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ABSTRACT Context: Effort estimation is one of the essential phases that must be accurately predicted
in the early stage of software project development. Currently, solving problems that affect the estimation
accuracy of Use Case Points-based methods is still a challenge to be addressed. Objective: This paper
proposes a parametric software effort estimation model based on Optimizing Correction Factors and Multiple
Regression Models to minimize the estimation error and the influence of unsystematic noise, which has not
been considered in previous studies. The proposed method takes advantage of the Least Squared Regression
models and Multiple Linear Regression models on the Use Case Points-based elements. Method: We have
conducted experimental research to evaluate the estimation accuracy of the proposed method and compare it
with three previous related methods, i.e., 1) the baseline estimation method — Use Case Points, 2) Optimizing
Correction Factors, and 3) Algorithmic Optimization Method. Experiments were performed on datasets
(Dataset D1, Dataset D2, and Dataset D3). The estimation accuracy of the methods was analysed by applying
various unbiased evaluation criteria and statistical tests. Results: The results proved that the proposed method
outperformed the other methods in improving estimation accuracy. Statistically, the results proved to be
significantly superior to the three compared methods based on all tested datasets. Conclusion: Based on our
obtained results, the proposed method has a high estimation capability and is considered a helpful method
for project managers during the estimation phase. The correction factors are considered in the estimation
process.

INDEX TERMS Algorithmic optimization, multiple linear regression, optimizing correction factors, soft-
ware development effort estimation, use case points.

I. INTRODUCTION

Software project development has become extremely com-
plicated, and the necessary competence in this industry is
high, which requires the skills of highly qualified people.
In past decades, to complete a project and deliver it to the
customer on time, schedule, and budget, project managers
had to estimate the cost of the software product, effort, and
project duration or defect density [1]. The 2018 Standish
Group CHAOS showed that many software companies could
not give the correct practical software cost and completed
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their projects late schedule and over budget - (48%-65%) or
failed to complete them at all - (48%-56%) [2]. The results
indicated that most projects’ actual efforts and schedules are
over budget compared to the estimates. The project budget
plays a role in competitiveness, which means that using an
effort estimation method in a software company is mandatory.

Software Development Effort Estimation (SDEE) is a cru-
cial activity in the early stages of software development that
plays an important role in the project’s overall success. The
SDEE manages project activities before the project begins,
specifically designing the project plan and managing the
budget. To obtain accurate estimates, a project manager must
select an appropriate method and then customize or configure
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TABLE 1. Non-algorithmic estimation models.

Estimation method

Type

Description

Expert judgement

Non-algorithmic

The estimate is based on an expert’s experience, knowledge, motivation,
knowledge about the field, and the exchange between analysts and experts [11].
Several studies give the guidelines of judgement-based effort estimation [12],
[13].

Analogy-based

Non-algorithmic

This is a form of the Cased Based Reasoning method. The method mainly
compares a project’s significant features and attributes because it relies on past
information from comparable projects [14].

Bottom-Up and Top-down Approach,
Price-to-win

Non-algorithmic

Estimates are based entirely on software project budgets and broken down by
project module (top-down) or predicted as the sum of project module estimates
(bottom-up) [15].

Wideband Delphi Non-algorithmic This work breakdown structure-based method is a team-based cost estimation
method. The effort is evaluated based on team agreement [16].
Planning Poker Non-algorithmic Estimation, like the Wideband Delphi method, is a consensus among team

members [17].

TABLE 2. Algorithmic estimation models.

Estimation method

Type

Description

Source Lines of Code (SLOC)

Algorithmic

This approach counts the number of lines in the program's source code [16].

Function Point Analysis

Algorithmic

This method measures the complexity and size of a software system as the
functions that the system provides to the end-user [18], [19]. Estimation is based
on five function types: Internal Logical File (ILF), External Interface File (EIF),
External Input (EI), External Output (EO), and External Inquiry (EQ).

Object Point

Algorithmic

A weighted total Object-Point count is based on the number and the complexity
of objects - (e.g., screens, reports, 3GL components) [16].

Constructive Cost Model (COCOMO)

Algorithmic

This approach uses mathematical equations and calculations to estimate the cost
of a project [16]. It provides estimates concerning the effort and schedule for a
software project.

Use Case Points (UCP)

Algorithmic

This approach is based on the elements of the system use cases with technical and
environmental aspects [20]. The method is based on a calculation with four
elements: Unadjusted Use Case Weight (UUCW), Unadjusted Actor Weight
(UAW), Technical Complexity Factor (TCF), and Environmental Complexity
Factor (ECF).

Software Life Cycle Management
(SLIM)

Algorithmic

This model is based on the Norden/Rayleigh function. SLIM can record analysis
data from historical projects, which is then used to calibrate and build the
workforce in the existing dataset by answering a series of questions [21].

it to suit the type of software project that the organization
will perform. However, the SDEE cannot be expected to have
absolutely correct results [3], [4]. Accurate effort estimation
is still an open issue. An effort estimation method is used
to minimize the project’s risks or reduce the risk of sur-
prises during the project to the lowest value. It gives project
managers good controlling decisions to ensure that the right
amount of effort is allocated to the various activities during
the project’s development life cycle. As a result, this has
led many researchers to investigate software estimation for
more accurate SDEE methods [5], [6]. Existing research
efforts related to SDEE can be classified into three main
groups [3], [7], [8]:

1. Non-algorithmic models, also called non-parametric
models, include Expert judgement, Analogue-based,
Price-to-win, Top-down, Bottom-up, and Wideband
Delphi. These models can develop an estimation
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by using an expert’s previous experience or histori-
cal projects to estimate software development costs.
Descriptions of the non-algorithmic models are pre-
sented in TABLE 1.

. Algorithmic models include Source Lines of Code

(SLOC), Function Point Analysis, Object Point, Con-
structive Cost Model (COCOMO), and Use Case Points
(UCP). These models use mathematical equations to
estimate the software project cost. TABLE 2 below,
describes the algorithmic models.

. Machine learning models that have been exploited

in SDEE include Artificial Neural Networks, Fuzzy
Logic, Neuro-Fuzzy, Bayesian Network, Regression
tree, Support Vector Machines, Genetic Algorithm.
Some models are based on nonlinear properties and can
learn from historical data and be trained to better esti-
mate effort [9]. Recently, these models have been used
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in combination with or as an alternative to algorithmic
models.

In the requirements phase of the software lifecycle, Use
Cases can be useful to measure the estimated effort at
an early stage of a software project before obtaining the
essential information [21]. As a result, the use of the
Use Case for SDEE is widespread. In particular, a survey
by Neil and Laplante [22] focused on the techniques used
for the requirements elicitation, description, and modelling
phases and found that over 50% of software projects used
use cases in the early phase. The results of another review by
Azzeh et al. [23] found that most studies focus on assessing
Use Case Point (UCP) as a possible method for early SDEE.
Researchers show interest in UCP-based approaches that are
used as functional size metrics for effort estimation. UCP is
used for object-oriented projects based on a structured sce-
nario and actor analysis of the Use Case Model (UCM) [19].

A. PROBLEM FORMULATION

According to a systematic review of studies [23]-[26], the
UCP is a promising effort estimation method during the early
stages of software development and has many advantages for
the software industry. However, from the project manager’s
point of view, there are still two well-known issues in apply-
ing UCP methods that could be improved.

First, there is no standard for the specification of use
cases. Specifically, use cases are written in natural language,
and there is no rigorous procedure to examine the quality
or fragmentation of use cases. This leads to the number
of steps in a use case that may differ, and the accu-
racy of the estimation is affected. In addition, the accu-
racy of the estimate may be affected if there is more than
one scenario in a use case. Therefore, to achieve accu-
racy in estimation, use cases need to be adjusted or cal-
ibrated. Almost all previous methods based on UCP for
software effort estimation focus on constructing the method,
reevaluating the complexity of the use case model, and
reevaluating the complexity weights [27]-[37]. For exam-
ple, researchers focus their attention on extending the UCP
model by specifying new complexity levels for use case
and actor weights [27], [28] or modifying existing com-
plexity levels into more detailed options for effort predic-
tion [29], [30]. Other studies calibrate complexity weights
into different complexity levels [31]-[35]. Other approaches
calculate the use case complexity based on transactions and
paths [36], [37]. A transaction is defined as a stimulus and
response event between an actor and the system. Paths are
computed based on a cyclomatic complexity metric from the
text representation of the use cases.

Second, the evaluation of Technical Complexity Fac-
tors (TCF) and Environmental Complexity Factors (ECF)
depends on the experience of experts, which have a certain
degree of uncertainty [28], [38], [39]-[45]. It is difficult to
assign an appropriate value to an ECF because of a lack of rel-
evant information. The reason is that an ECF is linked to the
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level of information and experience of a particular software
development team. There are similar problems with the value
assignment for a TCF. In particular, factor T10 (Concurrent)
shows some difficulties. This technical factor could express
parallel processing, parallel programming, or if the system
works independently or interacts with several other parties.
The assignment of values to this factor may not be accurate,
as there are no guidelines in the UCP that explain this factor
precisely. Huanca and Ore [39] recognized that the main
factors affecting the estimation accuracy of the UCP are the
ECFs and TCFs. They emphasized that the correction factors
need to be reevaluated. Nassif ef al. [46] also pointed out the
necessity to refine these correction factors.

Combining machine learning to build SDEE models based
on the original UCP formula could be a solution to enhance
its accuracy. Some approaches [47]-[56] have also explored
variant models, particularly using regression models to opti-
mize estimation accuracy based on historical data. These
approaches have many improvements that minimize the influ-
ence of human error during the analysis of the UCM and
simplifying the original principles of the UCP.

The main drawback of the above methods is that none
of them is comprehensive or provides better accuracy in
estimating software effort under all situations. We developed
the Optimization Correction Factors (OCF) method [38]. The
method has investigated the Least Absolute Shrinkage and
Selection Operator (LASSO) method [57], [58] to deter-
mine the best technical and environmental complexity factors
that significantly affect the estimation accuracy of the UCP
method. The OCF method can help project managers reduce
risks in evaluating correction factors and produce estimation
results close to the actual effort [38]. The method has shown
that the Sum of Squared Errors (SSE) is improved by more
than 16% compared to the UCP estimation method. The
SSE was also examined at the 5% significance level, and
the p-value (0.0245) was below the 5% significance level.
When analysing the Percentage of Prediction within 25%
(PRED (0.25)) of the OCF method, the UCP method has
a PRED (0.25) of 0.38, while the OCF method reaches a
PRED (0.25) of 0.66. Our method is considered the first
step for more intensive research to evaluate the technical
and environmental complexity factors in the UCP method.
We believe that the accuracy of the OCF method may be
different when performed with various other datasets, and
therefore, a bottom-up experiment is performed in this paper.

However, the OCF method does not currently provide a
highly significant refinement to the estimation. Our goal of
modifying the OCF method is aimed at achieving more accu-
rate estimates. The proposed method is inspired by the possi-
bilities of using a standard estimation procedure for solving
the considered problems discussed above. Therefore, in this
work, we aim to apply the Least Squared Regression (LSR)
models or the Multiple Linear Regression (MLR) models
to improve the ability of the OCF method to estimate the
software size and minimize the prediction error. Our approach
uses MLR on historical project data points to build regression
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models and minimize errors in the integration process or
recursion.

This study proposes a parametric software effort estimation
model based on the OCF method and MLR for SDEE —
the Extension of Optimizing Correction Factors (ExOCF)
method — to minimize the estimation error more efficiently.
The research questions answered are as follows:

RQ1: Is it possible to modify the OCF method so that its
estimation accuracy improves?

RQ2: Does the proposed method outperform a baseline
UCP method and another tested method?

RQ3: Is the difference in the accuracy of the estimate using
different methods statistically significant?

To answer the research questions, we conducted an exper-
imental study to evaluate the estimation accuracy of the pro-
posed method and compared it with three methods used in
the literature. Each method is run on four different historical
datasets (D1, D2, D3, and D4) based on various evaluation
criteria (28-34). In this paper, we used statistical pairwise
t-test comparisons to validate the accuracy of the proposed
method. The following statistical hypothesis was tested:

HO: There is no significant difference in estimation capa-
bility between the proposed method and other estimation
methods. This means that the estimation accuracy of the
proposed method is not significantly different from that of
the other methods.

HI: There is a significant difference in estimation capabil-
ity between the proposed and other estimation methods. This
means that the estimation accuracy of the proposed method
is significantly better than that of other methods.

B. CONTRIBUTIONS
The main contributions of this study are as follows:

1) Investigation of the LASSO algorithm’s use in explor-
ing the best environmental and technical complexity
factors on different datasets that improve the UCP size
metric.

2) Machine learning techniques - LSR or MLR models
- are combined with the OCF method to obtain better
results in effort estimation. In this method, the software
effort is a function of the OCF variables. The MLR
formulation was created to estimate software effort
values.

3) The results obtained by the proposed method are com-
pared with three different estimation methods used in
the literature. The methods are tested using the k-fold
cross-validation technique. The training and testing
datasets are the same for all methods. The datasets
were obtained from the industry datasets of three data
donors. To validate the accuracy of these methods,
accuracy measures are chosen to avoid bias. The mea-
surement criteria listed in Section 5 show how the eval-
uation metrics were selected. The experimental results
show that the accuracy of the proposed method outper-
forms the other models.
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The remaining sections are divided as follows: Section 2
introduces the related work. Section 3 presents the back-
ground of the methods used. The proposed effort estimation
methods to achieve the research objectives are presented
in Section 4. Section 5 describes the research methodol-
ogy, including the presentation of the four datasets used in
our experiments, the normalization of the data, the proce-
dure of the experiments, and the evaluation criteria/metrics.
The results of the experiments are presented in Section 6.
Section 7 describes the threats to validity. Section 8 presents
the conclusions. In the last section, we present future work.

Il. RELATED WORK
Some problems related to the UCP model were pre-
sented in the previous section. In particular, many authors
focused on adding more complexity levels for use case
weight, actor weight, or both, discretizing the existing
complexity levels, and calibrating the complexity weights.
Kirmani and Wahid [27] added actor and use case weighting
in the Re-UCP. They also added one extra rating level to the
use case weighting system in UCP Sizing. Nunes et al. [28]
identified six actor weightings in the iUCP. Wang et al. [29]
integrated fuzzy set theory and Bayesian belief networks
into the UCP model to extend the complexity levels of
use cases. Periyasamy and Ghode [30] changed the actor
complexity levels and reclassified the use case complexity
in the e-UCP method. The UCPabc [31] approach applies
an activity-based costing method to all variables in the
UCP method, except the productivity factor is changed to
8.2 person-hours. An adjustment approach to the UCP, called
Adapted UCP (AUCP) [32], is applied for incremental
development estimations in large-scale projects. Braz and
Vergilio [33] proposed two methods: Use Case Size Points
(USP), and Fuzzy Use Case Size Points (FUSP), by calibrat-
ing the internal level of the use case. A USP introduces new
components by considering the structures of a use case, the
number and weight of scenarios, actors, preconditions, and
postconditions. A FUSP is an extended version of a USP that
uses the Fuzzy Set theory to reduce some use case classifica-
tion problems. Qi et al. [34] improved the estimation accu-
racy of the UCP by using Bayesian analysis to calibrate the
case complexity weights. Rak ef al. [35] proposed a model
for effort estimation called Use Case Reusability (UCR).
The method gives a new classification for use cases based
on their reusability. References [36] and [37] proposed an
improvement method by computing paths from the cyclo-
matic complexity of the use case scenario. Although there is
a small difference in precision, these approaches show that
paths and transactions can be useful in computing the UCP.
In terms of SDEE methods based on machine learning
techniques, we categorized them into three groups as fol-
lows. The first group uses neural network models such as
Cascade Correlation Neural Network (CCNN) model, Mul-
tilayer Perceptron (MLP), Fuzzy Logic, or Artificial Neu-
ral Network (ANN) to estimate software effort, as shown
in [46], [48], [53], [54]. Nassif et al. [46] proposed
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TABLE 3. Related work on methods using the UCP (2016 onward).

Cited Main author Dataset Contribution type Estimation Publication
study approach year
[59] M. Azzeh et al. DS1: 65 educational projects Developing new estimation models Algorithmic 2016
DS2: 45 industrial projects on the original UCP method
[60] R. Silhavy et al. DS1: 28 industrial projects from two Evaluating the accuracy of existing Algorithmic 2018
datasets: Ochodek et al. [51] and methods using historical datasets.
Subriadi et al. [39]
DS2: 70 industrial projects from three
data donators (D1, D2, and D3) [10]
[10] R. Silhavy et al DS1: 28 industrial projects from two Developing new estimation models Algorithmic 2017
datasets: Ochodek et al. [51] and on the original UCP method
Subriadi et al. [39]
DS2: 70 industrial projects from three
data donators (D1, D2, and D3)
[61] M. Azzeh et al. 234 projects from three industrial Comparison with other methods Machine 2018
datasets Ochodek et al. [52], Nassif et al. | based on UCP. learning
[47], Silhavy et al. [62] and from
educational projects.
[62] M. Azzeh et al. DS1: 65 educational projects Developing new estimation models Algorithmic 2017
DS2: 45 industrial projects on the original UCP method
DS3: merged DS1 and DS2 into one
dataset
[63] M. Azzeh et al. DS1: 65 educational projects Evaluating the accuracy of existing Algorithmic 2017
DS2: 45 industrial projects methods using historical datasets.
[64] Sarwosri et al. 186 projects from three industrial Evaluating the accuracy of existing Algorithmic 2018
datasets Ochodek et al. [51], Nassif et al. | methods using historical datasets.
[46], Silhavy et al. [10] and from
educational projects.
[65] M. Azzeh et al. 2 projects, type of case studies. Developing new estimation models Algorithmic 2016
on the original UCP method
[66] S.K. Rath et al. DS1: 65 educational projects Developing new estimation models Algorithmic 2016
DS2: 45 industrial projects on the original UCP method
[67] M. Badri et al. 149 projects that obtained from A.B. Developing new estimation models Algorithmic 2017
Nassif et al. [46] on the original UCP method
[68] Z. Prokopova et al. 5 open source Java projects Evaluating the accuracy of existing Machine 2017
methods using historical datasets. learning
[69] S. Bagheri et al. 70 industrial projects from three data Evaluating the accuracy of existing Machine 2018
donators (D1, D2, and D3) [10] methods using historical datasets. learning
[70] K. Qietal. 1 projects (Case studies) Developing new estimation models Algorithmic 2018
on the original UCP method
[71] H.T. Hoc et al. 22 educational projects Developing new estimation models Machine 2020
on the original UCP method learning
[72] R. Silhavy et al. 28 industrial projects Developing new estimation models Machine 2021
on the original UCP method learning
[73] R. Silhavy et al. 70 industrial projects from three data Developing new estimation models Machine 2017
donators (D1, D2, and D3) [10] on the original UCP method learning
[74] A.B. Nassif et al. 70 industrial projects from three data Developing new estimation models Machine 2019
donators (D1, D2, and D3) [10] on the original UCP method learning
[38] H.L.T.K. Nhung et al. 70 industrial projects from three data Developing new estimation models Machine 2020
donators (D1, D2, and D3) [10] on the original UCP method learning

a UCP-based effort estimation model using fuzzy logic
and neural networks to increase estimation accuracy. Refer-
ence [48] introduced a regression model using the Sugeno
Fuzzy Inference System (FIS) approach to improve the esti-
mation accuracy. The results show that an MMRE improve-
ment of 11% can be obtained. Reference [53] proposed
the CCNN model for use case diagrams. The proposed
model was evaluated against the MLR and the UCP model
with promising results as an alternative approach for SDEE.
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Iraji and Motameni [54] presented the Adaptive Neuro-
Fuzzy use Case Size Point (ANFUSP) model to estimate the
effort for object-oriented software projects. The model results
have less error than the UCP method.

The second group uses soft computing techniques with
analogue-based estimation, such as [47], [55], [56].
Nassif er al. [47] proposed a model combining fuzzy logic
and neural networks to increase the estimation accuracy of
the UCP method. Here, the fuzzy logic used ten degrees
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TABLE 4. Summary of the accuracy measures used in sdee methods (2016 onward).

Cited study | MMRE | PRED MBRE | MIBRE MAE SA MAPE | MSE RMSE NRMSE | SSE | R? RSS
[59] X X X X

[60] X X X X X

[10] X X X X
[61] X X X X

[62] X X X X

[63] X X X X

[64] X X X X

[65] X

[66] X X X

[67] X X

[68] X X

[69] X X X

[70] X

[71] X X

[72] X X X X

[73] X X X X X X

[74] X X X X

[38] X X X

for the complexity of the use cases, and the neural network
was used to represent the input vectors of the UCP model.
Bardsiri et al. [55] proposed a hybrid model based on Anal-
ogy Based Estimation (ABE) and Particle Swarm Optimiza-
tion (PSO) algorithm. The model creates an attribute system
that is weighted differently depending on the cluster. The
results of the proposed model showed significantly improved
accuracy of the estimates. Chiu and Huang [56] studied the
effect of a genetic algorithm for adjusting the reused effort
based on the distance between pairs of projects.

The last group applies regression models such as lin-
ear, nonlinear, and stepwise models [49]-[52]. Regression
models can provide higher accuracy for effort estimation
by examining the validity of UCP variables. Specifically,
Nassif et al. [49] proposed a regression model based on the
use case point size. The model considers the nonlinear rela-
tionship between software size in the UCP (Size) and the
effort in person-hours (Effort), as well as the impact of the
environmental complexity factors of a project on the produc-
tivity factor. The equation of the model is presented in (1).
The results show that PRED (0.25) and PRED (0.35) were
improved by 16.5% and 25%, respectively.

8.16

% 1.17
Productivity

Effort = Size ))]
where the productivity value is between 0.4 and 1.3.

Jorgensen [50] reported all variables included in the mod-
els to illustrate the accuracy and bias variation of the SDEE
methods using regression analysis. Ochodek ef al. [51] sim-
plified the UCP method by discarding the UAW, measuring
the UCP based on steps, or calculating the total number of
steps in use cases.

Silhavy et al. [52] developed the Algorithmic Opti-
misation Method (AOM) to increase the accuracy of
the correction coefficients of the effort estimation pro-
cess. The proposed method uses multiple least squares
regression with all UCP elements. The equation of the
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AOM method is presented in (2).

UCPpsom = o1 (UAW x TCF x ECF)

+0a2(UUCW x TCF x ECF)  (2)

where o1, ap are coefficient parameters from the regression
model applied to historical projects.

The authors then conducted several experiments to inves-
tigate the significance of the UCP variables on two different
datasets [9]. Residual analysis and stepwise multiple linear
regression models were used to examine the influence of
model complexity through correlation analysis. They proved
that all UCP parameters were associated with the dependent
variable to varying degrees and had significant estimation
accuracy.

The regression equation is shown in (3-4), which contains
an intercept, linear terms, and squared terms.

Realyg ~ 1+ UUCW + ECF + UAW x TCF + UAW?
+UUCW? 4+ TCF? + ECF? (3)

Realyg ~ 1+ TCF + ECF + UAW x UUCW x UAW?
+UUCW? + TCF?* + ECF? )

The next part discusses the latest development (2016
onward) in effort estimation accuracy achieved using the
UCP. TABLE 3 lists studies on estimation methods related
to our work. The table also shows that the datasets used
for three industrial projects include Ochodek er al. [51],
Nassif er al. [46], and Silhavy et al. [9], and educational
projects. Moreover, most studies focus on developing new
estimation models for the original UCP method or evaluating
the accuracy of existing methods using historical datasets.

The accuracy measures used in these studies (2016
onward) are summarized in TABLE 4. Frequent accuracy
metrics were applied in these studies, and experiments were
conducted, such as the Mean Magnitude of Relative Error
(MMRE), Percentage of Prediction within x% (PRED (x)),
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Sum of Squared Error (SSE), Standardized Accuracy (SA),
Mean of Absolute Error (MAE), Median Magnitude of Rela-
tive Error (MdMRE), Mean Balanced Relative Error (MBRE)
and Mean Inverse Balanced Relative Error (MIBRE), and
Root Mean Square Error (RMSE).

Ill. BACKGROUND

A. MULTIPLE REGRESSION MODELS

Multiple regression models relate to estimating regression
effort applications where there is more than one independent
variable [3], [24], [50]. The purpose is to obtain the best-fit
line that minimizes the regression model’s sum of squared
residuals [75]. The form of the regression model is presented
as a linear equation between a dependent variable and a set of
p independent variables X1, X5, ... X, as follows:

yi =o9+ a1 X1 +aoXip+ -+ apXip + 61

2 =ap+ a1 Xo) +axXo + -+ apXy, + 62 5

Yn =09+ o Xy +a2Xp+ -+ apme + &n

i.e.

yi=agtar Xy +axXp+--+apXp e, i=1...m
(6)

where y; is the dependent variable, X;i,...,X;, are the
independent variables, «q is the intercept parameter, and
ai, ... ,ap are the regression coefficients. These variables are
unknown constants that must be estimated from the dataset,
and ¢; are the error residuals.

Equation (5) can be rewritten as follows:

y=oaX+¢ @)

where vector y and vector ¢ are column vectors of length m,
vector « is a column vector of length p + 1, and matrix X is
an m by p + 1 matrix. Using LSR, vector « is calculated as
follows:

a=X"x)""xTy (8)

Polynomial regression is a multiple regression in which the
relationship between the dependent variable and p indepen-
dent variables is illustrated as a polynomial of degree n.

vi=oao+ai X +oaXp+- X +e (9)

Based on the polynomial equation, a model can obtain a min-
imum error or minimum cost function. The model gives the
best approximation of the relationship between the dependent
and independent variables [55].

B. USE CASE POINTS
The original UCP method [19] is based on assigning weights
to clustered actors and use cases (complexity weights). The
elements of the UCP are shown in FIGURE 1.

The actor and use case employ three cluster classes (sim-
ple, average, and complex), as shown in TABLES 5 and 6.
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FIGURE 1. The process of the use case points method.

TABLE 5. Actor classifications and their complexity weights.

ﬁz;(;irﬁcation Description Weight
Simple The system through an API 1
Average The system through a protocol

Complex The system through a GUI 3

TABLE 6. Use case classifications and their complexity weights.

Use case Number of transactions Weight
classification

Simple 0, 4) 1
Average <4,7>

Complex (7, ) 3

The sum of the weighted actors and use cases are created
for the Unadjusted Actor Weight (UAW) and Unadjusted Use
Case Weight (UUCW). The UAW and UUCW are calculated
by using (10) and (11), respectively.

3

UAW = ati X w; (10)
1=
3

UUCW = ijl ucj X w; (11)
where «t; is the number of actors in actor type i, w; is
the complexity weight of actor i, uc; is the number of use
cases in use case 7, and w; is the complexity weight of use
case j.

Correction factors, i.e., TCFs and ECFs are used to
describe the experience level of the software development
team. The technical and complexity factors are shown in
TABLES 7 and 8. The technical factors are calculated
using (12), and the environmental factors are calculated
using (13) as follows:

13

TCF = 0.6 +0.01 Z_ T x Wi (12)
1=
8

ECF = 1.4 —0.03 Z_  Ei x We; (13)
=
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TABLE 7. Technical complexity factors.

T; Description Weight (Wt;)
Ti Distributed System 2
T2 Response Adjectives

T3 End-Use Efficiency 1
T4 Complex Processing 1
Ts Reusable Code 1
Ts Easy to install 0.5
T Easy to Use 0.5
Ts Portability 2
Ty Easy to Change 1
Tio Concurrency 1
Tu Security Features 1
T2 Access for Third Parties 1
Tis Special Training Facilities 1

TABLE 8. Environmental complexity factors.

E; Description Weight (We;)
Ei Family with RUP 1.5

E> Application Experience 0.5

Es Object-oriented Experience 1

E4 Lead Analyst Capability 0.5

Es Motivation 1

Es Stable Requirements

E7 Part-time Workers -1

Es Difficult Programming Language 2

where T; is the value of TCF i, Wt; is the complexity weight
of technical factor i, E; is the value of ECF i, and We; is the
complexity weight of environmental factor i.

The UCP is calculated using (14) as follows:

UCP = (UAW + UUCW) x TCF x ECF (14)

For SDEE, Karner suggested a factor of 20 man-hours per
UCP to measure work effort. This is presented in (15).

Effort = UCP x 20 (15)

IV. THE PROPOSED METHOD

The ExOCF method can be divided into two phases. The
first phase (Model Selection Phase) focuses on determin-
ing which of the technical and environmental complexity
factors significantly affect the accuracy of the UCP based
on the feature selection model. Then, two new regression
formulas are created to calculate the selected factors through
MLR models. The second phase (Fine-Tuning Phase) is con-
ducted to optimize the OCF element obtained from phase 1.
A detailed illustration of the EXOCF method is shown in
FIGURE 2.

A. MODEL SELECTION PHASE

The Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression model [57], [58] is used to deter-
mine the factors selected in the regression analysis.
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The LASSO estimate denoted ﬁ(k) is determined as

follows:
’ 1Y =XB 13
B () = argmin (—2 +A 0B I
B n
. k
subject to ijl |ﬂj’ <t (16)
where:
n
Y =XBI3 =) . (Yi— (XB) (17)
k
181 =2 I8l (18)
A > 0 is the LASSO parameter that controls the

strength of the penalty. The LASSO parameter X is deter-
mined by the Leave One Out Cross-Validation (LOO-CV)
method [76], [77]. This parameter’s choice is adjusted
based on the lowest possible prediction errors and a lack
of bias towards the correction factors of the samples in
the training set. The LASSO parameter relates directly to
the number of selected correction factors via the number
of nonzero B’s. The number of nonzero B values can be
changed by modifying the model parameter shown as t
in (16).

The LASSO-based n selected technical factors are named
LaTF. A LASSO-technical factor (LaTF) can be described as
follows:

n
LaTF = og+ ) . @i x LaT; x WLt; (19)
=

where LaT; is a technical factor that takes values from the
interval [0, 5]. A value of “0” means that the technical com-
plexity factor is irrelevant, while a value of “5” is essential.
WLt; is the weight of technical factor i. o, o; are regres-
sion coefficient parameters that are obtained from the MLR
model.

The LASSO-based m selected environmental factors are
named LaEF. A LASSO-environmental factor (LaEF) can be
determined as follows:

m
LaEF = By + ijl Bj x LaE; x WLe; (20)

where LaE; is an environmental factor that corre-
sponds to the environmental factors. WLe; is the weight
of environmental factor i. «,,®; are regression coef-
ficient parameters that are obtained from the MLR
model.

B. THE FINE-TUNING PHASE
In this phase, the effort estimation model is built using MLR
as follows:
UCPgxocr = y1 (UAW x LaTF x LaEF)

4+ (UUCW x LaTF x LaEF) (21)
where y1,y» are obtained according to two steps. First,
the historical data points (Py,..., P,) are collected. The

UAW, UUAW, LaTF, and LaEF elements for each project
are identified. The result of this step is the collection of
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FIGURE 2. Detailed illustration of the proposed ExOCF method.

values (x;1,xi2,yi),i = 1...n, where y; is the actual size
(Real_P20 values) of the software project from a historical
dataset.

Xil = (UAW,'XLQTF[ X ECF,)
xp = (UUCW xLaEF; x ECF;)

(22)
(23)

The LSR model is then used to obtain the regression coef-
ficients yy, y» as follows:

Y1 X1 Xi2
Y1
= X 24
, (n) (4)
Yn an Xn2
(” ) =& 07'x"y (25)
V2

Because y; is a real value from a historical dataset, the
regression coefficient values of y1, y» can vary from each
dataset. This means that when a historical dataset changes,
this phase needs to be performed again to obtain new regres-
sion coefficient values. The second step of this phase will
calculate the UAW, UUCW, LaTF, and LaEF of the current
project, and (21) is applied with values y1, y» from step 1 to
estimate the UCP.
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Final Project Size Estimation

V. RESEARCH METHODOLOGY

In this section, we describe the empirical analysis of our
research methodology. The section begins with a description
of the datasets for the experiment, including the statistical
characteristics in the four datasets and data normalization.
The next part is the process of setting up the experiment to
evaluate the software effort estimation methods.

A. DATASET DESCRIPTION

The proposed method was evaluated using a dataset that
the authors collected and used [9]. The dataset is based on
three data donations (D1, D2, and D3). The projects from
each data donors differ in size (measured by the UCP).
All data donors work in different government, health, and
business sectors. The projects were developed in Java and
C# programming languages. After analysing the dataset,
we noticed that the Real_P20 of some projects varied exten-
sively. FIGURE 3 presents a boxplot of Real P20 in each
dataset. Real P20 is real effort in man-hours, divided by
productivity (PF - man-hours per 1 UCP).

We observed a substantial difference in Real_P20 between
the data donors. The distribution of Real P20 is observed
according to the data donors. In particular, data donor D1
had the largest projects, while data donor D3 had the smallest

2971



IEEE Access

H. L. T. K. Nhung et al.: Parametric Software Effort Estimation Based on Optimizing Correction Factors and MLR

projects. The significant difference in Real_P20 makes the
dataset heterogeneous. Therefore, applying the same model
to all projects was not effective. We grouped projects accord-
ing to data donors, making the datasets more homogeneous.
Datasets (D1, D2, and D3) were provided by data vendors.
Projects in each dataset may be understood as being local data
for each of the companies.

In addition, we also evaluate the effect of mix-
ing projects with different data providers, and a fourth
dataset (D4) was also added, which combined all three
datasets.

Statistical characteristics of the Real P20 of the four
datasets are described in TABLE 9, FIGURES 4-7. Median
person-hours represent the workforce value of the project
development period, which was applied from the project’s
start date to acceptance date. The median Real_P20 shows the
same value divided by PF = 20. It assumes that 20 person-
hours corresponds to 1 UCP [19]. This transformation
was made because data donors did not provide estimations
using the UCP. The minimum Real_P20 and maximum
Real_P20 describe the smallest and largest project sizes,
respectively. The Real_P20 range describes the difference
between the minimum Real P20 and maximum Real_P20.
The last column (n) indicates the number of projects in the
dataset.

B. DATA NORMALIZATION

All variables in the four datasets were standardized using
Min-Max normalization [78], [79] to ensure that they had
the same influence degree. Variables usually have various
ranges, which may have a negative impact on the learning
step. Using (26-27), the variables are scaled and standardized
from (Xmin, Xmax) O (NeWmin, Newqy)-

Xj — Xmin
Xj= <]—) X (NeWmax — Newmin) + Newin
Xmax — Xmin
(26)
Xmax = MAX Xjy _ins  Xmin = minleS'SN 27

C. EVALUATION CRITERIA

In SDEE, different criteria are needed to evaluate the estima-
tion accuracy of methods. The SDEE’s accuracy in terms of
the MMRE Men Magnitude of Error Relative to the estimate
(MMER) [15], [48], [80] are the most commonly used met-
rics. However, these metrics may become biased [81], [82].
According to the systematic review of Azzeh et al. [23], the
authors encouraged us to discard biased measures such as
MMRE and MMER.

Therefore, to evaluate the proposed estimation method,
we use alternative criteria that produce an unbiased and sym-
metric distribution, as follows: (28) Mean Absolute Error
(MAE), (29) Mean Balance Relative Error (MBRE), (30)
Mean Inverted Balance Relative Error (MIBRE), (31) Median
of Magnitude of Relative Error (MdMRE) and (32) Root
Mean Square Error (RMSE).
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FIGURE 3. Boxplot of Real_P20 in each dataset.

Boxplot of Real_P20 for dataset D1

390 4

Q3,75%, 3746

Real_P20

Median, 50%, 362.6

Q1, 25%, 3517

350
340 4
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FIGURE 5. Boxplot of Real_P20 for dataset D2.

e Mean Absolute Error (MAE)

1

n A~
MAE = =% lvi—3i

(28)
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TABLE 9. Dataset statistical characteristics.

Median Median Range Standard Minimum Maximum N
man-hours Real P20 Real P20 deviation Real P20 Real P20
Dataset D1 7252.000 362.600 60.300 18.820 338.200 398.500 27
Dataset D2 6240.000 312.000 38.400 12.156 299.650 338.050 23
Dataset D3 5878.000 293.900 10.500 3.287 288.750 299.250 20
Dataset D4 6406.000 320.300 109.750 33.212 288.750 398.500 70
Boxplot of Real_P20 for dataset D3 Boxplot of Real_P20 for dataset D4
400
298 -
380 -
Q3,75%, 2965
296 -
360 -
o o Q3,75%, 3547
o~
il 294 Median, 50%, 293.9 E|
© © 340
L2 g
292 - Q1, 25%, 292.1
320 4 Median, 50%, 320.3
2907 300 - l Q1, 25%, 298.2
FIGURE 6. Boxplot of Real_P20 for dataset D3. FIGURE 7. Boxplot of Real_P20 for dataset D4.
o Mean Balance Relative Error (MBRE) estimation accuracy (when PRED (x) values are high) is also
1 n i =9 reasonable (when SA values are high).
MBRE = n Zizl min(y; — 91) (29) « Sum of Squares Errors (SSE)
1 n
e Mean Inverted Balance Relative Error (MIBRE) SSE — Z 1 8{2 (33)
=
1 n C— Y .. .
MIBRE = - Z M (30) « Percentage of Prediction within x% (PRED (x))
n —i=1 max(y; — yi)
« Median of Magnitude of Relative Error (MdMRE) 1 n 1 if Iy’;y" <x
X PRED (x) = - ) . 1 yi (34)
L3 n i= .
MAMRE = median;(> =211 31) 0 otherwise
Vi

« Root Mean Square Error (RMSE)

n ._A'Z
RMSE:,/M% (32)

where n is the number of observations, y; is the real known
value, y; is the predicted value, and ¢ is the prediction error
value.

On the other hand, we also used two measures to evaluate
the accuracy of the estimation models, such as (33) Sum
of Squares Errors (SSE) and (34) Percentage of Prediction
within x% (PRED(x)). In particular, SSE is an important
metric to estimate the variation in modelling error [75]. It is
used because of its ability to describe errors for selected
datasets. Second, PRED(x) is less biased towards underes-
timation and generally determines the same best method as
the Standardized Accuracy (SA). According to the empirical
evaluation of Idri ef al. [83], an SDEE method that has high
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D. EXPERIMENTAL SETUP

In this section, we present a series of experimental setups
to evaluate the effectiveness of software effort estimation
methods (see FIGURE 8). In step 1, the methods in this
research direction are installed for experiments as follows:

« ExOCF (proposed in Section 4)

The results are compared with estimation methods as
follows:

« OCF [38]

« UCP [19]

« AOM [52]

To evaluate the estimation accuracy, we experimented with
five different runs (5-fold cross-validation). The comparisons
of the effort estimation accuracy of each method are then
based on the average results of these five runs.

In step 2, the results were then evaluated using some eval-
uation criteria, SSE, PRED (0.25), MAE, MBRE, MIBRE,
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Step 1: Conducting effort estimation methods

1. UcCp
AOM

2.
3. OCF
4. ExOCF (k-fold cross validation)

Results of methods

Evaluation criteria

SSE, PRED (0.25)
MAE, MBRE, MIBRE,

Step 2: Evaluation of the estimation accuracy

Comparisons of estimation accuracy from each method MdMRE, RMSE
t-tests
FIGURE 8. Experimental setup.
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FIGURE 9. CV score on TCF (D1 dataset).

TABLE 10. The estimated tcf coefficients in the lasso regression.

D1 D2 D3 D4

A 0.000231 0.000268 0.000227 0.000236
intercept ~ 0.690619 0.693400 0.720820 0.695850
T1 0.009451 0.009725 0.009547 0.009505
T2 - - - -

T3 0.010897 0.010902 0.010311 0.010456
T4 0.009330 0.008877 0.009888 0.009556
TS 0.010430 0.011130 0.015199 0.010622
T6 0.009576 0.010157 - 0.009202
T7 0.008536 - 0.007298 0.008989
T8 - - - -

T9 0.010551 0.014018 0.013144 0.010334
T10 0.010526 0.010893 0.009730 0.010902
T11 0.007387 0.006516 - 0.005998
T12 - - - -

T13 - - - -

MdMRE, and RMSE, as presented in (28-34). A pairwise
t-test (at a 5% significance level) was also used to validate
the accuracy of the methods.

VI. RESULTS AND DISCUSSIONS
This section presents the empirical results obtained from the
analysis of the correction factors that significantly affect the
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TABLE 11. The estimated ecf coefficients in the lasso regression.

D1 D2 D3 D4
A 0.000177 0.000192 0.000247 0.000327
intercept  1.373478 1.376197 1.404496 1.387716
ENV1 - - - -
ENV2 - - - -
ENV3 -0.032072  -0.042706  -0.032954  -0.033555
ENV4 -0.042291  -0.037886  -0.025558  -0.033001
ENVS5 -0.029170  -0.028453  -0.029931  -0.029393
ENV6 -0.028133  -0.027549  -0.030139  -0.029072
ENV7 -0.027981  -0.026382  -0.029221  -0.028660
ENVS -0.028193  -0.028713  -0.031169  -0.029333
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FIGURE 10. CV score on ECF (D1 dataset).
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FIGURE 11. CV score on TCF (D2 dataset).

accuracy of the UCP-based SDEE methods and presents the
answer to our research questions.

The purpose of the results is to minimize the SSE,
MdMRE, MAE, MBRE, MIBRE, and RMSE and maxi-
mize the PRED (0.25). Specifically, low values for the SSE,
MdMRE, MAE, MBRE, MIBRE, and RMSE show good
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FIGURE 12. CV score on ECF (D2 dataset).
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FIGURE 13. CV score on TCF (D3 dataset).
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FIGURE 14. CV score on ECF (D3 dataset).

results. In contrast, high values for the PRED (0.25) show
good results.
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FIGURE 16. CV score on ECF (D4 dataset).

We also performed paired samples t-test comparisons
[84]-[87] to investigate whether the ExXOCF method is sig-
nificantly different from the other methods to confirm the
evaluation conclusions. The notations >, < and ~ are used
to express the empirical conclusion based on their p-value,
which indicate the statistical superiority, inferiority, and sim-
ilarity of the EXOCF method compared to each of the other
methods, respectively. When the p-value < 0.05, we can
conclude that the difference in estimation accuracy between
the EXOCF method and each other method is significant.
In this work, we use the SSE, PRED (0.25), MAMRE, MAE,
MBRE, MIBRE, and RMSE results as the sample test set for
each method.

A. CORRECTION FACTORS ANALYSIS

Feature selection using LASSO is conducted to deter-
mine the best technical and environmental factors for each
dataset.
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Coefficient estimates on TCF from LASSO Regression (Dataset D1)
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FIGURE 17. Coefficient estimates on TCF from LASSO regression
(D1 dataset).
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FIGURE 18. Coefficient estimates on ECF from LASSO regression
(D1 dataset).

FIGURES 9-16 show a sequence of different R-squared
values in proportion to different values of A. The selected
A value is determined using the LOO-CV technique at
which the R-squared reaches its highest value. The highest
R-squared represents the goodness of fit of the LaTF and
LaEF regression models.

FIGURES 17-24 show the selected technical and envi-
ronmental factors corresponding to the determined X
values.

The details of the technical and environmental factors
selected in each dataset with the determined A, as well as
their coefficient estimates, are shown in TABLES 10 and 11.
Specifically, there are nine remaining technical correc-
tion factors in the D1 dataset at Apcrp = 0.000231,
T1, T3 T4, T5, To, T7, T9, T10, and TI11, and at
Aecr = 0.000177 there are six remaining environmental
factors, ENV3 to ENVS. In the D2 dataset, the eight selected
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Coefficient estimates on TCF from LASSO Regression (Dataset D2)
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FIGURE 19. Coefficient estimates on TCF from LASSO regression
(D2 dataset).
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FIGURE 20. Coefficient estimates on ECF from LASSO regression
(D2 dataset).

technical factors at Aycr = 0.000268 are T1, T3, T4, TS5, T6,
T9, T10, and T11, and the selected environmental factors at
Aecr = 0.000192 are ENV3 to ENVS. In the D3 dataset, the
seven selected technical factors at Aycp = 0.000227 are T1,
T3, T4, TS5, T7, T9, and T10, and the selected environmental
factors at Agcp = 0.000247 are ENV3 to ENVS. In the
D4 dataset, the nine selected technical factors at Aycrp =
0.000236 are T1, T3, T4, T5, T6, T7, T9, T10, and T11,
and the environmental factors at Agcp = 0.000327 are
ENV3-ENVS.

B. RQ1
Is it possible to modify the OCF method so that its estimation
accuracy improves?

The accuracies of empirical validation for the two methods
are given in TABLES 12-15 over the four datasets. As the
results show, we can comfortably confirm that the proposed
ExOCF method produces the best SSE, MAMRE, MAE,
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Coefficient estimates on TCF from LASSO Regression (Dataset D3)
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FIGURE 21. Coefficient estimates on TCF from LASSO regression
(D3 dataset).
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FIGURE 22. Coefficient estimates on ECF from LASSO regression
(D3 dataset).

MBRE, MIBRE, RMSE, and PRED (0.25) values, which
indicates that it is possible to modify the OCF method to
improve its estimation accuracy.

Specifically, the average SSE results of the EXOCF method
decreased by 3.02 times, 1.3 times, 3.1 times, and 1.55 times
compared with those of the OCF method on datasets DI,
D2, D3, and D4, respectively (see FIGURE 25). Similarly,
compared to the OCF method, the ExXOCF method increases
the PRED (0.25) average values by 2.18 times, 1.64 times,
2.4 times, and 1.33 times on datasets D1, D2, D3, and
D4, respectively (see FIGURE 26). The average MAMRE
results of the EXOCF method are 2.08 times, 1.17 times,
1.92 times, and 1.28 times lower than those of the OCF
method (see FIGURE 27). The average MAE results of the
ExOCF method are reduced by 2.08 times, 1.17 times, 1.92,
and 1.28 times those of OCF (see FIGURE 28). The aver-
age MBRE results of the EXOCF method are 2.72 times,
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Coefficient estimates on TCF from LASSO Regression (Dataset D4)
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FIGURE 23. Coefficient estimates on TCF from LASSO regression
(D4 dataset).

Coefficient estimates on ECF from LASSO Regression (Dataset D4)
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FIGURE 24. Coefficient estimates on ECF from LASSO regression
(D4 dataset).
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FIGURE 25. The SSE results of the OCF and ExOCF methods.

1.13 times, 1.71 times, and 1.31 times lower than those of
the OCF method (see FIGURE 29).

Then, the average MIBRE results of the EXOCF method
are 2.22 times, 1.1 times, 1.59 times, and 1.25 times lower
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FIGURE 26. The PRED (0.25) results of the OCF and ExOCF methods.
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FIGURE 27. The MdMRE results of the OCF and ExOCF methods.
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FIGURE 28. The MAE results of the OCF and ExOCF methods.

than those of the OCF method (see FIGURE 30). Finally, the
average RMSE results of the EXOCF method are 1.76 times,
1.14 times, 1.78 times, and 1.25 times lower than those of the
OCF method (see FIGURE 31).

Above all, we believe the use of the MLR model on the
OCEF variables has shown its effectiveness.

C. RQ2
Does the proposed method outperform a baseline UCP
method and another tested method?

‘We measured the accuracy improvements achieved by the
proposed ExXOCF method over the baseline UCP method
and another tested method, the AOM method. As shown in
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FIGURE 29. The MBRE results of the OCF and ExOCF methods.
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FIGURE 30. The MIBRE results of the OCF and ExOCF methods.
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FIGURE 31. The RMSE results of the OCF and ExOCF methods.

TABLES 12-15, the detailed results in each run prove that
the proposed method performs better on the four datasets.
First, we consider the SSE and PRED (0.25) results of the
experimental methods (see FIGURE 32 and FIGURE 33).
Compared to the two methods (UCP and AOM), the proposed
ExOCF method on the D1 dataset decreases the average SSE
results by 3.64 times and 1.33 times and increases the aver-
age PRED (0.25) scores by 50% and 20.87%, respectively.
Similarly, on the D2 dataset, the EXOCF method decreases
the average SSE results by 2.92 times and increases the
average PRED (0.25) scores by 33.33% compared to the other
methods. On the D3 dataset, the average SSE of the ExXOCF
method results decreases by 6.43 times and 2.1 times. On the
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TABLE 12. The results on the D1 dataset for each run.

TABLE 13. The results on the D2 dataset for each run.

D1 dataset D2 dataset
UCP OCF AOM ExOCF uCp OCF AOM EXOCF
Run #1 Run #1
SSE 89873.809  73732.493 3081291  23577.641 SSE 180847.52  81712.875 178916.935  68413.804
PRED (0.25)  0.50 0.33 0.67 0.83 PRED (0.25) 0.4 0.4 0.4 0.6
MdJMRE 0.277 0.278 0.154 0.065 MdMRE 0.299 0.389 0.342 0.187
MAE 110.067 102.037 56.788 43.789 MAE 147.302 108.565 148.822 100.496
MBRE 0.540 0.428 0.205 0.152 MBRE 0.706 0.663 0.683 0.604
MIBRE 0.295 0.272 0.152 0.113 MIBRE 0.334 0.320 0.334 0.307
RMSE 122.389 110.855 71.662 62.687 RMSE 190.183 127.838 189.165 116.973
Run #2 Run #2
SSE 97956.072  82891.999  39818.108  30362.475 SSE 31539.052  44382.268  48595.858  28216.834
PRED (0.25) 0.33 033 0.50 0.67 m‘i}fR%)-”) 8'2 4 g~‘2‘ s 8“3‘2 . gf 48
I\“ﬁdAl\éRE (1)'1258209 (1)628929 5 (7)52221 (5)'91 ‘7‘2 " MAE 75.942 85.712 94.974 57.623
MBRE 0.572 0.466 0552 0.194 MBRE 0.309 0.372 0.439 0.275
MIBRE 0311 0290 0150 0150 MIBRE 0.228 0.243 0.292 0.175
RMSE 79.422 94.215 98.586 75.122
RMSE 127.773 117.539 81.464 71.137 Run #3
Run #3
SSE 144626376  42913.083  143532.966  33889.05
SSE 95228.322  79219.801 45101.683  36052.935 PRED (025) 0.6 04 0.6 08
PRED (0.25)  0.17 0.17 0.50 0.67 MdMRE 0.177 0255 0.237 0.175
MdMRE 0.281 0.285 0.238 0.148 MAE 118.319 70.304 123.63 72.976
MIBRE 0.320 0298 0.198 0.160 RMSE 170.074 92.642 169.430 82.327
RMSE 125.982 114.906 86.700 77517 Run #4
Run #4 SSE 189039.784 99138916  172400.055 75108318
SSE 83117.621 67977319 21111.679 13414.242 PRED (025) 02 0.4 0.4 06
MdMRE 0.269 0.273 0.131 0.095 MAE 158.1 129.189 146.865 107.213
MAE 101.134 93.868 53.599 38.405 MBRE 0.763 0.752 0.708 0.662
MBRE 0.525 0.418 0.167 0.111 MIBRE 0.368 0.353 0.344 0.309
MIBRE 0.282 0.262 0.138 0.095 RMSE 194.443 140.811 185.688 122.563
RMSE 117.698 106.440 59318 47.283 Run #5
Run #5 SSE 146826.325  39524.734  149114.91  30966.383
SSE 111781.122  93948.873  38346.112  28039.34 PRED (0.25) 0.6 0.6 0.6 0.8
PRED (0.25)  0.50 0.50 0.67 0.83 MdJMRE 0.226 0.190 0.240 0.123
MdMRE 0314 0.309 0.136 0.083 MAE 121.537 70.122 122.062 57.449
MAE 127.842 119.867 63.397 48.735 MBRE 0.411 0.337 0.403 0.288
MBRE 0.658 0.541 0.257 0.192 MIBRE 0.247 0.204 0.241 0.173
MIBRE 0.356 0.333 0.177 0.134 RMSE 171.363 88.910 172.693 78.697
RMSE 136.492 125.133 79.944 68.361 Average of the five runs
Average of the five runs SSE 138575.811  61534.375 138512.145  47318.878
SSE 95591.389  79554.097  35038.098  26289.327 PRED (0.25) 0.48 0.44 0.48 0.72
PRED (0.25) 0.40 0.37 0.63 0.80 MdJMRE 0.252 0.311 0.285 0.175
MdJMRE 0.286 0.288 0.177 0.107 MAE 124.24 92.778 127.271 79.151
MAE 114.673 107.173 65.18 51.472 MBRE 0.518 0.487 0.531 0.43
MBRE 0.575 0.463 0.229 0.17 MIBRE 0.284 0.263 0.294 0.237
MIBRE 0.313 0.291 0.171 0.131 RMSE 161.097 108.883 163.112 95.137
RMSE 126.067 114.974 75.818 65.397

D4 dataset, the SSE of the EXOCF method results decreases
by 1.95 times and 1.36 times.

Next, as shown in FIGURES 34-38, we can comfort-
ably observe that the proposed method outperforms all other
methods with superior accuracy in the MAE, MdMRE,
MBRE, MIBRE, and RMSE. In particular, on the D1 dataset,
the proposed ExOCF method outperforms the UCP and
AOM methods by 2.67 times and 1.65 times, respectively,
for the MAMRE, by 3.38 times and 1.35 times, respec-
tively, for the MBRE, by 2.39 times and 1.31 times, respec-
tively, for the MIBRE, by 2.23 times and 1.27 times,
respectively, for the MAE, and by 1.93 times and 1.16 times,
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respectively, for the RMSE. Similarly, the proposed method
outperforms the UCP and AOM methods by 1.44 times
and 1.3 times, respectively, for the MAMRE, by 1.2 times
and 1.24 times, respectively, for the MBRE, by 1.19
times and 1.24 times, respectively, for the MIBRE, by 1.56
times and 1.61 times, respectively, for the MAE, and by
1.69 times and 1.71 times, respectively, for the RMSE, on the
D2 dataset.

Moreover, the proposed method outperforms the UCP
and AOM methods by 2.94 times and 1.38 times, respec-
tively, for the MdMRE, by 2.49 times and 1.33 times,
respectively, for the MBRE, by 2.06 times and 1.27
times, respectively, for the MIBRE, by 2.79 times and
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TABLE 14. The results on the D3 dataset for each run.

TABLE 15. The SSE, MMRE, and PRED (0.25) results on the D4 dataset for
each run.

D3 dataset
D4 dataset
UCP OCF AOM ExOCF
UCP OCF AOM EXOCF
Run #1
SSE 66322232 49961.858  12340.594  9092.464 Run #1
PRED (0.25) 0 0.25 0.75 1 SSE 163434992  112155.553  114869.079  84466.505
MdMRE 0.387 0.378 0.150 0.136 PRED (0.25)  0.57 0.64 0.64 0.71
MAE 120.936 105.746 49.27 39.407 ﬁil\élRE 2-82??8 2;‘2%7 2-01;‘614 261325
MBRE 0.411 0.358 0.176 0.153 : : : :
MIBRE 0.283 0.258 0.145 0.124 MBRE 0.406 0.310 0.3545 0.265
RMSE 128.766 111.761 55.544 47.677 MIBRE 0.242 0.210 0.208 0.188
Run #2 RMSE 108.045 89.504 90.581 77.674
SSE 124881.181  36364.975 42750234  17426.662 SSE 169380711 11:;1;12’;243 10030916 75437 844
PRED (0.25) 0 0.25 0.5 0.75 : - . .
MdMRE 0.630 0318 0.301 0217 PRED (0.25) 0.5 0.57 0.64 0.79
MAE 175.809 88.146 94.897 59.755 MdMRE 0.263 0.205 0201 0.141
MBRE 0.602 0.301 0.325 024 MAE 88.477 77.884 62.463 58.902
MIBRE 0375 0.224 0.237 0.177 ﬁ?BleE gg;‘? ggﬂ gfgé 8?%
RMSE 176.693 ﬁi‘i 103.381 66.005 RMSE 109.993 100.650 75.564 73.405
Run #3
1§IS<];:5D 0.25) 39401'1 1 3.521549'046 3_55680' 144 (1)?75590'5 2 SSE 127945384 126319.665 83476391  80728.511
MdMRE 0.568 0337 0.258 0.228 PRED (0.25) 057 0.57 0.57 0.86
: : ' ' MdJMRE 0.217 0.210 0.217 0.183
MAE 151.778 100.272 76.712 62.036 MAE 81964 o504 65 636 L6l
MBRE 0.518 0.341 0.262 0.228 MBRE 0598 0977 0597 0900
MIBRE 0.334 0.248 0.190 0.180 MIBRE 0916 0500 0174 0158
RMSE 157.640 ifff;‘i 94.446 68.174 RMSE 95.598 94.989 77.218 75.936
Run #4
SSE 59437.838  36555.809 22016.661  9746.603 SSE 147307497  115868.755 133700708  76426.761
PRED (0.25)  0.25 0.5 05 ! PRED (025) 0.57 0.71 0.50 0.79
MdMRE 0.372 0.268 0.224 0.142 MdMRE 0234 0.191 0.240 0.149
MAE 103.782 81.279 69.422 41.462 MAE 251 76.203 $4.383 55.856
MBRE 0.354 0.278 0.245 0.162 MBRE 0.413 0.376 0.411 0276
MIBRE 0.241 0.204 0.193 0.131 MIBRE 0244 0229 0.247 0.174
RMSE 121.899 95.598 74.190 49.362 RMSE 102.577 90.974 97.724 73.885
Run #5 Run #5
SSE 48544378 24161.22  17657.292  7115.625 SSE 163804.311  120468.285  128906.951  79378.23
PRED (0.25)  0.25 0.5 0.5 0.75 PRED (0.25)  0.43 0.50 0.50 0.86
MdMRE 0.384 0.251 0.162 0.071 MdJMRE 0.285 0.254 0.250 0.149
MAE 96.515 71.909 52.569 29.527 MAE 100.049 75.714 80.831 53.679
MBRE 0.329 0.248 0.179 0.123 MBRE 0.410 0.370 0.361 0.279
MIBRE 0.232 0.194 0.141 0.097 MIBRE 0.274 0217 0.234 0.161
RMSE 110.164 77.719 66.440 42.177 RMSE 108.168 92.762 95.956 75.299
Average of the five runs Average of the five runs
SSE 79717.348  38438.582  26088.985  12394.385 SSE 154374.579  123328.138  108178.469  79287.57
PRED (0.25) 0.1 0.35 0.55 0.85 PRED (0.25)  0.53 0.60 0.57 0.80
MdMRE 0.468 0.31 0.219 0.159 MdJMRE 0.247 0.212 0.217 0.16
MAE 129.764 89.47 68.574 46.437 MAE 88.742 76.22 72715 59.4
MBRE 0.443 0.305 0.237 0.178 MBRE 0.376 0.331 0.323 0.252
MIBRE 0.293 0.226 0.181 0.142 MIBRE 0.242 0214 0.21 0.171
RMSE 139.032 97.334 78.8 54.679 RMSE 104.876 93.776 87.409 75.24
1.48 times, respectively, for the MAE, and by 2.54 times D. RQ3

and 1.44 times, respectively, for the RMSE on the D3
dataset.

On the D4 dataset, the proposed method outper-
forms the UCP and AOM methods by 1.49 times and
1.22 times, respectively, for the MAE, by 1.54 times and
1.36 times, respectively, for the MAMRE, by 1.49 times
and 1.28 times, respectively, for the MBRE, by 1.41
times and 1.22 times, respectively, for the MdJMRE,
and by 1.39 times and 1.16 times, respectively, for
the RMSE.

Above all, we can confidently confirm that the pro-
posed method works better than the UCP and AOM
methods.
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Is the difference in the accuracy of the estimate using different
methods statistically significant?

To answer RQ3, we examined the statistical properties
of the estimates resulting from methods based on paired
t-test comparisons, as shown in TABLES 16-19. The results
show the average p-value results and the SSE, PRED (0.25),
MdMRE, MAE, MBRE, MIBRE, RMSE over five different
runs and the final statistical conclusions. The results con-
firm that the ExXOCF method is statistically significant at
the 95% confidence level compared to previous methods.
Therefore, we are inclined to accept the alternative hypothesis
(H1), which is also consistent with the results presented
above.
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FIGURE 32. The SSE results of the UCP, AOM and ExOCF methods.
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FIGURE 33. The PRED (0.25) results of the UCP, AOM and ExOCF methods.
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FIGURE 34. The MdMRE results of the UCP, AOM and ExOCF methods.

VIl. THREATS TO VALIDITY

The threats to the validity of this study, particularly to inter-
nal, external, and construct validity, can be summarized as
follows:

A. INTERNAL VALIDITY

There is no superior approach to determine the regularization
parameter A to extract a selected variable set, as shown in (16),
before applying LASSO regression. In practice, the tuning
parameter A, which controls the strength of the penalty, has
an important effect. In particular, if A is sufficiently large,
the coefficients must be exactly zero, leading to the dimen-
sionality being reduced. The larger the parameter A is, the
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FIGURE 35. The MAE results of the UCP, AOM and ExOCF
methods.
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FIGURE 36. The MBRE results of the UCP, AOM and ExOCF methods.
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FIGURE 37. The MIBRE results of the UCP, AOM and ExOCF methods.

greater the number of coefficients reduced to zero. Thus,
we determined the A value based on the LOO-CV technique,
where the R-squared reaches its highest value. This technique
is used because of its deterministic property and suitability
for small datasets. The dataset summarizes data from three
donors for a long time period. Independent variables were
partly submitted by the data vendors. The complete process of
using case point calculation — mainly in the factor weights —
is not known. This may influence data quality and compa-
rability between data donors. In past publications, datasets
used were preprocessed, which may also have an impact on
reliability.
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FIGURE 38. The RMSE results of the UCP, AOM and ExOCF methods.

TABLE 16. The statistical t-test based on evaluation criteria (28-34) for
the proposed method with each of the methods compared on the d1
dataset.

Pairs of method EXOCF EXOCF EXOCF
airs ot methods vs.UCP  Vvs.OCF  vs.AOM
26289.327  26289.327  26289.327
Avg. SSE vS. vS. Vs.
SSE 95591.389  79554.097  35038.098
results Avg. p-value  0.00003 0.00006 0.00005
Statistigal o . .
conclusion
Avg. PRED 0.8 0.8 0.8
(0.25) vS. vS. vs.
PRED (0.25) ) 0.4 0.37 0.63
results Avg. p-value  0.0003 0.0002 0.00000
Statlsthal o o o
conclusion
51.472 51.472 51.472
Avg. MAE vSs. VS. Vs.
114.673 107.173 65.18
MAE results =0 alue 0.00008 0.0001 0.00001
Statlstlgal o . .
conclusion
0.107 0.107 0.107
Avg. VSs. VSs. VvSs.
MdMRE MdMRE 0.286 0.288 0.177
results Avg. p-value  0.0003 0.0002 0.001
Statistical
. >> >> >>
conclusion
0.170 0.170 0.170
Avg. MBRE  vs. Vs. Vs.
MBRE 0.575 0.463 0.229
results Avg. p-value  0.00000 0.00002 0.00000
Statlstlc:'al o . .
conclusion
0.131 0.131 0.131
Ave. Vs Vs Vs
MIBRE MIBRE 0.313 0.291 0.171
results Avg. p-value  0.00004 0.00006 0.00000
Statlstlc:.al o . .
conclusion
65.397 65.397 65.397
Avg. RMSE Vs. Vs. vs.
RMSE 126.067 114.974 75.818
results Avg. p-value  0.00005 0.0001 0.00003
Statlstlgal o . .
conclusion

B. CONSTRUCT VALIDITY
Construction validity concerns generalizing the results. In the
case of this study, the goal of experiments was to minimize an
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TABLE 17. The statistical t-test based on evaluation criteria (28-34) for
the proposed method with each of the methods compared on the d2
dataset.

Pairs of methods EXOCF EXOCF EXOCF
vs. UCP vS. OCF vs. AOM
47318.878 47318.878 47318.878
SSE Avg. SSE Vs. Vvs. vS.
results 138575.81  61534.375  138512.14
Avg. p-value  0.007 0.003 0.003
Statistical >> >> >>
conclusion
Avg. PRED 0.72 0.72 0.72
(0.25) Vvs. Vvs. Vs.
PRED (0.25) 0.48 0.44 0.48
results Avg. p-value  0.001 0.002 0.001
Statistical o . .
conclusion
79.151 79.151 79.151
Avg. MAE vs. vSs. Vvs.
124.24 92.7784 127.271
MAE results . =30~ Value  0.001 0.03 0.0002
Statistical . . .
conclusion
Ave, 0.175 0.175 0.175
vs. Vvs. vs.
MdMRE MdMRE 0.252 0311 0.285
results Avg. p-value  0.009 0.003 0.007
Statistical o o .
conclusion
0.43 0.43 0.43
Avg. MBRE  vs. Vs. Vvs.
MBRE 0.518 0.487 0.531
results Avg. p-value  0.002 0.02 0.003
Statistical o . .
conclusion
Ave. 0.237 0.237 0.237
vs. Vs. vs.
MIBRE MIBRE 0.284 0.263 0.294
results Avg. p-value  0.004 0.08 0.01
Statistical o o o
conclusion
95.137 95.137 95.137
Avg. RMSE  vs. Vvs. Vvs.
RMSE 161.097 108.833 163.112
results Avg. p-value  0.007 0.001 0.002
Statistical o o o
conclusion

estimation error. The process is based on a common process
for tuning an estimation model. Implementation of 5-fold
cross-validation and dealing with four datasets allows us to
generalize the results. To avoid monomethod bias, measure-
ments using several evaluation criteria were used. Unbiased
evaluation criteria and statistical pairwise t-tests were used to
confirm the validity of the results, such as the SSE, PRED
(0.25), MAE, MdMRE, MBRE, MIBRE and RMSE, which
have no asymmetric error distribution. Thus, we can con-
clude that the experimental results of this study are highly
generalizable.

C. EXTERNAL VALIDITY, NAMELY, THE EXPERIMENTAL
DATA

Our experiments are based on a collection of publicly avail-
able datasets, so the conclusions should be convincing. These
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TABLE 18. The statistical t-test based on evaluation criteria (28-34) for
the proposed method with each of the methods compared on the d3
dataset.

TABLE 19. The statistical t-test based on evaluation criteria (28-34) for
the proposed method with each of the methods compared on the d4
dataset.

Pairs of methods EXOCF EXOCF EXOCF Pairs of methods EXOCF EXOCF EXOCF
vs. UCP vS. OCF vS. AOM vs. UCP vs. OCF vS. AOM
12394.385  12394.385  12394.385 79287.57 79287.57 79287.57
Avg. SSE vs. vS. vs. Avg. SSE vS. vs. vs.
SSE 79717.348  38438.582  26088.985 SSE 154374.57  123328.13  108178.46
results Avg. p-value  0.002 0.001 0.01 results Avg. p-value  0.0003 0.001 0.03
Statistical o o o Statistical . . .
conclusion conclusion
Avg. PRED 0.85 0.85 0.85 Avg. PRED 0.8 0.8 0.8
(0.25) vs. vs. vs. (0.25) Vvs. Vs. Vs.
PRED (0.25) ) 0.1 0.35 0.55 PRED (0.25) ) 0.53 0.6 0.57
results Avg. p-value  0.0003 0.001 0.001 results Avg. p-value  0.002 0.01 0.006
Statistical . o . Statistical . o -
conclusion conclusion
46.437 46.437 46.437 59.4 59.4 59.4
Avg. MAE vs. vs. vs. Avg. MAE Vvs. vs. vs.
129.764 89.47 68.574 88.742 76.22 72.715
MAE results 0 alue 0.0004 0.001 0.004 MAE results =0 alue 0.001 0.001 0.04
Statistical >> >> >> Statistical >> >> >>
conclusion conclusion
Ave. 351 59 851 59 351 59 Ave. 831 6 3.816 3.Sl6
MdMRE . . : . .
MdMRE 0.468 0.31 0.219 MdJMRE MdMRE 0.247 0.247 0.247
results Avg. p-value  0.0003 0.002 0.009 results Avg. p-value  0.005 0.01 0.01
Statistical Statistical
conclusion - - - conclusion ~ ~ >
0.178 0.178 0.178 0.252 0.252 0.252
Avg. MBRE  vs. vs. Vvs. Avg. MBRE  vs. Vs. Vvs.
MBRE 0.443 0.305 0.237 MBRE 0.376 0.331 0.323
results Avg. p-value  0.0006 0.009 0.007 results Avg. p-value _ 0.00005 0.0005 0.01
Statistical - - . StaUStl‘{al . . .
conclusion conclusion
0.171 0.171 0.171
MIBRE MIBRE 0.293 0.226 0.181 MIBRE 0242 0242 0.242
results Avg. p-value  0.0002 0.002 0.009 results Avg. p-value  0.001 0.001 0.02
Statistical . . o Statlstlcval >> >> >>
conclusion conclusion
54.679 54.679 54.679 75.24 75.24 75.24
Avg. RMSE vs. Vs. vs. Avg. RMSE VS. VS. VS.
RMSE 139.032 97.334 78.8 RMSE 104.876 93.776 87.409
results Avg. p-value  0.0001 0.001 0.003 results Avg. p-value  0.0002 0.0008 0.02
Statistical o . o Statistical >> >> >>
conclusion conclusion

datasets are a small part of all datasets in the real world.
Therefore, the conclusions about these datasets may not be
appropriate for other datasets.

VIIl. CONCLUSION

In this paper, our goal is that by modifying of our OCF
method, more accurate estimates can be realized. The pro-
posed ExOCF method is inspired by the possibilities of using
a standard estimation procedure to solve the problem of the
influence of human errors during the analysis of the UCM
and simplifying the original principles of the UCP that the
OCF method is having. Specifically, we used MLR models
on historical project data points to build regression models
and minimize errors in the integration process or recursion.
The proposed method improves the OCF method’s ability
to estimate a software size and minimizes the prediction
error.

VOLUME 10, 2022

This paper analysed important research questions related
to the proposed method, as mentioned in Section 1. Regard-
ing RQ1, according to the accuracy of the empirical valida-
tion for both the OCF and ExOCF methods regarding the
SSE, PRED (0.25), MAMRE, MAE, MBRE, MIBRE, and
RMSE, we can confirm that the EXOCF method is superior
to the OCF method over four datasets. Applying the MLR
model to the OCF variables using the ExXOCF method has
improved its estimation accuracy. For RQ2, we can declare
that the proposed method outperforms the UCP and AOM
methods. For RQ3, to confirm the validity of the empirical
results, we analysed the statistical properties based on paired
t-test comparisons. It can be concluded that the proposed
method is statistically significantly superior to the other
methods.

In conclusion, we believe that the results can also be
understood as beneficial for industrial application, as they
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demonstrate that the proposed method leads to more accurate
estimates of software size and effort.

IX. FUTURE WORK

In this paper, we proposed parametric software effort estima-
tion based on Optimizing Correction Factors and Multiple
Linear Regression for use in the early stages of software
development. The ExOCF method uses the weighting of
technical and environmental complexity factors as defined in
the original UCP. These factors reflect how much productivity
is approximately affected. One of our future works is to
calibrate the weighting values of the correction factors to
address the latest trend in the software engineering industry
and improve the accuracy of the EXOCF method. Therefore,
an approach to calibrate the weights of the correction factors
using an artificial neural network [40] in the ExXOCF model
will be carried out in the future.

Another concern relates to an important aspect of deriving
MLR models: the heterogeneity of the historical data. This
could lead to an increase in the estimation error for SDEE.
There are many solutions performed in the preprocessing
step, such as outlier elimination, which is considered a solu-
tion performed in MLR-based effort estimation. However,
the estimation accuracy is not significantly better because
the difference in the distribution of historical data points
cannot be resolved [56], [60], [88]. The use of clustering
approaches is considered a solution to improve the estimation
accuracy of the ExXOCF method in our future work.
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