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Abstract. This study shows the possibilities of how to replace tedious
human labor - scouting of yellow sticky traps (YST) for whiteflies -
using artificial cognitive vision, specifically deep convolutional network
(CNN), as a part of the more complex system - BERABOT. The used
CNN is the Faster R-CNN trained by deep transfer learning to substi-
tute human scouting when the low whiteflies infection phase was specif-
ically targeted. The training was conducted on pictures taken inside the
heated and lighted tomato production greenhouse of ”Bezd́ınek Farm” in
Dolni Lutyne, Czechia. Used pictures were collected in a way suitable for
future fully automated robotic applications in the BERABOT system.
The achieved results were compared to the scouting results of a profes-
sional phytopathologist. The trained employee’s scouting results against
the professional phytopathologist accomplished root-mean-square error
(RMSE) equal to 4.23 while the developed CNN model was evaluated to
be 5.83. The results presented here open up new frontiers for further CNN
model tuning leading to the potential in substituting an employee(S) in
the future and make tomato production less expensive and less human
labor dependent.
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1 Introduction

The paper deals with developing a system for the scouting of pests in the
tomato production greenhouse using artificial cognitive vision to substitute the
tedious human labor. This is intended as a part of the system BERABOT1 (Be-
Bezdinek, Ra-tomatoes (rajčata in Czech), Bot-robot) developed by the com-
pany NWT (Zĺın, Czechia), vegetable producer Bezd́ınek Farm (Dolńı Lutyně,
Czechia, www.farmabezdinek.cz) and Faculty of Applied Informatics (Tomas
Bata University in Zlin, Czechia).

Globally, edible tomato (Solanum lycopersicum L.) is the most important
vegetable in grown volume. In 2018, production reached more than 179 million
tonnes. In 2019, it exceeded even 180 million tonnes [12]. Tomato’s cultivation
in modern hydroponic greenhouses eliminates many problems of outdoor field
horticulture. Above all, it improves the efficiency of water management, precisely
adjusts the dosage of fertilizers, and, to a large extent, adapts the indoor climate
to set up ideal conditions for plant growth. Nevertheless, in such a semi-closed
environment, one of the crucial risks of production losses is represented by pests
and diseases.

The principles of integrated pest management (IPM) constitute the modern
strategy of pests control, [9] preferring biological control methods and, if neces-
sary, applying authorized synthetic chemical pesticides. Furthermore, across the
European Union, there is constant pressure to reduce such chemical molecules’
usage. Active substances with unsatisfactory ecotoxicological profiles are being
banned to lower or zero pesticide residues levels in harvested crops [7, 1, 19].
Consequently, biological plant protection systems represent a key component
in the cultivation of tomatoes. Monitoring of pests and diseases constitutes a
crucial component of every IPM system. This activity supplies necessary data
for the decision-making process considering biological or chemical intervention
for crop protection. Thorough monitoring of diseases and pests using classical
approaches and modern technologies allows for applying precision agriculture
principles. Instead of the full-scale application of pesticides, locally infested hot
spots are treated [20, 13, 11, 2].

1.1 Whiteflies

For tomatoes grown in a temperate zone of Europe inside the greenhouse, two of
the most dangerous pests are the Greenhouse whitefly (Trialeurodes vaporario-
rum Westwood) and the Cotton whitefly (Bemisia tabaci Gennadius). Whiteflies
belong to the group of sucking insect pests. They cause damage by herbivory of

1 www.berabot.com
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the plant’s saps, and, as a result, the plant metabolism is disrupted. They also
produce sticky honeydew on which molds are secondarily formed [22]. In addi-
tion, the species B. tabaci representing a vector of serious virus pathogens [6,
17]. Chemical control against whiteflies is often problematic, as many occasions
of resistance to the active substances have been reported in the case of both
above-mentioned species [10, 3, 14, 15].

Adult whiteflies (Fig. 1) are white and about 2 mm long. The wings and
body are covered with powdery white wax. On its way from an egg to an adult,
the whitefly undergoes four 4 larval intervals. Nevertheless, as a part of the
monitoring, only the quantity of adults is considered in the vast majority of
procedures.

Causing a telling decrease in yield, whiteflies are considered a serious pest
with a significant economic impact. At higher whitefly densities, the fruits are
also covered by sticky honeydew. As a rule, such fruits must be washed before
being placed on the market or disposed of completely.

The economic losses caused by whiteflies in the tomato crop are estimated
at tens to hundreds of millions of dollars worldwide. Furthermore, it should be
noted that virus diseases transmitted by whiteflies cause additional significant
losses indirectly [30].

(a) (b)

Fig. 1. Photos of the whiteflies captured in the greenhouse: (a) an adult whitefly in
detail, (b) a tomato’s leaf possess by whiteflies.

1.2 Traps inspection

Monitoring of the main pests of tomatoes grown in the greenhouse can be per-
formed by several different methods. For the whiteflies, the yellow color’s at-
tractiveness has been utilized since the early 1920s [16]. Currently, standardized
Yellow Sticky Trap (YST) is used worldwide as a common tool.

Considering the hydroponic greenhouse of Bezdinek Farm (Dolni Lutyne,
Czechia) - the location where our study was performed, whiteflies (Insecta: Aley-
rodidae) monitoring is conducted weekly. 40 to 50 YSTs are located at the level
of the terminal top part of plants. The dimension of the used commercial YST
is 25 x 10 cm (product Horiver by a producer Koppert). Black lines divide each
YST into eight equirectangular squares to provide better orientation during the
scouting.
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Trapped whiteflies are counted by trained employees based on the visual in-
spection. An absolute number of whiteflies per card is recorded for the particular
control date. In focus, there is mainly the change of whiteflies numbers in the
time period (one week increase). Individual traps are changed continuously and
regularly based on their contamination and a subjective evaluation of qualified
personnel.

The quantities of whiteflies are not counted in the whole YST area if trapped
whiteflies cover the card in equal density (higher than approximately 10 – 20
individuals per square). In such a case, whiteflies are counted only from one
box, and the number is multiplied by eight (YST is divided into eight squares)
to obtain the total of insects.

The critical source of the scouting error is caused by an extensive time period
for which particular whitefly is being trapped as its body is continuously dete-
riorated by used glue. As an employee typically counts without more profound
entomological expertise, a whitefly – especially a damaged one – can be misin-
terpreted as a different insect or vice versa. Commonly, whiteflies are confused
with leafhoppers of the Cicadellidae family.

2 Motivation

Visual scouting of YSTs represents weary and tiresomely monotonous labor car-
ried out within the grueling environment of a greenhouse. At the same time,
scouting is prone to errors when conducted by inexpert personnel.

On the other hand, it will be costly to employ professional phytopathologists.
For example, if performed on the entire tested area (11 ha), visual inspection of
YSTs takes approximately two working days for one employee.

Such conditions constitute the primal motivation of this study following pre-
viously published studies, e. g. [21]. The proposed experiment (chapter 5) ex-
plores possibilities and efficiency of cognitive vision to perform scouting of YST
to (i) reduce the cost of tomato production, (ii) decrease the error rate of YSTs’
scouting, (iii) allow better redistribution of the human labor force within the
growing process.

3 State of the Art

The first ascertainable attempt to construct an experimental system of auto-
matic whiteflies scouting was published by Baush and Rath in 2005 [4]. Looking
somewhat archaic these days, their interesting prototype contained an intricate
sucking mechanism supplying trapped whiteflies to the optical part by a small
conveyor belt.

Soon after this extraordinary experiment, more practical attempts to count
whiteflies followed. In 2007, Cho et al. [8] proposed the first algorithm of auto-
matic pest detection on YST. Using YUV color space and fixed thresholds, they
examined 600 DPI pictures to count whiteflies, aphids, and thrips. In the same
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year, Martin and Thonnan [25] used the adaptive learning technique to adjust
optimal parameters segmenting whiteflies out of leaves. Simultaneously, a more
complex multidisciplinary cognitive vision approach based on the knowledge-
base technique was designed by Boissard et al. [5] to count whiteflies on catted
rose leaves in 2008. While in the same year, Qiao et al. [28] developed an effective
counting system extracting whiteflies’ distinctively white color out of the YST
yellow surface. This approach was further improved by Moerkens et al. in 2019
[27] to distinguish different whiteflies species sufficiently.

In 2009, Solis Sánchez et al. scouted whiteflies on YST by segmenting their ge-
ometric features. Later he extended his method by scale-invariant feature trans-
form (SIFT) [31] in 2011. Consequently, Xiao et al. [35] improved this method by
applying the support vector machines (SVM) and bag-of-words (BOF) model in
2018. SVM was also used by Kumar et al. [23] to count whiteflies and greenflies
from YST in the field conditions.

Additionally, Xia et al. (not to be confused with Xiao) developed methods
of pest scouting, which are robust to field noise [34] (2012) and have a low
computational cost [33] (2015).

In 2020, Tusubira et al. [32] applied cognitive vision methods to detect and
count whiteflies (Bemisia tabaci) infecting in-field cassava. Two advanced tech-
niques, Haar classifier and Faster R-CNN were trained and tested using an an-
notated dataset of 2 000 pictures with the approximated cost of the dataset
labeling more than 330 working hours. While the Haar classifier proved to be
insufficient for the task, Faster R-CNN provided precision of 98 % and a recall
value of 81 %. In comparison with YST, Tusubira’s study [32] was conducted in
ideal conditions: a) whiteflies occurred on the cassava leaves almost exclusively,
b) their white color contrasted on the green leaves’ background, and c) whiteflies
were captured in vivo unmolested by any trap.

Our proposed study and experiment seek to employ a similar CNN structure
while labeling expenses are reduced by adopting Deep Transfer Learning.

4 Data preparation

For this study, a labeled dataset describing whiteflies on YST had not been
available. Since its creation and labeling would be time-consuming and prone to
mistakes, artificial images were generated instead. A similar approach of training
set generation was used in other applied research papers, e. g. [24, 26].

Such method is commonly known as Deep Transfer Learning, and its prac-
tical applying is described in the chapter 4.1. To examine the trained models’
performance on artificially generated data, real pictures captured in the green-
house were utilized. These images were evaluated by a skilled laborer and a
professional phytopathologist as described in the subsection 4.2.

4.1 Training and validation set

To prepare a training set, 10 different pictures of clear YST and 10 YST with
sticked insects were taken. Masks of a whitefly (Trialeurodes vaporariorum) were
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manually segmented and transferred on a transparent background to generate
the artificial data on a clear YST. Aside from it, several flies from the Diptera
order (i.e., Sciaridae or Agromyzidae) and some mirid bugs (i.e., Macrolophus
pygmaeus or Nesidiocoris tenuis) were similarly segmented to both enlarge the
variability of training data and approximate the reality as much as possible.
Examples of the insect’s mask are depicted in Fig. 2.

(a) whiteflies (b) small flies (c) mirid bugs
Trialeurodes vaporariorum from the Diptera order (Miridae)

Fig. 2. Examples of used insects’ segmented masks to generate artificial YST images
for the training set.

During the generation process, randomly chosen masks of these insects were
selected and placed in the area of the segmented clear YST taken as a photograph
in the initial phase. The background YST image was divided into several sections,
and the insect’s masks were incrementally placed in all of them to ensure the
desired homogeneity of the covered space. This way, three hundred images were
generated and used to train the deep learning models. Fig. 3 compares the picture
of the YST captured in the greenhouse with the real occurrence of whiteflies (a)
and the YST’s photo with whiteflies generated and located artificially (b).

(a) (b)

Fig. 3. Comparison of the photo of the YST captured in the greenhouse (a) and the
picture with artificial insertion of whiteflies (b).
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4.2 Test set

The test set consists of 118 real captured photos of YST to verify the proposed
deep learning model with the real number of whiteflies counted on YST.

Capturing pictures in the Greenhouse Pictures of YSTs were taken directly
in the lighted tomato production crop in the greenhouse of Bezd́ınek Farm - a
location of our study. The pictures were taken in the 11th week after planting.
The plants were in the full production phase. YSTs were placed in the zones of
the terminal apexes of the plants at that time. Therefore, a lift platform (Berg
Hortimotive) was used when taking the pictures. YST was always removed from
the hanging hook to take a shot in horizontal and vertical positions. An Olympus
E-M1 camera was used for photography.

Counting whiteflies The whiteflies were counted both during the photogra-
phy in the greenhouse by specialized personnel and after taking pictures on a
computer monitor by a phytopathologist. In case of uncertainty, the relevant
part was zoomed by a phytopathologist on a screen to confirm or refute the
whitefly’s presence. As part of this evaluation, visually similar specimens were
observed and recorded too, especially from the Cicadellidae family, which might
cause potential errors in the whiteflies identification and counting by the CNN.

The phytopathologist’s outcomes are taken as the gold standard - the refer-
ence values defining the precision and recall of both the proposed method and
the manual counting in the greenhouse.

Pictures’ preparation for CNN The resolution of the original photos (more
than 800 × 1024 pixels) exceeds the model’s ability to process them at one
pass. Therefore, the test images were processed patch-wise with the patch size
800 × 1024 pixels. The model predicts each patch separately, reconnecting the
outputs into the final prediction. By this approach, the model was able to access
submitted pictures in all details. This process is described in section 5.2.

5 Experiments

5.1 Deep CNN Model

A Faster R-CNN model [29] with a ResNet-50 backbone [18] was utilized in
the experiments. The model was initialized with weights trained on the known
COCO dataset and finetuned for the number of classes present in the relevant
dataset. Even though the whitefly is the most important insect, it is better to
have more classes in the dataset than only one. To increase the CNN effectivity,
the following three classes are used for the prediction to highlight the white-
flies numbers and distinguish them from other insects: whitefly (Trialeurodes
vaporariorum), small Diptera flies, and Mirid bugs.
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5.2 Training and test set predictions

The automatically generated data were split in nine to one ratio into training
and validation parts, respectively. The patches of the size 800×1024 pixels were
cut from the generated picture to allow the model to process images with high
resolutions and simultaneously enable quick pass through the model. The cut
part’s position in the image was generated randomly on the fly during the train-
ing process. Additionally, mirroring augmentation was applied. These techniques
hugely increase the training data variability and help prevent overfitting.

The model had been trained for ten epochs, considering one epoch as a single
pass through all training data. SGD (Stochastic gradient descent) with learning
rate 5E-3, momentum 0.9, and weight decay of 5E-4 were utilized to optimize
the model weights.

The same size patches (800 × 1024 pixels) were necessary to use also during
the test set prediction. On the contrary to training, the test set images had to
be inspected in the whole area. Therefore, the input test pictures were divided
into several patches, and the model predicts each patch separately. After that,
all outputs were reconnected to obtain the final predicted total for particular
classes on one test YST. The non-maximum suppression technique was used on
the final output bounding boxes to reduce multiple patch borders’ detections.

6 Results

Comparing the achieved results by CNN with the human manual labor was
necessary to set up the reference values to which all precision and recall measures
will be related. As such gold-standard - reference ideal values, the counting of
whiteflies performed by a professional phytopathologist during the inspection
of photos on a computer monitor was taken. Firstly, the comparison of the
visual counting by a trained employee in the greenhouse and reference values
was evaluated. The cumulative amount of whiteflies on all 118 YSTs in the test
set was 824 as counted by a phytopathologist on photos and 1161 whiteflies
found on YST during the greenhouse inspection. Therefore there are less than
seven to ten whiteflies per one YST on average. Such numbers are considered
as the early phase of pest infestation. To correctly and timely detect this phase,
the huge plant damages and losses can be avoided, which is considered a critical
component of IPM (e. g. [5]), and at the same time, scientists (e. g. [27]) consider
this phase most prone to errors.

Since the phytopathologist’s values were used as the reference values, the
precision and recall values were related to them. The employee labeled correctly
almost the same number of whiteflies as the phytopathologist - the recall is
0.9946. However, many other insects were wrongly classified as whiteflies, which
led to the evaluation of the precision as 0.6943. The recall and precision measures
show obviously that the error was obtained. Root Mean Square Error (RMSE)
was quantified to 4.23, representing the average per tested YSTs.

Consequently, the predictions of whiteflies by the Faster R-CNN model were
compared with the above-described case of manual counting by a trained em-
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ployee. The table 1 shows the RMSE, precision, and recall values assessed for
the thresholds of selected bounding box detection scores ranging from 0.86 to
0.945. The recall is equal to 1 in the threshold of 0.86, but the precision is very
low (many insects were labeled as whiteflies). On the contrary, the precision is
computed as 1 in the threshold 0.945, but almost no whiteflies were detected
(recall is 0.0216).

The best overall values were achieved with a threshold of 0.895, giving values
of 0.5794 for precision and 0.7892 for recall. Simultaneously, the best RMSE of
5.83 was achieved by prediction with a threshold of 0.905. The evaluation of
precision and recall are also displayed in a precision-recall graph in Fig. 4.

Table 1. The cumulative amount of whiteflies on YST detected by the Faster R-CNN
model and it’s RMSE, precision and recall assessed for thresholds of selected bounding
box detection scores ranging from 0.86 to 0.945.

Threshold Sum of whiteflies RMSE Precision Recall

0.860 3495 25.54 0.2323 1.0000

0.865 3056 21.84 0.2638 0.9919

0.870 2617 18.03 0.3037 0.9784

0.875 2298 15.69 0.3372 0.9541

0.880 1912 12.29 0.3940 0.9297

0.885 1564 9.50 0.4712 0.9081

0.890 1313 8.03 0.5285 0.8514

0.895 1109 7.17 0.5794 0.7892

0.900 851 6.02 0.6443 0.6757

0.905 712 5.83 0.6821 0.5973

0.910 535 6.28 0.7172 0.4730

0.915 416 6.77 0.7684 0.3946

0.920 289 7.40 0.8473 0.3000

0.925 203 7.87 0.8804 0.2189

0.930 148 8.32 0.8939 0.1595

0.935 100 8.68 0.9545 0.1135

0.940 41 9.12 0.9474 0.0486

0.945 17 9.38 1.0000 0.0216

7 Conclusion and Discussion

This study shows possibilities of how to replace tedious human labor - scouting
of YST for whiteflies - using modern computer vision methods. The case study
was conducted using real pictures taken inside the heated and lighted tomato
production greenhouse of Bezd́ınek Farm. The achieved results were analyzed
and mutually compared between the reference values represented by the whitefly
amounts counted by the professional phytopathologist and the trained employee
or the CNN model in a recall, precision, and root-mean-square error (RMSE).
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Fig. 4. Precision-Recall measure on iso-f curve for detection by Faster R-CNN model
and manual counting by an trained employee.

RMSE for both cases were close to each other (4.23 for an employee and 5.83 for
the developed CNN), which motivates the team to tune the CNN in the future
to increase the model’s potential for substituting an employee and make tomato
production less expensive and less human labor dependent.

Future work will also cover the adjusting of the labeling data approach to
overtake the human advantages in whitefly recognition and contribute to being
the beneficial part of the system BERABOT.
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31. Solis-Sánchez, L., Castañeda-Miranda, R., Garcia-Escalante, J., Pacheco, I.,
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