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Abstract—The aim of this study is to present and summarize 

our numerical algorithm for the determination of stability 

charts in the delay space for linear time-invariant time systems 

with constant delays (TDS), both retarded and neutral ones. The 

core of algorithm lies in a successive (iterative) approximation 

of the infinite-dimensional characteristic quasi-polynomial in 

each grid node of the delay space. This approximation resulting 

in a polynomial or an exponential polynomial with 

commensurate delays is made in the neighborhood of the 

dominant characteristic value (pole) that has recently been 

estimated in the closest grid node. Two different approximation 

techniques are presented; namely, continuous-time and 

discrete-time ones. A complete numerical example for retarded 

TDS is presented, whereas the approximation issues are 

highlighted in another example for neutral TDS. 

Keywords—constant delay, numerical method, quasi-

polynomial approximation, stability charts, time delay systems 

I. INTRODUCTION 

Time delay systems (TDS), models, and processes have 
been popular and intensively studied within a wide range of 
applications [1]-[4], including epidemic control [5], recently. 
They incorporate a finite number of parameters and delay 
values, determining infinitely many system modes 
characterized by pole loci, i.e., by the positions of the 
characteristic values. Despite the infinite spectrum, only a 
subset of the so-called dominant (usually the right-most) roots 
has a decisive impact on TDS properties. Thus, it is desirable 
to compute those loci based on known model parameters. 

The Lambert W function represents the only known 
analytic tools for exact calculating of all quasi-polynomial 
roots [6]; however, the function can be used only for 
commensurate delays. Besides, some partial analytically 
derived research results provide explicit quasi-polynomial 
root loci for commensurate delays by different techniques up 
to the selected model order [7], [8]. There, however, exist 
several numerical methods to estimate quasi-polynomial root 
loci based, e.g., on bifurcation analysis [9], mapping-based 
algorithms for large-scale computation of quasi-polynomial 
roots (QPmR) [10], cluster treatment of poles [11], partial- or 
full-discretization methods [12], [13], Galerkin approximation 
[14],  continuous-time approximation [15], and the 
continuation property of the characteristic values [16]. 
Besides, scholars have recently derived rigorous theoretical 
results determining the complex areas in which roots are 
located [17].  

Analyzing its stability represents the most critical study for 
any dynamic system [18]. In the sense of exponential stability, 
the imaginary axis constitutes the stability border; thus, one 
can determine TDS parameters, including delay values, that 
induce the right-most pole loci (expressed by the spectral 
abscissa), while the rest of the spectrum resides at the left half-
plane. These stability charts (or stability regions) in the 
parameter or delay spaces form non-convex or disjoint sets in 
many cases [16], [19], which goes beyond the habitual task of 
the delay margin (i.e., the smallest one destabilizing delay 
value) determination [20]. 

In this contribution, we present a numerical algorithm to 
search for stability charts in the delay space, partially 
introduced in [21], [22]. In the former work, the discrete-time 
version based on the bilinear transformation with pre-warping 
was proposed; whereas, the latter work proposed the 
continuous-time technique utilizing the Taylor series based 
expansion. The algorithm uses an equidistant grid of discrete 
delays with a given dense in the search space. Both the 
techniques apply iterative characteristic quasi-polynomial 
approximation by a polynomial or an exponential polynomial 
with commensurate delays, which yields dominant pole 
estimation computing with a low effort. The approximation 
uses the dominant pole estimation in the nearest grid node. We 
herein complete and summarize both techniques and provide 
the reader with an extension to neutral TDS. Two numerical 
examples are given, one for a retarded TDS, another for neutral 
one. The latter example primarily demonstrates the proposed 
quasi-polynomial approximation possibility. 

The rest of the contribution is organized as follows: 
Section II includes basic definitions and theorems about TDS, 
their characteristic quasi-polynomial, stability, and spectrum. 
The algorithm framework with the approximation techniques 
and neutral TDS specificities are given in section III. The 
illustrative examples can be found in section IV. 

II. TDS SPECTRUM AND STABILITY 

A. Characteristic Quasi-polynomial and TDS Spectrum  

The characteristic equation of a linear time-invariant TDS 

with constant delays ( ), 0s∆ =τ  where the characteristic 

quasi-polynomial reads 

 ( ) ( )
0

, ,
n i

ii
s d s s

=
∆ =∑τ τ  (1) 
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In (1), s ∈C  means the Laplace transform variable,  
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exponential polynomials, where ( ),nd s τ  represents the 

associated exponential polynomial. If ( ),nd s ∈τ R , the 

system is retarded; otherwise, it is neutral. 

Under some particular conditions [18], the TDS spectrum 
(i.e., the set of characteristic values or system poles) is 

 ( ){ }: : , 0s sΣ = ∆ =τ  (2) 

The so-called essential spectrum for neutral TDS reads 

 ( ){ }: : , 0ess ns d sΣ = =τ  (3) 

We do let define the spectral abscissa ( ) : sup Reα ⋅ = Σ  

and the abscissa of the essential spectrum ( ) : sup Re essγ ⋅ = Σ . 

Both functions depend on system parameters and delays. 

For retarded TDS, only a finite subset of Σ  lies in the right 
half-plane (RHP), poles are isolated and ImΣ  does not reach 
for a finite ReΣ . Pole loci behave continuously with respect 
to delays; however, α  is can be a non-smooth function [23].  

Contrariwise, infinitely many characteristic values can be 
located in the RHP constituting strips parallel to the imaginary 
axis for neutral TDS. Besides, values of λ  can behave 
discontinuously when even small changes in τ  [24], [25].  

B. Exponential and Strong Stability 

The exponential stability of a TDS can be expressed as 

 ( )α ε⋅ <  (4) 

where 0ε =  and (any) 0ε >  hold for retarded and neutral 
systems, respectively [18]. 

Define δλ  as the value of λ  subjected to infinitesimal 

changes in τ . Strong stability expresses that δλ  remains in 

the RHP, and it can be checked by the condition [24] 
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Note that continuous upper bound function ( )δλτ τ֏  

on δλ  can be computed to estimate the true δλ  [25]. 

Hence, stability of neutral TDS cannot be judged solely 
based on (4) but also (5) must be considered. I.e., the factual 

real part of the right-most pole is given by both α  and δλ .  

III. STABILITY CHARTS SEARCHING ALGORITHM  

A. Algorithm Framework  

The numerical stability charts searching algorithm is 
concisely summarized first where details are provided to the 

reader if necessary. Then, specific aspects of neutral TDS and 
quasi-polynomial approximations are given. 

Algorithm 1. (Stability charts estimation in the delay space) 

1) Take (1), set an equidistant mesh grid 
N N N

ij

L

τ ∈ × × ×  ⋯���������R R R in the delay space for the 

discretization step , , 1 ,j j jτ τ τ⋅ ⋅ + ⋅∆ = − and selected ranges of 

delay values, and let 0 0, 1,2,...,i i Lτ = = . 

2) Compute the right-most pole (or a pair) for 0=τ  
exactly. 

3) Perform the nested loop, where the outer one goes 
through 1 to L  and the inner one from 0 to N , and in every 

current grid node cτ , do: 

3a) Approximate ∆  by a polynomial or exponential 

polynomial ∆ɶ  in the neighborhood of the right-most pole 

estimation ps  already made in the closest grid node pτ  (see 

subsections III.B and III.C for more detail). 

3b) Compute the estimation of the right-most root cs  of ∆ɶ

. The value of ps  must be sufficiently close to cs . Evident 

outliers can be canceled as follows. Define the function 

 ( ) ( )( ): Res
sδ = ∇τ τ  (6) 

and the function ( ) : Res
sℜ =τ τ֏  for a particular root s

corresponding to delay vector τ  where ∇  means the 

gradient. Due to the discontinuity of α , function ( )s Lδ ∈τ R  

might not be defined in some points. Hence, its numerical 
approximation can be used instead: 

 ( ) ( ) ( )01
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s
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i i

i Lδ
τ τ

ℜ − ℜ
= =

−

τ τ
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where 1 0,τ τ  are to close delay points and i  means the delay 

number. Then, one may cancel the computed roots of ∆ɶ  
satisfying 

 ( ) ( ) ( ){ }: Re p ps sT T

p c p ps s c δ> ℜ + −τ τ τ τ  (8) 

for some 1c > . 

3c) If a crossing of the imaginary axis by the rightmost-
pole estimation is detected, compute iteratively the 

estimation 0
τ of the switching delay (i.e., the delay value 

that makes the system switching from/to stability/instability) 

 ( ) ( ) ( )
( )

0

0

0

1 0 0

0
, 1, 2,

s
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l l s

l

l Lτ τ
δ

+
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τ
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where superscript ( )i  indicates the iteration step, with the 

initial estimation (10). The dominant pole estimation 0s  

update according to step 3b is made in every single iteration 
step. It eventually gives rise to the switching poles and their 



frequencies estimates 0 0Im sω =  that are collected in sets 

{ }0 0: sΣ =  and 0 0: ImΩ = Σ , respectively. 
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τ τ τ τ

τ
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The set of all switching delays let be { }0 0:Τ = τ . It is worth 

noting that 0τ  is excluded from 0Τ  if ( )0

0 0sδ =τ , i.e., the 

pole has not a “sufficient velocity” to cross the imaginary axis. 

If the crossing is not detected, the current loop in step 3 is 
finished, and go to step 3a. 

4) Outputs: 0 0 0, ,Σ Ω Τ . 

A detailed view of step 3a of Algorithm 1 follows. Two 

versions of how to get ∆ɶ  follow. 

B. Approximation Based on Digital Filter Design  

The first technique adopts a transition from the continuous-
time to the discrete-time space via basic methods used in digital 
filter design. Delays and s-powers in ∆  are subjected to two 
different substitutions, respectively, as follows: 

 e sTs
q

τ
τ− ←  (11) 

 ( )
1

1tan 0.5

f

f s

q
s

qT

ω
ω

−←
+
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where q  is the backward shift operator expressing the unit 

delay that corresponds to 1
z

−  in the z-plane, sT  is a sampling 

period, and fω  means the desired frequency for which the 

frequency responses in the s-plane and the z-plane coincide. 

We herein apply f psω = . 

The goal is to get ( ) ( )
0

,
n i

c i ci
z d z

=
∆ =∑τ τ

ɶ ɶɶ  where 

( )i cd ∈τɶ R . Non-negative powers of z can easily be obtained 

from powers of 1z q− =  by the reciprocation. However, it 

usually holds that , /c i sTκ τ= ∉N ; hence, non-integer z-

powers can arise from (11). Then, for instance, a quadratic 

extrapolation of  z
κ−  can be used [21]. This extrapolation is 

calculated in the vicinity of the z-plane image p
z of the right-

most pole ps  via the known correspondence 

 
1

e logsT s
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z s z
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Formula (12) represents Tustin’s transform method with 
pre-warping to prevent frequency warping. 

The setting of sT  represents the crucial yet ambiguous 

task. A trade-off between the suggested value of the sampling 
period for the z-transform with respect to the TDS dynamics 

(given by ps ) and the derivative operator discretization ought 

to be found. It poses a numerical optimization subtask, the 
solution of which remains an open problem. 

Once ( ), cz∆ τɶ  is found, its dominant root cz  can be 

computed (e.g., using standard Matlab function), yielding the 

estimation of cs  by applying (13), see also step 3b of 

Algorithm 1. It must be emphasized that the estimation of 

( ), cz∆ τɶ  and cs  is computed iteratively with setting 

( )1

c ps s=  until ( ) ( 1)i i

c cs s ε−− <  for some suitable 0ε > . 

C. Approximation Based on Taylor Series  

The second technique uses a simple idea of the iterative 
quasi-polynomial approximation by a polynomial based on 

the Taylor series expansion of ( ), cs∆ τ  in ( )i

cs  where 

( )1

c ps s=  again. Thus, the aim is to get polynomial 

( ) ( )
0

,
n i

c i ci
s d s

=
∆ =∑τ τ

ɶ ɶɶ  with ( )i cd ∈τɶ R . The expansion is 

equivalent to the following condition 
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the solution of which can be expressed as 

 
( )

( )
( ) ( ) ( )

( )
( )

( )

1

1 1

1

1

1

,

1 !
,

!

,

i

c

i M N n n

c

N

c n

N

s s

M
s

M N

s

s

−

− + × +

−
+

−
=

=

 −
= ∈ −  

 ∂ ∆
 = ∈
 ∂
 

d A b

A

τ
b

ɶ ɶ

ɶ

ɶ

C

C

 (15) 

where N, M are, respectively, row and column indexes of a 

particular matrix and T

0 1, , , nd d d =  d ɶ
ɶ ɶ ɶɶ … , see [22] for details. 

The choice of nɶ  is ambiguous. Intuitively, the higher the 
value is, the better the TDS spectrum can be estimated. 

Contrariwise, there may then appear artificial roots of ∆ɶ , see 
also (6)-(8) and text around. Inspired by the work [19], we 
herein set n n L= +ɶ .  

Recall that the estimation of cs  is computed iteratively by 

recalculation of ∆ɶ  in the vicinity of the current dominant root 
estimation in every single iteration step. 

D. Neutral TDS Specificities 

When approximating neutral quasi-polynomial and 
making the decision about exponential stability, one has to be 
careful about strong stability condition (5), i.e., the sensitivity 

to infinitesimal changes in τ . If (5) holds (i.e., 0δλ < ), 

exponential stability is not affected; contrariwise, the system 
might be exponentially yet not strongly stable. As strong 
stability is not affected by delay values, it is not reasonable to 
determine exponential stability charts if (5) does not hold. 

The whole neutral TDS spectrum Σɶ  is estimated as the 

union of essΣɶ  given by roots of approximation ( ), ,n b cd s τ τɶ  



of ( ),n cd s τ  and polΣɶ  that includes all roots of a polynomial 

approximation ( ), cs∆ τɶ  of ( ), cs∆ τ . Let us propose the 

computation of essΣɶ  first. 

Assume  ( ), ,n b cd s τ τɶ  as an exponential polynomial with 

commensurate delays 

 ( ) ,0
, , e b

L i s

n b c n ii
d s d

ττ −
=

=∑τ
ɶ

ɶ ɶ  (16) 

where 
bτ  is the base delay, Lɶ  expresses the degree of 

commensuracy, and ,n id ∈ɶ R . The form of (16) is motivated 

by some results [7], [8], in which root loci for neutral TDS 
with commensurate delays were calculated analytically. The 

base delay is considered as min /b bnτ τ=  where bn ∈N , 

( )
,

min ,
0

min , 1,2,...,
n i

n i i L
τ

τ τ
>

= = . The choice of bn  can be made 

numerically by a trial-and-reset test, such that the convergence 
of (16) is satisfied (see the iterative approximation technique 
below) and taking into account the system dynamics 

represented by cs . Indeed, bτ  can be considered as the 

sampling period as e b s
q

τ−= . 

1) Computation of ndɶ  and essΣɶ : The initial linear 

approximation is made as follows 

 ( ) minmin
1

0 1e e e
sss

d d
ν τνττ − +−− ≈ +  (17) 

where ( ) [ )min , , 0,1τ ν ρ τ ν ρ= + ∈ ∈N , 0 11 ,d dρ ρ= − = . 

Using min 1e s
q z

τ− −← = , one gets ( )min, ,n cd z τ τɶ  

,0

L i

n ii
d z

−
=

=∑
ɶ
ɶ , the zeros of which can easily be computed (see 

subsection III.B), giving rise to the initial essential spectrum 
approximation in the z-plane. Their images in the s-plane are 

given by (13) (where minτ  is used instead of sT ) yielding essΣɶ

. Then, 
( ) ( )1

, arg max Rec ess i
i

s s=  where i esss ∈ Σɶ .  

Once the initial value ( )1

,c esss  is obtained, bn  can be 

determined yielding bτ  and ( ), ,n b cd z τ τɶ  via 1e b s
q z

τ− −← =

. As z-powers in ndɶ  might be non-integers, e.g., the quadratic 

extrapolation [21] giving integer z-powers can be applied. 

Then the right-most estimate ( )
,

i

c esss  of the essential spectrum 

essΣɶ  (in every iteration step) is obtained analogously to the 

preceding paragraph. Exponential polynomial ndɶ  is 

iteratively recalculated based on ( )
,

i

c esss  until 

( ) ( 1)

, ,

i i

c ess c esss s ε−− < . 

It is worth noting that ,p esss  is the estimate of λ . Besides, 

if i esss ∈ Σɶ , then 

 12 j ,k i b esss s k kπτ −= ± ∈ Σ ∈ɶ N  (18) 

That is, roots of ( ),nd s ⋅ɶ  constitute vertical strips (i.e., 

parallel to the imaginary axis). 

Note that nd  does not depend on delays in most cases. 

2) Computation of ( ), cs∆ τɶ  and polΣɶ : The polynomial 

approximation ( ), cs∆ τɶ  of ( ), cs∆ τ  is simply made as for a 

retarded quasi-polynomial according to the techniques 

introduced either in section III.B or III.C. Then 

( ){ }: : , 0pol cs sΣ = ∆ =τɶɶ  and ( ), arg max Rec pol i
i

s s=

i pols ∈ Σɶ , see also steps 1 to 3b) of Algorithm 1. Note that 

,p pols  from the previous grid node is saved. 

When determining polΣɶ , one may consider regions in 

which neutral TDS poles definitely do not exist, see, e.g. [17]. 

The summary of step 3 of Algorithm 1 for neutral TDS 
follows. 

Algorithm 2. (Dominant pole determination for neutral 
TDS) 

1) If (5) does not hold for (1), abandon the algorithm; else, 
go to step 2. 

2) Compute ( )1

,c esss  using (17) and (13) according to 

subsection III.D.1. Set bn , bτ , 0ε > , and 1i = .  

3) Compute polynomial ( ), ,n b cd z τ τɶ  via the quadratic 

extrapolation in ( )
,

i

c esss  and then ( ), ,n b cd s τ τɶ  using (13). 

4) Compute spectrum essΣɶ  of ( ), ,n b cd s τ τɶ , find ( )1

,

i

c esss
+

 

such that 
( ) ( )1

, , min.
i i

c ess c esss s
+ − → Set 1.i i= + If 

( ) ( )1

, ,

i i

c ess c esss s ε−− > , go to step 3; else, go to  step 5. 

5) Set 
( )( ),Re
i

c esssλ =  and add roots to essΣɶ  via (18). 

6) Compute ( ), cs∆ τɶ  and polΣɶ  iteratively based on 

known ,p pols  according to subsection III.B or III.C. 

7) Output: ess polΣ = Σ ∪ Σɶ ɶ ɶ  with ( )arg max Recs = Σɶ . 

Despite that poles left from λ  might be neglected when 

computing polΣɶ , due to the decisive impact of low-frequency 

poles on the TDS dynamics, we recommend also considering 

roots of ( ), cs∆ τɶ , the real part of which is left from yet 

sufficiently close to λ . 

IV. NUMERICAL EXAMPLES  

A. Example 1  

Consider an exponentially unstable retarded TDS model 
governed by the transfer function  

 ( ) ( )
( )1 2

22 2

0.2
e

e

s

s
G s

s s

τ τ
τ

− +
−

=
−

 (19) 



which describes movements of a skater on a remotely 
controlled swaying bow [21], [22], [26]. Nominal delays and 

the corresponding spectral abscissa are 1 20.3s, 0.1sτ τ= = , 

0.953α = , respectively. When applying a finite-dimensional 
linear controller [27], the closed-loop characteristic quasi-
polynomial reads 

 
( ) ( ) ( )

( )( ) ( )
1 2

2

3 2 6

2 3 2 6 2

, 1.64 21.3 5.25 1.12 10 e

0.47 0.64 10.56 10 e

s

s

s s s s

s s s s s

τ τ

τ

− +

−

∆ = + + + ⋅

+ + + + ⋅ −

τ

  (20) 

Surprisingly, the delay-free case [ ]0,0
T=τ  is unstable. 

Following Algorithm 1, we set 0.01τ∆ =  within the range 

[ ] [ ]0,0.7 0,0.7∈ ×τ . Note that the value of τ∆  affects the 

initial precision of the stability border determination and the 
density of the borderline points. The higher the value is, the 
rougher the estimation is and the sparser the border points are 
distributed. Contrariwise, the computation time is 

proportional to ( ) 2τ −∆ . A particular setting is on the user’s 

decision. 

It was eventually set ( ) ( )1/ 8 1/ 8s f pT sω= = , 610ε −=  

for the discrete-time technique (see subsection III.B). The 
eventual stability charts for both the approximation techniques 
and the CTCR algorithm [19] are displayed in Fig. 1. As 
differences are indistinguishable by sight, a numerical 

comparison is provided in Table 1, in which ( )0jα τ  (where 

1j =  holds for switching delay points computed directly by 

Algorithm 1, while 2j =  stands for those obtained by their 

quadratic interpolation) are abscissae of roots is  of ( )0, ,s∆ τ  

( )0ω∆ τ 0 Im isω= − , and 0 0 0 0,ω∈ Τ ∈ Ωτ . Lower and 

upper bounds on particular values are displayed. 

As can be seen from Fig. 1 and Table 1, Algorithm 1 with 
both the quasi-polynomial approximation techniques gives 
results almost comparable to the well-established CTCR 
paradigm. However, its disadvantage is that the appropriate 
setting of some parameters remains unclear. 

 

 

Fig. 1. Stability charts of Example 1 (S-stable area, U-unstable area). 

TABLE I.  NUMERICAL RESULTS COMPARISON (EXAMPLE 1) 

Method 
Comput. 

time 
( )1 0α τ  ( )2 0α τ  ( )0ω∆ τ  

Algorithm 1 
(Subsect. III.B) 

748 s 
3.8·10-12 
1.1·10-6 

2.4·10-5 
8.5·10-3 

5.3·10-12 
2.4·10-8 

Algorithm 1 
(Subsect. III.C) 

1054 s 
5.1·10-12 
1.2·10-6 

1.7·10-5 
1.0·10-2 

2.0·10-11 
1.3·10-9 

CTCR 465 
9.6·10-20 
1.2·10-15 

1.0·10-5 
7.9·10-3 

1.9·10-11 
8.6·10-8 

 

B. Example 2  

This example aims to test Algorithm 2 for neutral quasi-
polynomial (21) with a single delay τ and the fixed 

exponential polynomial ( )nd s . 

 
( ) ( )0.9 2/3

2

, 1 0.5e 0.4e

0.3 2e 2e

s s

s s

s s
π

τ τ

τ − −

− −

∆ = + −

+ − +
 (21) 

Condition (5) holds, i.e., 0.9 < 1. The eventual 

approximation ( ), 0.3,nd s ⋅ɶ  with commensurate delays of 

( )nd s  reads 

 

( )
( )

( ) ( )

0.9

1.8

3

2.1 2.4

,0.3, 1 0.5e

2.4 3.1j e
10

399.6 7.1j e 2 2.9 j e

s

n

s

s s

d s −

−
−

− −

⋅ = +

 − +
+  

 + − − + + 

ɶ

  (22) 

The strong stability condition still holds (0.9071 < 1), and 
step 5 of Algorithm 2 yields 0.107γ = − . Notice that (22) has 

complex-valued coefficients. This implies that the 
corresponding roots are distributed asymmetrically to the 
imaginary axis. 

By applying the continuous-time approximation of the 

whole quasi-polynomial (21) with 0.01τ∆ = , ( ),s τ∆ɶ  is 

obtained for every single delay value. Distances ( ),s τ∆ɶ  

zeros from those of ( ),s τ∆  (computed using the QPmR 

Matlab function [10]) vary within the range 
18 108.5 10 ,3.8 10− − ⋅ ⋅  . 

The stabilizing delay value ranges are eventually 

computed as ( ) ( )0,0.0821 0.2789,0.6734sτ ∈ ∪  with 

{ }0 0.433, 2.848,3.198Ω = . 

CONCLUSIONS 

A gridding-based numerical algorithm for the computation 
of stability charts in the space of delays has been proposed. 
Two computational methods for finite-dimensional 
approximation of the characteristic quasi-polynomial have 
been presented, which has represented the core of the 
algorithm. Both the methods are based on simple 
mathematical operations known from introductory courses in 
mathematical analysis or from the design of digital filters. 
Besides the habitual retarded models, specificities of neutral 
delay models and their sensitivity to small delay variations 
have been discussed as well. Not only has the delay margin 
been determined, but the whole stability image within the 



given delay range has been provided. Two concise numerical 
examples have concluded the text body. These examples have 
shown that the proposed method is almost comparable to the 
well-established CTCR algorithm. 

The crucial disadvantage and an open problem for future 
research consist in the necessity of the appropriate setting of 
algorithm-control parameters, which has an ambiguous 
solution so far. 
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