAE criteria values from unit step responses, 
and RMS values from Nyquist plots for ωfin = 0.1 and ωfin = 1.7× 10−2 are provided in Table 8.

Compared to SFOTDMs (Tables 2, 3), IAE and ITAE criteria values of unit step responses for HETDMs have 
been enhanced in all six families of models. Contrariwise, frequency-domain error measures have not been 
improved; the results in Table 8 are very close to those displayed in Table 3.

The unit step responses and Nyquist plots of some selected HETDMs are displayed in Figs. 12 and 13, 
respectively. The models are selected such they dynamic responses differ significantly. Regarding non-displayed 
responses, they are very close to some displayed ones. Namely, in the time domain, II-a-1 almost meets III-a-
1, yet the latter is faster. II-d-1 and III-c-1 are close to I-a-1. IV-a-1 and IV-b-1 almost coincide, yet IV-b-1 is 
faster. The same assertion holds for the pair V-c-1 and V-a-1. Finally, VI-e-1 is nearly identical to V-a-1. In the 
frequency domain, II-a-1 is close to the pair I-a-1 and III-a-1 at the whole frequency range. II-d-1 approaches 
I-a-1 at low frequencies and I-b-1 at higher ones. III-c-1 is almost identical to III-a-1 for all frequencies. Finally, 
pairs V-a-1/V-c-1 and VI-c-1/VI-e-1 have frequency responses very close to each other.

qHETDM # Spectrum �HETDM = {s1, s2, . . .}

VI-e
−4.373× 10−3,−2.1612× 10−1,

(

−2.5852± 3.9490j
)

× 10−1,
(

−2.8722± 7.4755j
)

× 10−1, . . .

VI-f
−4.373× 10−3,−2.1612× 10−1,

(

−2.5852± 3.9490j
)

× 10−1,
(

−2.8722± 7.4755j
)

× 10−1, . . .

Table 6.   Dominant pole HETDM spectra.

Table 7.   HETDM transfer function numerator parameters computed via the LM method.

GHETDM(s)# qHETDM# b0 b0τ τ0(s)

I-a-1 I-a 1.6119 1.6081 6.7858 × 10–2

I-b-1 I-b 31.1794 − 31.1472 2.8797 × 10–3

II-a-1 II-a 0.2560 0.2430 8.3566 × 10–2

II-d-1 II-d 9.2203 − 9.2156 1.7417 × 10–3

III-a-1 III-a 0.1881 0.1345 5.5557 × 10–2

III-c-1 III-c 1.6129 1.6077 5.6997 × 10–2

IV-a-1 IV-a 7.9628 × 10–3 − 1.3623 × 10–5 5.0648

IV-b-1 IV-b 1.5266 1.5218 5.2279 × 10–2

V-a-1 V-a 1.5158 × 10–4 − 1.3623 × 10–5 16.8245

V-c-1 V-c 3.2182 5.1884 × 10–2 196.7613

VI-c-1 VI-c 3.3697 − 0.1497 3.8464 × 10–2

VI-e-1 VI-e 0.1780 0.1440 0.5089

Table 8.   HETDM time-domain and frequency-domain model errors (ad Table 7).

GHETDM(s)# Res
(

popt
)

IAE ITAE RMS ( ×10−3)ωfin = 0.1 RMS ( ×10−3)ωfin = 1.7 × 10−2

I-a-1 0.2539 259.0 1.610 × 105 2.638 3.272

I-b-1 0.2315 192.6 1.115 × 105 2.738 3.215

II-a-1 0.2682 264.5 1.702 × 105 2.591 3.317

II-d-1 0.2441 253.6 1.559 × 105 2.673 3.234

III-a-1 0.6150 268.0 1.716 × 105 2.620 3.280

III-c-1 0.5899 254.5 1.576 × 105 2.621 3.282

IV-a-1 3.383 × 10–5 766.6 3.883 × 105 5.545 9.078

IV-b-1 7.218 × 10–4 766.8 3.882 × 105 5.545 9.078

V-a-1 5.643 × 10–5 271.1 1.563 × 105 3.887 2.383

V-c-1 7.002 × 10–11 268.4 1.523 × 105 3.851 2.371

VI-c-1 4.923 × 10–3 274.3 1.577 × 105 3.847 2.420

VI-e-1 4.078 × 10–4 266.8 1.496 × 105 3.846 2.419
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Numerator parameters estimation using Nelder–Mead method from single relay test.  Now, let us solve the same 
task as in the preceding subsection via the NM method. The optimization problem is formulated as follows

where the HETDM characteristic RQPs are fixed as in Table 5 and τ = τs . Again, the value of ωosc is taken from 
the saturation relay test. Note that the cost function with real and imaginary parts of Go,HETDM(s) is used in (55) 
rather than that with the amplitude and phase since numerical experiments give better results (in the sense of (4)).

The most outstanding results are provided in Table 9 (two parameters’ sets from each of the six pole spectrum 
families are selected again). Table 10 displays corresponding performance measures and implies that the accuracy 
of HETDMs in Table 9 is very close (or slightly worse) to models obtained in “Numerator parameters estimation 
using Levenberg–Marquardt method” (except for models from family I). This means that the models give better 
accuracy than SFOTDMs in the time domain yet only comparable ones in the frequency domain.

Unit step responses and Nyquist plots of selected models are given in Figs. 14 and 15, respectively. Note again 
that other characteristics are close to some displayed ones. In the time domain, responses for model families I, II, 
and III almost coincide when I-a-2 is the fastest and II-c-2 is the slowest. The same assertion holds for families V 
and VI (VI-b-2 and V-a-2 give the fastest and the slowest response, respectively), while models IV significantly 
differ from the others. Nyquist plots of III-c-2 and III-f-2 are closest to each other at low frequencies and the 

(55)

[b0, b0τ , τ0]
∗ = argmin f (b0, b0τ , τ0)

f (b0, b0τ , τ0) :=
(

ReGo,HETDM(s)
∣

∣

s=jωosc
+ 1

)2
+

(

ImGo,HETDM(s)
∣

∣

s=jωosc

)2

s. t. : −τ0 < 0

Figure 12.   Comparison of selected HETDM unit step responses (vs. the original process response)—LM 
method used for transfer function numerator parameters computation.



23

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9290  | https://doi.org/10.1038/s41598-022-13182-5

www.nature.com/scientificreports/

Figure 13.   Comparison of selected HETDM Nyquist plots (vs. the original process response)—LM method 
used for transfer function numerator parameters computation.

Table 9.   HETDM transfer function numerator parameters computed via the NM method.

GHETDM(s)# qHETDM# b0 b0τ τ0(s)

I-a-2 I-a 3.3239 − 6.6270 × 10–2 34.4855

I-b-2 I-b 3.4070 × 10–2 − 1.4979 × 10–3 17.9309

II-a-2 II-a 0.6075 − 0.1026 16.8460

II-c-2 II-c 5.4684 × 10–2 − 4.4208 × 10–3 33.5382

III-c-2 III-c 3.5490 − 0.2907 17.2018

III-f-2 III-f 2.0429 × 10–4 − 1.2638 × 10–5 33.7698

IV-a-2 IV-a 8.1536 × 10–3 − 1.1019 × 10–4 72.8193

IV-c-2 IV-c 1.3123 × 10–4 − 4.2513 × 10–6 44.2441

V-a-2 V-a 1.4396 × 10–4 − 4.3970 × 10–6 57.5067

V-c-2 V-c 3.3085 − 4.7473 × 10–2 86.1898

VI-b-2 VI-b 3.2988 − 4.1318 × 10–2 79.1822

VI-d-2 VI-d 3.3020 − 4.4630 × 10–2 75.5706
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Table 10.   HETDM time-domain and frequency-domain model errors (ad Table 9).

GHETDM(s)# f
(

b∗0 , b
∗
0τ , τ

∗
0

)

IAE ITAE RMS ( ×10−3)ωfin = 0.1 RMS ( ×10−3)ωfin = 1.7 × 10−2

I-a-2 1.5926 × 10–5 262.9 1.642 × 105 2.641 3.264

I-b-2 1.5721 × 10–5 272.1 1.739 × 105 2.659 3.258

II-a-2 1.5841 × 10–5 270.4 1.730 × 105 2.643 3.350

II-c-2 1.6675 × 10–5 269.2 1.725 × 105 2.575 3.274

III-c-2 1.5701 × 10–5 268.1 1.698 × 105 2.656 3.253

III-f-2 1.6830 × 10–5 269.8 1.7293 × 105 2.579 3.285

IV-a-2 1.2921 × 10–8 769.9 3.890 × 105 5.578 9.121

IV-c-2 4.467 × 10–22 766.8 3.884 × 105 5.585 9.100

V-a-2 0 271.6 1.566 × 105 3.852 2.340

V-c-2 1.829 × 10–8 271.4 1.533 × 105 3.865 2.440

VI-b-2 1.299 × 10–8 273.0 1.539 × 105 3.860 2.461

VI-d-2 1.461 × 10–8 272.9 1.537 × 105 3.864 2.462

Figure 14.   Comparison of selected HETDM unit step responses (vs. the original process response)—NM 
method used for transfer function numerator parameters computation.
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pair II-c-2/III-f-2 at high ones. The pair VI-b-2/VI-d-2 almost coincides at the whole frequency range. Notice 
that although perfect optimization based on the measured ultimate data (see Table 10) is reached, model IV-a-2 
does not provide excellent frequency response.

Figure 15 indicates that there must exist a frequency warping. Indeed, the RMS error value of the Nyquist plot 
for model V-a-2 and ω ∈

[

0, 1.7× 10−2
]

 is better than that for model VI-b-2. However, the curve for the latter 
model is closer to the original Nyquist plot than that for the former one. This implies that the model accuracy 
cannot be judged solely on the shape of characteristics.

Another question is whether optimizing more than three transfer function numerator parameters can improve 
the HETDMs accuracy.

Numerator/denominator parameters estimation using Nelder–Mead method via Autotune Variation Plus experi‑
ment.  By substituting (54) into (45), the 8-parameter model is ready to be identified, i.e., qHETDM is not fixed. 
We do let use the ATV + technique (see “ATV + technique”) that dictates the use of three artificial delays yielding 
the estimation of three additional critical points in the frequency domain. Hence, let τa,2 = 77.021 s as per (9) and 
take linear values in the neighborhood of this delay as,τa,1 = 61.617 , τa,3 = 92.425 . The common saturated-relay-
feedback experiment (see Fig. 16) yields A2 = 1.460 ◦C, Tosc,2 = 560.03 s , A1 = 1.328 ◦C, Tosc,1 = 527.23 s , and 
A3 = 1.570 ◦C , Tosc,3 = 591.56 s , respectively. Note that ksat = 185.1 , A = 0.555 as in “Simple model parameter 
estimation using the relay-based experiment”.

The NM method is hence used to solve the problem

Figure 15.   Comparison of selected HETDM Nyquist plots (vs. the original process response)—NM method 
used for transfer function numerator parameters computation.
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where i = 0 is associated with τa,0 = 0 . Conditional inequalities are incorporated via the barrier function 
fb(τ0, τ , a2, a1,ϑ) = −

∑

x∈{τ0,τ ,a2,a1,ϑ}
ln
(

1− e−x
)

 . If any inequality is broken, the model is not stable or fea-
sible. The remaining parameters, however, can be non-positive.

The standard setting γr = 1 , γe = 2 , γoc = γic = γs = 0.5 is adopted while different values of β—see (18)—
and the initial simplex size are benchmarked. The initial RQP parameter estimates come from Table 5 and let

and the value of 1τ depends on the particular model family, see Table 2, i.e., 1τ = 136.7, 79.377, 106.869 , or 
106.39 s. Results are summarized in Table 11 (again, two eventual HETDMs from each family of models are 
taken). Corresponding performance measures in the time and frequency domains are provided to the reader in 
Table 12, and particular dynamic responses for selected models are displayed in Figs. 17 and 18.

Apparently, HETDM parameter identification based on the estimation of four Nyquist plot points results in 
significantly improved time-domain responses compared to 3-parameter optimizations (see “Numerator parame-
ters estimation using Levenberg–Marquardt method” and “Numerator parameters estimation using Nelder–Mead 

(56)

p∗ = [b0, b0τ , τ0, τ , a2, a1, a0, a0ϑ ,ϑ]
∗ = argmin f (b0, b0τ , τ0, τ , a2, a1, a0, a0ϑ ,ϑ)

f (b0, b0τ , τ0, τ , a2, a1, a0, a0ϑ ,ϑ) :=
∑3

i=0

(∣

∣

∣
Go,HETDM(s)

∣

∣

s=jωosc,i

∣

∣

∣
− 1

)2
+

(

∡Go,HETDM(s)
∣

∣

s=jωosc,i
+ π − τa,iωosc,i

)2

s. t. : [−τ0,−τ ,−a2,−a1,−ϑ] < 0

(57)1b0 =
1b0τ =

k
(

1a0 +
1a0ϑ

)

2
, 1τ0 = 0.1 s

Figure 16.   Relay experiment responses (with artificial delays).
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method from single relay test”). Regarding the model accuracy in the frequency domain, substantial enhance-
ment is achieved for low frequencies, which, however, does not hold for the whole frequency range. As can be 
deduced from Tables 8, 10, and 12, the better RMS value for ωfin = 1.7× 10−2 is, the worse value for ωfin = 0.1 
is and vice versa (except for model family IV).

In Fig. 17, nearly nonsmooth step response of HETDM I-a-3 can be observed. An oscillatory response with 
high-frequency modes of nonnegligible amplitude can be seen for HETDM 4-a-3A.

The remaining (non-displayed) dynamic responses have a similar shape to the displayed ones; however, 
the plots are not as close as the 3-parameter optimizations. An exception appears for III-f-3, V-c-3, and VI-a-3 
where nonminimum-phase-like time responses appear, yet the corresponding Nyquist plots do not prove this 
feature. The significant step response differences come from diverse input–output delays. Regarding Nyquist 

Table 11.   HETDM transfer function parameters computed via the NM method (artificial delays are used).

GHETDM(s)# p∗ = [b0, b0τ , τ0, τ , a2, a1, a0, a0ϑ ,ϑ]
∗

I-a-3

[

78.6312,−75.0398, 3.6561, 154.4474, 1.5388, 4.0237× 104,−17.1592,

127.4072, 16.3674

]

I-b-3
[

0.2140,−0.1949, 7.6231, 152.0900, 1.7902, 203.6374,−0.3557, 0.9418,

3.6365

]

II-d-3A

[

5.7240× 10−2,−5.4688× 10−2, 3.5244, 147.9860, 8.9664, 30.4500,

−1.0902× 10−2, 8.9261× 10−2, 49.0459

]

II-d-3B

[

0.3070,−0.2935, 4.6140, 154.7813, 132.0240, 169.0525, 3.0600× 10−2,

0.3820, 12.1124

]

III-c-3

[

21.7478, 2.2564, 16.1816, 96.9587, 10.4363, 1.9455× 105,−0.1392,

737.0027, 36.9030

]

III-f-3

[

−5.0126× 10−3, 5.2499× 10−3, 2.4783, 44.9373, 9.5103, 2.0698,

2.3833× 10−4, 7.0449× 10−3, 7.0138

]

IV-a-3A

[

0.2023,−0.1961, 2.4123, 154.3649, 0.7359, 63.8551,−1.5879× 10−6,

0.1920, 14.6009

]

IV-a-3B
[

0.2383,−0.2250, 3.5597, 144.7439, 4.7862, 132.9075, 6.9025, 0.4097,

20.0930

]

V-b-3

[

4.1201× 10−3,−3.7047× 10−3, 7.2063, 143.7714, 3.3470, 4.0811,

−3.7573× 10−4, 1.3127× 10−2, 4.7608

]

V-c-3

[

−30.4525, 33.3415, 3.6503, 117.6783, 43.8899, 2.3948× 104,−3.4535,

92.1380, 4.6977

]

VI-a-3

[

−11.0842, 11.6608, 3.2299, 42.5439, 34.6891, 5.7461× 103,−7.8893× 10−3,

17.7086

]

VI-d-3

[

46.3542,−42.8537, 4.1791, 140.6583, 4.4339, 3.1243× 104,

−5.0537× 10−4, 107.4560,7.0553

]

Table 12.   HETDM time-domain and frequency-domain model errors (ad Table 11).

GHETDM(s)# f
(

p∗
)

IAE ITAE RMS ( ×10−3)ωfin = 0.1 RMS ( ×10−3)ωfin = 1.7 × 10−2

I-a-3 5.625 × 10–2 99.0 6.751 × 104 3.863 0.858

I-b-3 4.881 × 10–2 92.3 4.862 × 104 4.178 1.179

II-d-3A 4.213 × 10–2 100.0 4.918 × 104 4.072 1.276

II-d-3B 6.655 × 10–2 61.6 2.999 × 104 4.334 1.351

III-c-3 2.433 × 10–2 200.6 9.792 × 104 3.987 2.753

III-f-3 8.420 × 10–2 175.3 8.860 × 104 5.634 1.745

IV-a-3A 5.714 × 10–2 115.2 5.695 × 104 4.232 1.472

IV-a-3B 3.823 × 10–2 135.8 7.277 × 104 4.544 1.404

V-b-3 4.197 × 10–2 119.6 5.984 × 104 4.684 1.432

V-c-3 31.185 90.0 3.180 × 104 3.391 3.661

VI-a-3 0.121 113.8 5.308 × 104 5.798 0.801

VI-d-3 3.407 × 10–2 98.9 4.592 × 104 4.781 1.694
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plots, the closest curves can be observed for pairs I-a-3/I-b-3 and IV-a-3A/V-b-3 at low frequencies. At higher 
frequencies, responses differ more significantly, especially those for HETDMs III-c-3, III-f-3, and V-c-3 are far 
from the remaining ones.

To sum up, most of the models obtained by the solution of task (56) based on the (quadruple) relay-feedback 
ATV + test gives satisfactory results from the identification point of view.

Discussion
Let us discuss observations made during the entire HETDM identification procedure and also point out some 
practical issues.

In our experiments, we have supposed that the hysteresis of the on/off relay is negligible, ε ≈ 0 . However, a 
suitable nonzero value has to be set in practice due to the measurement noise. Such a setting prevents the relay 
from switching too frequently, which may cause failures. Another important practical issue is the static gain 
estimation, according to (6). Whenever an asymmetry ( B+ �= B− ) is induced, the output of the feedback system 
also becomes asymmetrical. The problem is that the original output setpoint then shifts, which may cause an 
erroneous estimation of the static gain. The setpoint shifting can be caused by the feedback nature of a relay 
experiment, process nonlinearities, and/or disturbances. If someone is unsure about the static gain, the step 
response test can be made. It is worth noting that disturbances also induce asymmetry of the ideal on/off relay 
experiment. In such a case, various methods of restoring symmetry can be applied50.

As a DF generally represents a linear approximation of a nonlinear element, it is impossible to estimate the 
critical (or another frequency) point exactly by nature. More precisely, neither the found frequency ωosc nor the 
loci Gm

(

jωosc

)

= −1/N(·) meets the particular values of the actual (measured) process frequency response. 
This implies that even if the solution of (4) is perfect (see, e.g., HETDM V-a-2 in Table 10), the model does not 

Figure 17.   Comparison of selected HETDM unit step responses (vs. the original process response)—NM 
method used for complete transfer function parameters estimation.
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provide sufficient results from the identification point of view. Besides, even if one or more points of the Nyquist 
curve are estimated well, the remaining course of the plot may vary from the desired loci significantly (see, e.g., 
HETDM I-a-3 in Fig. 18).

As can be seen from Tables  7, 9, and 11, relatively high ratios |b0/b0τ | , |a0/a0ϑ | , |a0ϑ/a0| , 
(|b0| + |b0τ |)/(b0 + b0τ ) often occur. This unpleasant feature yields erroneous steady state computation or 
numerical instability when simulations (i.e., solving differential equations) due to digital representation of values 
in computer. Therefore, only some eventual models can be used for control system design and its verification.

Displayed step responses indicate that the initial input/output delay estimation τ = τs = 136.7 is pretty good. 
It can be observed that corresponding model families I, II, and III (see Tables 2, 3, 8, and 10) provide slightly 
better IAE values and significantly lower overall RMS ( ωfin = 0.1 ) compared to models with different values of 
τ . On the contrary, the better RMS value for low frequencies ( ωfin = 1.7× 10−2 ) is, the lower the ITAE value 
is obtained, which proves the importance of good low-frequency Nyquist plot estimation for the overall time-
domain model response.

The eventual SFOTDMs identified using relay feedback experiment were proved to be sufficient for controller 
design12. By matching SFOTDMs dominant pole loci with those of HETDMs and calculating remaining model 
parameters, performance measures very close to those of SFOTDMs have been obtained in this study. This 
implies that the eventual HETDMs based on the data from the single relay test (i.e., without artificial delays) 
can also be used for control tasks. However, the models seem to be insufficient from the identification point of 
view. Fortunately, the use of the ATV + experiment has brought about much improved models. As many diverse 
results have been computed with more or less the same cost function values, the identification problem for 
HETDMS seems to be multimodal task. Therefore, none of the eventual models (see Table 11) approaches the 
true parameter values (46) given by physical analysis of the thermal process.

Figure 18.   Comparison of selected HETDM Nyquist plots (vs. the original process response)—NM method 
used for complete transfer function parameters estimation.
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The relay-based experiment can be improved in several ways. For instance, one has to be more careful when 
setting ksat of the saturated relay (see Fig. 4). The ideal setting should result in sinusoidal-like sustained oscilla-
tions of u(t) . However, Figs. 9 and 16 indicate that ksat was set too high. On the other hand, one has to be aware 
of the necessary existence of sustained oscillations. Another way how to enhance the coefficient value estimation 
is to capture multiple points of the Nyquist plot, which may yield better matching of process and model curves 
for a wide frequency range47–49.

Conclusions
This study should have examined whether it is reasonable to identify parameters of a complex model of a ther-
mal circuit system with internal delays by a parameter identification of a simpler delayed model followed by the 
models’ poles matching. As the identification tool, the standard on/off relay with biased and unbiased feedback 
test and the relay with saturation have been used. The latter relay should have yielded a more accurate estimation 
of points on the frequency curve corresponding to sustained oscillations data. Once the simple model is found 
under a single feedback experiment, its dominant pole loci (of an infinite spectrum) are matched to those of the 
complex model, giving rise to the characteristic quasi-polynomial coefficients. A simple graphical-based method 
has been analytically derived to find these loci. The Levenberg–Marquardt method has been applied to solve the 
pole assignment task. Surprisingly, although only a few poles have been prescribed, some other uncontrolled 
poles have also been matched. Based on the single-test data, the remaining model parameters have been estimated 
by the solution of a nonlinear optimization problem (using the Nelder–Mead vs. the Levenberg–Marquardt 
methods). It has been proved that both the models have had similar time and frequency domain performances. 
While the eventual models may be sufficient from the control point of view, they fail regarding the accuracy of 
identified parameters. On the other hand, the proposed procedure enables the estimation of multiple parameters 
under a single relay test, which is its main benefit. However, we have also performed the ATV + test with artificial 
delays to get multiple relay-feedback data, which has resulted in much better eventual models.

In the Discussion section, we have touched on some issues that have to be considered in practice and proposed 
possible further improvements to the proposed concept. Besides, one may apply advanced and more sophisti-
cated optimization approaches to solve the tasks raised in this study. For instance, metaheuristic methods can 
be benchmarked in the future98. In addition, real-life experiments will be made to prove the concept.

Data availability
Data are available by L.P. upon request.
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