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Abstract—This study provides a recursive parametric
identification scheme for a liquid-saturated steam heat exchanger
system. The recursive identification scheme uses block-structured
Wiener and Hammerstein model as model structure and recursive
least square estimation scheme as the parameter estimation
method. The estimated block-oriented model provides higher
accuracy of estimation than linear models provided in the
literature. From the simulation results, it is observed that
the Wiener model can provide 88% goodness-of-FIT, whereas
Hammerstein model can provide 96% goodness-of-FIT using the
said technique.

Index Terms—Wiener model, Hammerstein model, Heat
exchanger, recursive parameter estimation

I. INTRODUCTION

Chemical processing plants are generally complex,

multi-input and multi-output, ill-conditioned systems (higher

condition number) and non-linear entities with inherent

dead time. Efficient control of chemical processing plants

is essential because of the following reasons (a) improves

the quality of the end product, (b) decreases the number

of shut-down, (c) provides an economic advantage, and (d)

provides environmental and operational safety. A control

engineer faces different challenges while designing a

model-based control mechanism for the chemical processing

plants. One of the most challenging aspects of model-based

control system design is to obtain an accurate mathematical

model of the plant. A precise plant model is not always

available due to various factors such as the complexity of

the plant, interaction between state variables, transport delay,

measurement noise, and disturbance. Models of a chemical

plant can be classified as (a) theoretical model, (b) empirical

model, and (c) semi-empirical model. The theoretical model

provides physical insight into the process, and these models

are applicable over a wide range of operating conditions.

But building theoretical models are expensive and time and

computationally intensive work. The second type of model

is an empirical model, which is easier to build than the

theoretical model. Still, the main problem in the empirical

model is the lack of extrapolation capability. A semi-empirical

model is the combination of the theoretical model and the

empirical model [1].

The first principle modeling technique is the systematic

approach of building a mathematical model for a system. The

first principle modeling technique uses ordinary differential

equation to capture nonlinear relationship among the process

variable and it considers three different types of parameters i.e.

geometrical, physical, and phenomenological. Geometrical and

physical parameters are deduced from operational documents

of the plant setup whereas phenomenological parameters

are estimated from the known parameters [2]. For chemical

process modeling, the first principle model uses the principle

of mass balance and energy balance equations to capture the

dynamics. These transport mechanisms find the relationship

between state variable, manipulated variable and disturbance

variable. To reduce the modeling error and improve the

accuracy, the models developed using first principle approach

is adjusted using the trial-error method. Due to the inherent

limitations of the trial and error method, the least square

approximation technique and its different variants are used [3],

[4]. Though the first principle model provides a greater insight

into the system dynamics, it is an expensive procedure as it

requires expert knowledge to derive an accurate mathematical

model from transport phenomena and physical laws.

One of the other approaches of modeling, is known as

data-driven modeling technique (also called as data-based

system identification technique) where input and output data of

the system is used to find a suitable mathematical model. There

are two basic types of system identification i.e. parametric

system identification and non-parametric system identification.

In the parametric system identification approach, a known

mathematical model is considered, and a parameter estimation

technique is used to build a mathematical model of acceptable

accuracy [5], [6]. A significant amount of research has

been going on to implement different system identification

approaches in chemical processing plants. A detailed review

of different system identification and control schemes of a
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nonlinear physical system have been provided in [7]. For

a complex technical system operating under an operational

point of view, the estimation of the different state variable

is one of the crucial tasks which has been thoroughly

discussed in [8]. System identification of any chemical plant

is carried out either in an open-loop or in a closed-loop

environment. In many real-world problems, a controller

is required to keep the plant in a steady-state condition;

therefore, closed-loop system identification is more preferred

than open-loop identification. In closed-loop identification,

the correlation between the input signal and undesired noise

signal creates a significant challenge in estimating parameters.

There are different methods to overcome such issues. In

the direct method, the feedback loop is neglected, and

the estimation method is applied directly to the open-loop

measurement data while properly describing the noise model.

In the indirect method, a linear control law is used, and

the open-loop plant model is estimated from the closed-loop

measurement data. In the joint-input-output method, exact

knowledge of the controller is not required [9], [10].

In the closed-loop system identification approach, a-priori

knowledge of pole-zero cancellation, time delay, polynomial

order, and proper external excitation signal is required. The

parameter-based closed-loop system identification approach

explicitly considers the system’s parameters and doesn’t

consider the identifiability of the system [11]. For a complex

system with strategic significance, fuzzy-based identification

scheme is used to find the operational status of different state

variables [12], [13]. System identification of a process helps

to design a robust controller as well as helps to estimate fault

in the system [14] [15].

Heat exchangers are one of the most critical components

in the chemical industry, which performs heat transfer

operation between two fluids through an intermediate solid

surface. Mechanical design, geometry, and classical modeling

techniques of heat exchangers are well documented in

standard textbooks [16]. Mathematical modeling of heat

exchangers can be accomplished by coupled hyperbolic and

parabolic partial differential equations [17]. Another way to

model the heat exchangers can be done using distributed

parameter modeling technique where the output variables are

a function of time and position. The conventional methods

of modeling are time and computational intensive in nature,

therefore, data-based modeling approaches are applied to

obtain a mathematical model of the system. In data based

modeling scheme, a parameter estimation algorithm is used

to estimate the parameters of the system. For a sampled-data

system with uniform sampling time, maximum likelihood

estimation method, prediction error method [18], instrumental

variable method [19], [20], and subspace identification

methods [21] are used for parameter estimation. In [22],

the authors have compared the performance of different

estimation methods such as maximum-likelihood, instrumental

variable and refined instrumental variable approach to obtain

a time-continuous model. A survey of different parameter

estimation techniques of continuous-time models is available

in [23]. The parameter estimation aspect of a multi-stage,

multi-load demand experimental refrigeration plant has been

addressed in [24]. Stochastic identification of heat exchangers

has been reported in [25]. Recently, a two-step system

identification technique is proposed for estimating physical

parameters of the partial differential equations governing the

dynamical behavior of a co-current flow heat exchanger from

input-output dataset sampled w.r.t time and space, respectively

[26]. Bilinear system identification algorithm based on the

uniformly convergent sequence of the linear deterministic,

stochastic state-space model has been presented in [27]. The

said identification algorithm is based on Picard decomposition,

and it is applied to a heat exchanger case study. Linear

parameter varying identification of cross-flow heat exchanger

has been discussed in [28]. Use of programmable logic

controller and National Instruments Data Acquisition System

along with LabVIEW has been used for real-time open-loop

system identification and control of heat exchanger system

in [29], [30]. In [31], the authors provided the system

identification of a pilot-scale heat exchanger system and

computed the state-space analysis of the plant. Identification

of liquid-saturated steam heat exchanger using ARMAX

model has been discussed in [32], where extended least

square method is used for parameter estimation. Extended

Kalman filter [33] and statistical approach [34] to estimate

the dynamics of heat exchanger systems have been presented

in the literature. Parametric system identification of a

heat-exchanger system using linear models (ARX, ARMAX,

OE, and BJ) has been studied in [35]. As system identification

of nonlinear plants are complicated in nature, some authors

used artificial neural networks [36]–[38]. In [39], the authors

developed time-lagged recurrent neural network with gamma

memory to learn the dynamics of liquid saturated steam heat

exchanger system. One of the major limitation of neural

network-based identification procedure is the need for training,

testing, and validation of the data which takes considerable

time.

As heat exchanger is a nonlinear entity, the nonlinear models

have to be investigated in the parametric system identification

step. Block-oriented model (Wiener and Hammerstein models)

are the special type of nonlinear model which posses

the functionality of both linear as well as nonlinear

models. Different parameter estimation techniques such

as the instrumental variable method have been used for

continuous-time model identification of hammerstein-wiener

model in [40]. In [35], the authors provided a procedure that

uses linear time series models and prediction error method to

identify the dynamics of heat exchanger, but the said technique

is not recursive and the linear models do not always justify the

actual dynamics of complicated nonlinear dynamic system.

Therefore, this paper provides recursive parametric system

identification of heat exchanger system using Wiener

model and Hammerstein model using recursive least square

identification technique. The online identification scheme

used on the block-oriented model provides reasonable model

accuracy compared to the offline identification scheme used

on linear models in [35]. Parameter estimation of the Wiener

model using the least mean square (LMS) method has been

discussed in [41]. The model validation is performed using

goodness-to-FIT measure, and the Wiener and Hammerstein
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models provide better FIT% than linear models shown in [35].

This paper is structured as follows. Section II provides the

problem formulation. Section III provides the details of system

identification where the Wiener and Hammerstein model has

been discussed. Section IV presents the simulation results

whereas Section V concludes the paper.

II. PROBLEM FORMULATION

Figure 1 presents the cascade control and system

identification concept of an industrial heat exchanger system.

Considering the heat exchanger as a control problem, the

controlled variable is output temperature, manipulated variable

is hot water or saturated steam flow rate and disturbance

variable is process fluid flow rate. In cascade control, two

control loops are considered. The outer-loop or primary loop

is for control of outlet temperature whereas secondary loop

is used for control of flow of manipulated variable. The

temperature and flow rate of input fluid is considered as

constant. The output temperature is measured using a 3-wire

RTD and with the help of temperature transmitter TT-101,

temperature data is provided to the temperature controller

TIC-101. The output of temperature controller is considered

as the reference to the flow controller FIC-100. The flow

rate of manipulated variable is measured using orifice plate

and flow transmitter FT-100. The flow controller FIC-100

provides actuating signal (4–20 mA) to the control valve via

a current-pressure converter. The current-pressure converter

converts the actuating signal (4–20 mA) to proper pneumatic

signal (3–15 psig).

For system identification purpose, an identification enable

signal is initiated at any point of time. Once the identification

enable is initiated a high frequency signal is injected to

the system without causing any major disturbance to the

normal closed-loop operation of the process. The input

and corresponding output data is acquired by the system

identification module. Once the data is acquired, a model

structure is used and parameters of the model needs to be

estimated and model needs to be validated.

III. SYSTEM IDENTIFICATION

Figure 2 provides the basic flow chart of system

identification. The first step of parametric system identification

is the design of identification experiment. In this step a

persistently excited signal is injected in to the process for

a certain duration to excite the whole range of dynamics

of the said system. Necessary precautions need to be taken

such that while the injection of the signal is done, the

normal process output shouldn’t be effected. So design of

identification experiment is one of the crucial phase of

system identification experiment. System identification can

be enabled at any moment of the process operation. Once

the corresponding output signal is acquired at a particular

sampling time, the data is checked for required quality and

pre-processing of the data is carried out. Cross-correlation

analysis is carried out to find whether there is sufficient impact

of process input on the corresponding process output. Once the

input and output dataset are obtained, a proper model structure

FIC

100

TIC

101

TT

101

FT

100

Flow Controller

(Secondary loop)

Temperature

Controller

Temperature

Transmitter

Flow Transmitter

E  

   P

Orifice

Plate

Process 

Fluid

Saturated Steam

Controlled Output

(Liquid Temperature)

Start

System Under

Normal Operation

Identification

Enable?

Data Acquisition for System 

Identification

Model Structure Selection

Recrusive 

Parameter Estimation

Model Validation Checking

Documentation of 

Estimated Model

Persistently

Excited

Signal

+
+

Yes

No

Fig. 1: Cascade Control and System Identification of Heat

Exchanger System

Examine data

Design of Experiment

Data Processing

Satisfying
Data Quality

?

Estimate the parameters of the model

Select a model structure

No

No 

Yes 
Yes 

Model ready for application

Model
Good 

Enough
?

Validation

Simulation

Expert Knowledge

Fig. 2: Flow chart of parametric system identification [5]

is selected using a-priori knowledge which is then used for

construction of estimated model. For the purpose of parameter

estimation, different estimation schemes are used which may

be recursive or non-recursive in nature. The estimated model

is checked for validity in the model validation step.

The following subsection provides the preliminary idea

about some widely used block-oriented models [42].

A. Wiener model

Fig. 3 illustrates the block diagram of Wiener model which

comprises of a nonlinear function and a linear time invariant

(LTI) model.

F (·) : R → R represents the nonlinearities. G(q) is the LTI

subsystem, u (t) and y (t) denote input and output respectively.

v(t) represents stochastic white Gaussian noise. The mean

value of the gaussian noise is 0. G(q) can have any form
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( )y t
( )G q

( )u t

( )v t

( )F ⋅
( )d t( )r t

Fig. 3: Block diagram of Wiener model [43]

such as rational functions, Laguerre functions etc where q is

a forward shift operator

The output of LTI system r (t) can be expressed as

r (t) =
β (q)

α (q)
u (t) . (1)

y (t) = F (d (t)) , (2)

where

d (t) = r (t) + v (t) =
β (q)

α (q)
u (t) + v (t) . (3)

α (q) = 1 + α1q
−1 + α2q

−2 + ...+ αnα
q−nα

β (q) = β1z
−1 + β2q

−2 + ...+ βnβ
q−nβ .

(4)

The orders nα and nβ are assumed to be known, and F (·) is

assumed to be invertible. The relationship between d (t) and

y (t) is

d (t) = F−1 (y (t)) =
m
∑

k=1

ckfk (y (t)), (5)

where fk (·) are the nonlinear basis functions correspond to

nonlinearity of the system. The order of nonlinearity m is

considered to be foreknown. Using Eq. (4) in (3),

d (t) =

nα
∑

i=1

αi [v (t− i)− d (t− i)] +

nβ
∑

j=1

βiu (t− j) + v (t) .

(6)

From Eq. (5) and (6)

m
∑

k=1

ckfk (y (t)) =

nα
∑

i=1

αi [v (t− i)− d (t− i)]

+

nβ
∑

j=1

βiu (t− j) + v (t) .

(7)

Assuming c1 = 1, Eq.(7) can be rewritten as

f1 (y (t)) =

nα
∑

i=1

αi [v (t− i)− d (t− i)] +

nβ
∑

j=1

βiu (t− j)

−

m
∑

k=2

ckfk (y (t)) + v (t) .

(8)

Eq. (8) is in the linear regression form and can be written in

a simplified form as

y (t) = φ̄T (t) θ̄ + v (t) (9)

where

θ̄ =
[

θ̄T1 , c2, ..., cm
]T

∈ R
n=nα+nβ+m−1 (10)

θ̄1 =
[

α1, ..., αnα
, β1, ..., βnβ

]T
∈ R

n1=nα+nβ (11)

φ̄ (t) =
[

φ̄T1 (t) ,−f2 (y (t)) , ...,−fm (y (t))
]

∈ R
n (12)

φ̄1 (t) =

[

v (t− 1)− d (t− 1) , .., v (t− nα)

− d (t− nα) , u (t− 1) , .., u (t− nβ)

]

∈ R
n1 .

(13)

Let’s assume that the nonlinear basis functions are of

polynomial type as they are simple and easier to be analyzed.

So, the generalized regression vector in (12) can be expressed

as

φ̄ (t) =
[

φ̄T1 (t) ,−y2 (t), ...,−ym (t)
]

∈ R
n (14)

From Eq. (6), (11) and (13), the intermediate unknown

variable d (t) can be expressed as

d (t) = φ̄T1 (t) θ̄1 + v (t) . (15)

Eq.(15) represents linear regression form of intermediate

variable

The quadratic cost function on prediction error for a data

length of L is

J
(

θ̄
)

=
L
∑

t=1

(

y (t)− φ̄T (t) θ̄
)2
. (16)

This model is simple to implement, also it has the ability to

capture complex nonlinear dynamics of the systems and is

suitable for control design [44]. The objective is to find the

model parameter vector θ̄ in an adaptive recursive way so as

to track and control the system adaptively.

The recursive least square (RLS) update expression can be

obtained recursively by the minimization of quadratic problem

on prediction error as given below

θ̄(t) = arg min
θ̄

t
∑

m=0

λt−m
(

y (m)− φ̄T (m)θ̄
)2

(17)

where λ is the forgetting factor which is basically used to

practically compromise between tracking and misadjustment

[45]. The Wiener optimal solution at any instant of time is

given by

θ̄(t) = R−1 (t)P (t) , (18)

where R (t) =
t
∑

m=0
λt−mφ̄ (m) φ̄T (m),

P (t) =
t
∑

m=0
λt−my (m) φ̄ (m).

With the use of inversion lemma [46, pg.571], the recursive

update of R−1 can be expressed as

R−1 (t) = λ−1R−1 (t− 1)−λ−1k (t) φ̄T (t)R−1 (t− 1) ,

(19)
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where

k (t) =
λ−1R−1 (t− 1) φ̄ (t)

1 + λ−1φ̄T (t)R−1 (t− 1) φ̄ (t)

The RLS update expression to recursively estimate θ̄ can be

given as [47]

θ̄(t+ 1) = θ̄(t) + k (t)
(

y (t)− θ̄T (t)φ̄ (t)
)

. (20)

B. Hammerstein Model

Hammerstein model has an LTI subsystem block and static

nonlinear function block. The cascade order of these blocks

are reversed to that of Wiener model as shown in Fig. 4.

The relationship between input and output of a traditional

( )u t

( )v t

( )d t ( )y t
( )F ⋅ ( )G q

Fig. 4: Hammerstein nonlinear system.

Hammerstein model is given as

y (t) = G (q) d (t) + v (t) = G (q)F (u (t)) + v (t) (21)

where u(t) ∈ R represents the modified temporal input,

y(t) ∈ R is the temporal output, d(t) ∈ R denoting the

intermediate variable and v(t) ∈ R
r is the process noise at any

particular instant ′t′. Assuming the transfer function matrix of

LTI dynamical system has the form

G (q) =
b (q)

a (q)
(22)

where

a (q) = 1 + a1q
−1 + a2q

−2 + ...+ any
q−ny

b (q) = b1q
−1 + b2q

−2 + ...+ bnu
q−nu

(23)

with ai (i = 1, ..., ny) and bj (j = 1, ..., nu) are unknown

parameter having input and output lags of nu and ny

respectively. Let us assume that the static nonlinear function

F (u (t)) can be approximated as

d (t) = F (u (t)) =

nf
∑

k=1

ckfk (u (t)) (24)

where fk (·) : R → R represent the nonlinear basis functions,

which can be polynomials type, radial basis functions etc. ck ∈

R are unknown parameter coefficients associated to nonlinear

basis functions and nf are the total number of nonlinear basis

functions.

With the use of (22), (23) and (24) in (21), we can write it

as

y (t) =

ny
∑

i=1

ai (v (t− i)− y (t− i))

+

nu
∑

j=1

bj

nf
∑

k=1

ckfk (u (t− j)) + v (t)

.

(25)

Define ρjk = bjck ∈ R, hence (25) can be rewritten as

y (t) =

ny
∑

i=1

ai (v (t− i)− y (t− i))

+

nu
∑

j=1

nf
∑

k=1

ρjkfk (u (t− j)) + v (t) .

(26)

Now, let us define

κ̄ =

[

a1, ..., any
, ρ11, ...ρnu1, ρ12, ..., ρnu2,

........, ρ1nf
, ..., ρnunf

]T

∈ R
(ny+nunf )

(27)

ψ̄ (t) =

















(v (t− 1)− y (t− 1)), ...,

(v (t− ny)− y (t− ny)),

f1(u (t− 1)), ..., f1(u (t− nu)),

f2(u (t− 1)), ..., f2(u (t− nu)), ....

..., fnf
(u (t− 1)), ..., fnf

(u (t− nu))

















T

∈ R
(ny+nunf )

(28)

hence expression (26) can be written as

y (t) = κ̄
T ψ̄ (t) + v (t) (29)

The aim is to adaptively estimate parameter vectors κ̄

in a recursive manner. The RLS update expression can be

obtained recursively by the minimization of quadratic problem

on prediction error as given below

κ̄(t) = arg min
κ̄

t
∑

m=0

λt−m
(

y (m)− ψ̄T (m)κ̄
)2

(30)

where λ is the forgetting factor which is basically used to

practically compromise between tracking and misadjustment

[45]. The Wiener optimal solution at any instant of time is

given by

κ̄(t) = R−1 (t)P (t) , (31)

where R (t) =
t
∑

m=0
λt−mφ̄ (m) φ̄T (m),

P (t) =
t
∑

m=0
λt−my (m) φ̄ (m).

With the use of inversion lemma [46, pg.571], the recursive

update of R−1 can be expressed as

R−1 (t) = λ−1R−1 (t− 1)−λ−1k (t) φ̄T (t)R−1 (t− 1) ,

(32)

where

k (t) =
λ−1R−1 (t− 1) φ̄ (t)

1 + λ−1φ̄T (t)R−1 (t− 1) φ̄ (t)

The RLS update expression to recursively estimate κ̄ can be

given as [47]

κ̄(t+ 1) = κ̄(t) + k (t)
(

y (t)− κ̄
T (t)φ̄ (t)

)

. (33)
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C. Cross Validation

As the overall dataset is sufficiently large, it is subdivided

in to two different subsets such as estimation data and

validation data. Estimation data is used to estimate the model

whereas validation data is not used to build any model. The

performance of the estimated model is evaluated by computing

mean square error (MSE) on the validation data only. Final

prediction error (FPE) and goodness to FIT are two the

well-known cross validation indices which are represented as

FPE =

∣

∣

∣

∣

∣

1

N

N
∑

1

e (k, θ) (e (k, θ))
T

∣

∣

∣

∣

∣

(

1 + dm

N

1− dm

N

)

(34)

where estimated parameters is dm and e (k) denotes the

prediction error vector and θ represents estimated parameters.

FIT = 100













1−

√

N
∑

k=1

(y (k)− ŷ (k))
2

√

N
∑

k=1

(y (k)− ȳ)
2













(35)

where measured output of the system is denoted as y (k) and

predicted output of the estimated model is denoted as ŷ (k).
Mean value of the measured data is denoted as ȳ

IV. SIMULATION RESULTS

For simulation analysis of identification algorithm, a

liquid-saturated steam heat exchanger is considered. In this

heat exchanger system, the water is heated by pressurized

saturated steam via a copper tube. The heat exchanger

system is considered as a benchmark problem of nonlinear

control system because the dynamics of the system depicts

non-minimum phase behavior.

The input and output data which is considered for system

identification purpose is taken from DaISy (Database for the

identification of Systems) data repository. Experimental data

of heat exchanger system considered in this case comprises of

5000 data samples and the sampling rate is 0.0016667 [38],

[48]. The experimental data is represented in Figure 5.

Figure 6 presents the prediction output of Wiener model

using RLS estimation technique. For wiener model, the RLS

estimation technique provides a model validation FIT %

of 88.0619 %. Figure 7 presents the prediction output of

Hammerstein model using RLS technique. In Hammerstein

model, the model validation FIT % is 96.6232 %. In [41],

the authors considered the same heat exchanger case study

and developed different linear models (ARX, ARMAX, OE

and BJ) using prediction error method. But the validation

FIT% is not accurate as the paper only considers the linear

dynamics of the model. The other major limitation of [41]

is that the identification process is offline in nature. But this

paper provides an online data driven identification framework

for heat exchanger system where the estimation process

is recursive in nature. This paper considers block-oriented

model and using recursive estimation technique, gets accurate

validation FIT%. From the simulation results, it can be
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Fig. 5: Experimental (Output and Input) data of heat exchanger

system [38], [48]
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Fig. 6: Prediction output of Wiener model for heat exchanger

system FIT percentage is 88.0619%
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Fig. 7: Prediction output of Hammerstein model for heat

exchanger system FIT percentage is 96.6232%

observed that the Hammerstein model provides better model

estimation as well as model validation than Wiener model for
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a heat exchanger system.

V. CONCLUSION

This study provides a recursive parametric identification

approach to model heat exchanger system from experimental

input-output data. Due to the nonlinear dynamics of

heat exchanger system, block-oriented models (Wiener and

Hammerstein model) is considered as model structure. For

online parameter estimation, recursive least square algorithm

is considered. The salient features of the paper are as follows

• A benchmark problem of heat exchanger system

is considered and data-driven recursive identification

procedure is implemented to estimate the model

dynamics.

• Block-oriented models such as Wiener and Hammerstein

model is considered for the model structure and this

model provides better FIT%

• In literature, the heat exchanger dynamics were identified

using linear models using prediction error method and

extended least square method respectively [32], [41].

• The estimation results using linear models are inaccurate

and the estimation techniques are non-recursive

• The current paper proposes a recursive identification

technique and from the simulation results, it can be

observed that the Hammerstein model provides a better

estimation as well as model validation than the Wiener

model for the considered case study of heat exchanger

system.
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