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A B S T R A C T   

Technology has become an integral part of contemporary society. The current transition from an industrial so
ciety to an information society is accompanied by the implementation of new technologies in every part of 
human activity. Increasing pressure to apply ICT in critical infrastructure resulted in the creation of new vul
nerabilities. Traditional safety approaches are ineffective in a considerable number of cases. Therefore, machine 
learning another evolutionary step that provides robust solutions for extensive and sophisticated systems. The 
article focuses on cybersecurity research for industrial control systems that are widely used in the field of critical 
information infrastructure. Moreover, cybernetic protection for industrial control systems is one of the most 
important security types for a modern state. We present an adaptive solution for defense against cyber-attacks, 
which also consider the specifics of the industrial control systems environment. Moreover, the experiments are 
based on four machine learning algorithms (artificial neural network, recurrent neural network LSTM, isolation 
forest, and algorithm OCSVM). The proposed anomaly detection system utilizes multiple techniques and pro
cesses as preprocessing techniques, optimization techniques, and processes required for result interpretation. 
These procedures allow the creation of an adaptable and robust system that meets the need for industrial control 
systems.   

1. Introduction 

Information and communication technologies (ICT) have seen 
exponential growth over the last few decades. A considerable number of 
critical information infrastructure (CII) systems are dependents on these 
technologies. Moreover, automation, digitization, robotics for partial 
autonomous work with remote control are commonly implemented in 
CII. These interconnected systems are an essential part of the revolution, 
so-called "Industry 4.0′′. Frank et al. [1] introduced areas where Industry 
4.0 is applied. These areas include integration, energy management, 
traceability, automation, virtualization, Internet of Things (IoT), and 
cloud computing. 

This technological revolution highly influences the critical infor
mation infrastructure and, subsequently, the critical infrastructure (CI) 
sector. Moreover, the functionality destabilization or loss of CII func
tionality can seriously impact the environment, the population, the 

financial sector, or the state’s basic functions. Furthermore, CII 
commonly utilizes an area of information technology known as an In
dustrial Control System (ICS). ICS are systems designed to support, 
control, and monitor industrial processes utilized in a considerable 
number of industrial areas as power plants, dams, water treatment, oil 
production, chemicals, gas distribution, etc. Therefore, the cyberse
curity of ICS and CII will be one of the main issues to solve in the 
following decades. The first step to create a reliable cybersecurity so
lution is to analyze the protected system itself. The cybersecurity char
acteristic of ICS can be described by three criteria: availability, 
confidentiality, and data integrity. We can conclude that the availability 
of the CII systems is the most important, up to our knowledge. Moreover, 
multiple authors concluded the same assumption [2, 3]. In a nutshell, 
the availability of ICS services is an important element to protect the 
critical requirements for contemporary society. Thus, the misclassified 
normal operation as cyber-attacks can limit ICS availability. 
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Although the field of ICS cybersecurity is relatively new, there is a 
considerable number of research papers. We identified relevant short
comings of the state of the art for cyber-attacks detection. Sokolov et al. 
[4] presented the basic advantages and disadvantages of applying ma
chine learning algorithms in the ICS environment. They pointed to the 
better detection capabilities of a group of techniques based on tree 
structures (e.g., Random Forest). However, the results showed suscep
tibility to "overfitting" of the created model, and therefore worse 
generalization properties of this solution according to the authors. The 
last examined group of machine learning algorithms was an artificial 
neural network. The authors declared the group as the most accurate 
one, but at the cost of higher computational complexity, especially with 
a large dimension of input data. Liu et al. [5] focused on designing an 
anomaly detection system based on convolutional neural networks to 
identify significant attributes and anomalies in ICS network traffic. The 
solution also utilizes an algorithm to define the states of the monitored 
system. They achieved a more robust solution, which had several 
shortcomings that needed to be addressed to interpret results and 
detection capabilities. Kravchik and Shabtai [6] applied a multilayer 
recurrent neural network to detect cyber-attacks in a wastewater treat
ment plant. Even though their research results are promising, the au
thors declared their solution’s shortcomings, such as detection system 
limitation due to small dataset or interpretation of results. 

A significant number of authors [4-7] present promising solutions, 
which do not take into account aspects and criteria for the ICS envi
ronment. Therefore, a considerable number of questions arise. One of 
the key issues for the deployment of machine learning methods is the 
computation demand of the machine learning detection model, which is 
usually a time-consuming process. ICS technology commonly consists of 
technology that is old for several decades. Therefore, the implementa
tion of a novel technological system can be a difficult task in the ICS 
environment. The second key issue is focused on false alarms. Every 
anomaly detection system has to reduce the false classification of ICS 
normal processes in order to maintain system availability and opera
tional continuity. The third issue includes the choice of an unsuitable 
machine learning area to detect anomalies. The majority of the re
searchers use a supervised learning group of machine learning algo
rithms. This anomaly detection system cannot identify unknown 
cyberattacks; therefore, there must be immense up to date databases 
with all cyber-attacks to train the classification model. The main 
shortcomings of the state of the art can be summarized in the following 
points:  

• Detection of unknown cyberattacks,  
• Scalability of the anomaly detection system,  
• The adaptability of the anomaly detection system,  
• High false alarm rate,  
• High computational complexity of the anomaly detection system,  
• Interpretation of cyberattacks. 

The article presents an adaptive anomaly detection system for ICS 
which addresses all described issues. We considered detected anomalies 
as possible symptoms of cyber-attacks. The creation of the anomaly 
detection system is composed of several sections. In the first section, the 
data preprocessing and feature selection are introduced. The second 
section includes semi-supervised machine learning algorithms utilize for 
binary classification, such as anomaly detection. Moreover, four ma
chine learning algorithms were chosen for this research (Artificial 
Neural Network - ANN, recurrent neural network LSTM, Isolation Forest 
- IF, and algorithm OCSVM). The adaptation of the anomaly detection 
system is achieved by hyperparameter optimization of machine learning 
algorithms (Random Search - RS, Evolution Algorithm - EA, Tree- 
structured Parzen Estimator - TPE). Additionally, the objective func
tion of optimization algorithms is defined by multicriteria evaluation 
such as Technique for Order of Preference by Similarity to Ideal Solution 
(TOPSIS). The last section is focused on the interpretation of detected 

anomalies. We conducted extensive research, including four machine 
learning algorithms, three optimization techniques, and multiple data 
preprocessing techniques. Moreover, we use three datasets to conduct 
experiments [8-10]. Finally, the research aims to select and test the 
optimal anomaly detection system, which corresponds to the best 
combination of techniques and algorithms. 

The rest of the article is organized as follows. In Section 2 data 
preprocessing techniques are described. Section 3 is dedicated to the 
description of machine learning algorithms that are used for cyber- 
attacks detection. The optimization algorithms which are used to opti
mize machine learning algorithms via hyperparameters are described in 
Section 4. The research methods are described in Section 4. Section 5 
shows the results of the experiments. Lastly, Section 6 is dedicated to a 
discussion of the results. 

2. Data preprocessing techniques 

The data are vital for machine learning algorithms. Moreover, they 
fundamentally influence the performance of machine learning algo
rithms. The process of capturing data is commonly imperfect. Therefore, 
data are regularly captured in different formats and have missing values. 
Thus, data preprocessing is a critical part of the machine learning model 
creation. According to the collected datasets, we recognize three main 
problems. The missing values in datasets due to flaws in the ICS 
recording process are defined as the first problem. The different scale of 
features is identified as the second issue. Moreover, the differences be
tween the scale of the dataset feature can negatively affect their 
importance and, therefore, may result in weak detection capabilities of 
the machine learning model. The last main problem for machine 
learning algorithms is the dataset extensive dimensionality, which in
creases the computational complexity of the anomaly detection system. 
Therefore, the creation of a machine learning model can be a very time 
and resources consuming process. 

We choose multiple techniques to solve all described data pre
processing issues. Three techniques were chosen to address missing 
values. The missing values are replaced by value zero, mean of the 
feature, or feature median [11]. Another three techniques were chosen 
to address the features scale problem of data. The data scale is changed 
according to the interval 〈-1,1〉, 〈0,1〉, or the data are standardized [11]. 
We made a considerable number of experiments to find out the optimal 
combination of techniques. Thus, nine final combinations were estab
lished. The results are published in section 6. 

Furthermore, the last question in this section that needs to be solved 
is focused on the immersive trend in high dimensional data. ICS has 
become complex systems that generate high dimensional datasets. 
Moreover, categorical data amplify this trend. In this case, the one-hot 
encoder transformation [11] is used. The categorical data are trans
formed into a binary representation where every unique sample repre
sents one new feature in the dataset. Thus, a new, excessively large 
dataset is created. We adopted the dimension reduction technique 
(Principal Component Analysis – PCA [12]) to address the issue. 

PCA is based on covariance matrices, which express the interde
pendence between the described features and their standard deviations. 
The basic idea of PCA is to reduce the number of features while pre
serving its original information value. So that the newly created attri
butes contain higher variability than the original attributes. In practice, 
the original data are projected into a lower dimension (lower number of 
features). Thus, the principal components are created by a linear com
bination of the original features. These new features contain variability 
of the previous dataset even the new dataset has lower dimensionality 
[12]. 

3. Machine learning algorithms 

This chapter is dedicated to a description of machine learning algo
rithms, which are cornerstones of the article. The four popular 
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algorithms were chosen (ANN, LSTM, IF, OCSVM). All of these algo
rithms are modified to work in semi-supervised learning mode. This 
mode of machine learning algorithms is based on a combination of su
pervised learning and unsupervised learning. The input dataset for the 
creation of the machine learning model includes only the normal pro
cesses of the ICS system. The training dataset cannot be contaminated by 
malicious behavior like cyber-attacks. Moreover, the created model 
should represent the normal behavior of ICS, and every deviation from it 
is classified as an anomaly (potentially cyber-attack). The procedure 
ensures the detection of unknown cyber-attacks. However, on the other 
hand, semi-supervised learning has a problem with contamination of 
training dataset, interpretation of results, and poor detection capabil
ities. To create a semi-supervised learning model, three datasets used. 
The training and validation dataset with only one class is used to create a 
machine learning model. Otherwise, the test dataset includes all classes 
of a dataset. Thus, the normal operation of the system and cyber-attacks 
are included. Moreover, the data in the test dataset are completely 
separated from the training and validation dataset. The evaluation of 
detection capabilities is provided as a result of the test dataset classifi
cation. Furthermore, there is a considerable number who examined the 
possibility of semi-supervised learning algorithms to detect anomalies. 
[13-15] 

Four popular machine learning algorithms are used to examine the 
possibility of anomaly detection for ICS technology. One of the article’s 
goals is to find an optimal machine learning algorithm according to 
evaluation metrics. All machine learning algorithms are used in a semi- 
supervised learning mode. Moreover, the python machine learning li
brary Scikit-learn [16] to adopt machine learning algorithms IF and 
OCSVM for the needs of the anomaly detection system. Otherwise, the 
python library Keras [17] is used to create neuron network and recurrent 
neuron network LSTM. 

One-class Support Vector Machines (OCSVM) algorithm is a modified 
version of the Support Vector Machines (SVM) algorithm. The modifi
cation enables OCSVM to work as a semi-supervised learning algorithm. 
The deterministic algorithm OCSVM creates a hyperplane to separate 
anomalies from the rest data. [16,18] Moreover, the OCSVM is imple
mented with a radial kernel. Therefore, there is only a gamma hyper
parameter to tune by optimization algorithms. 

Machine learning algorithm Isolation Forest (IF) is a modification of 
the more known Random Forest algorithm (RF). Moreover, IF works in 
semi-supervised learning mode. The IF was firstly published by Liu et al. 
[19]. The authors introduced the semi-supervised learning modification 
of RF to detect anomalies. IF is based on two assumptions. The first 
assumption depends on the fact that anomalies are very rarely present in 
the data. The second assumption depends on the difference in value 
between the attribute of a normal record and an anomalous record 
attribute. [16,19] Additionally, four hyperparameters should be opti
mized. They are the following hyperparameters: maximum number of 
features, number of samples, number of trees, and contamination. 

The artificial neural network and recurrent neural network LSTM are 
originally supervised learning algorithms. Therefore, their modification 
has to be introduced. The symmetrical autoencoder architecture is uti
lized for both algorithms. In the past, autoencoder basic use was mainly 
to remove noise from input signals. However, the autoencoder can be 
used to create a normal operation model due to its generalization ca
pabilities. The architecture of the basic symmetrical autoencoder is 
shown in Fig. 1. The main idea of autoencoders is to create a model with 
identical outputs with inputs (compression and decompression). The 
dimension of the input layer is the same as the output layer. There is also 
the middle layer, which is called "bottleneck". The generalization ability 
of autoencoder relies on the bottleneck, which has a lower number of 
neurons than input and output layers. 

The detection of anomalies is based on the ANN or LSTM model. 
Every deviation from the model is classified as an anomaly. The error, 
which represents a deviation between the model and new data, is 

calculated according to Eq. (1), where xmod
i,j represents the model for i th 

feature and j-th data point. The xreal
i,j represents real data for i th feature 

and j-th data point. 

xr =

⃒
⃒
⃒xmod

i,j − xreal
i,j

⃒
⃒
⃒ (1) 

The Mean Squared Error (MSE) formula is used to calculate the mean 
deviation value for each final data point according to Eq. (2). Moreover, 
the precision/recall curve is used to calculate the final threshold to 
distinguish the normal operation of the ICS system from cyber-attacks. 

MSE =
1
2
∑n

i=1

(
xr

i

)2 (2) 

The first machine learning algorithm with autoencoder architecture 
is ANN. ANN function are based on the control center of the nervous 
system in biological organisms. Moreover, the control center consists of 
neurons, which are unique cells destined for the storage and trans
mission of information necessary for the proper functioning of the or
ganism. Rosenblatt published the basis of the ANN in his publication 
[20], where he introduced the definition of perception. It is a simple 
example of a feedforward neural network with a single neuron. 
Furthermore, the shortcomings of perceptron were solved by multilayer 
perceptron, which is still used today. [17] 

The second machine learning algorithm with autoencoder architec
ture is LSTM. We use the LSTM algorithm presented by Hochreiter and 
Schmidhuber in the publication. [21] LSTM is a machine learning al
gorithm that falls into the subgroup of recurrent neural networks. These 
algorithms work with sequential data, where also the data arrangement 
in time plays an important role. LSTM is a well-known algorithm that is 
often used for text or audio classification purposes. Unlike the artificial 
neural network, the LSTM contains a modified neural cell containing 
three so-called gateways. These gateways allow to store and transmit 
information from previous records. [21,22] 

The optimization process of ANN and LSTM, including the following 
hyperparameters. Number of neurons, number of layers, number of 
neurons for “bottleneck”, number of epochs, batch size, “dropout” size, 
activation function, the optimizer for algorithm training and learning 
rate. The only difference between hyperparameters for ANN and LSTM is 
"size of recurrent dropout," used for LSTM model training. 

4. Optimization techniques 

Optimization is a process where several techniques and procedures 
are used to find the best, i.e., optimal solution. Additionally, optimiza
tion algorithms utilize an iterative process with feedback to find the 
minimum or maximum objective function according to the assignment. 
The objective function (OF) consists of a score calculated by the multi
criteria evaluation algorithm TOPSIS for the anomaly detection system. 
Tzeng and Huang published TOPSIS in the publication [23]. The main 

Fig. 1. The architecture of the basic symmetrical autoencoder.  
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idea of TOPSIS is to choose the best variant from the set of all variants. 
The selection of the best variant is conducted according to five metrics, 
which are detailed described in Section 5. Thus, the best configuration of 
hyperparameters is calculated for all machine learning algorithms based 
on optimization algorithms. 

The three well-known optimization algorithms were chosen (GA, RS, 
TPE). The best-suited optimization algorithm is chosen based on ex
periments for the anomaly detection system. The results are presented in 
chapter 6. The first described optimization algorithm is RS. This is a 
considerably simple optimization algorithm. Moreover, RS is usually the 
first selection for the optimization of machine learning algorithms. This 
optimization algorithm is based on the "Grid search" (GS) algorithm. GS 
systematically calculating all possible combinations of hyperparameter. 
The downside of the algorithm is its enormous time and computation 
demands. The RS randomly select hyperparameters from all search 
space, unlike GS. Therefore, RS more likely selects the more effective 
solution. 

Genetic algorithms (GA) is the second optimization algorithm that is 
adopted for the hyperparameter optimization task. GA is a robust 
heuristic-based search algorithm based on Darwin’s theory of evolution, 
published by Holland in publication [24]. The basic idea of GA is based 
on the assumption that only the most capable individuals will repro
duce. Therefore, their attributes will be able to pass on to future gen
erations. In the beginning, the population is created. Moreover, each 
individual consists of the sets of traits that are hyperparameters in this 
case. Each individual is evaluated using the OF. Moreover, better in
dividuals are created through the crossover and mutation in each 

generation. The best solution is obtained in the last generation, where 
the final individuals converge into one best solution. 

TPE is the last selected optimization algorithm for the experiments. 
TPE is a Bayesian-based optimization algorithm that is based on the 
Gaussian process. Bergstra et al. firstly introduce TPE in their publica
tion [25]. Additionally, TPE is a common optimization algorithm for 
hyperparameter optimization tasks. The algorithm is based on Sequen
tial model-based optimization (SMBO). The model is used as a sequential 
procedure to implement the gradual modification. This iterative process 
based on OF updated the probability values of the model. The process 
leads to more accurate results and, therefore, to the optimal solution in 
the last iteration. 

5. Research methods 

The core of the experiments is based on three datasets. The dataset 
consists of recorded ICS communication under cyber-attacks. Lemay and 
Fernandez introduced the first dataset [8]. Dataset 1 consists of a 
several-hour record of the ICS network communication. Moreover, the 

Fig. 2. Friedman test, including Nemenyi critical distance for various combinations of data preprocessing techniques ANN - CA1_1.  

Fig. 3. Summarized rank results of the Friedman test for various combinations of data preprocessing techniques.  

Table 1 
Data preprocessing techniques.  

Missing values Data scaling 

mean <0,1>
median <− 1,1>
value 0 standardized  
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dataset contains data in pcap format. Thus, the data conversion was 
needed into CSV format. The data were generated using a series of 
electrical distribution network simulations. This dataset is primarily 
used for data preprocessing experiments due to the low number of 
cyber-attacks in the dataset. Additionally, four cyber-attacks were cho
sen CA1_1, CA1_2, CA1_3, CA1_4. 

The second dataset was captured from a real-world ICS system 
created by "University of Technology and Design" in Singapore. [9] 
Dataset 2 represent recorded data from the water treatment system, 
which produces approximately 20 l of filtered water per minute. The 
system called SWaT (Secure Water Treatment) consists of several sen
sors, actuators, PLC, HMI, SCADA workstations. Additionally, six 
cyber-attacks were chosen CA2_1, CA2_2, CA,2_3, CA2_4, CA2_5, CA2_6 
for creation of the anomaly detection system (optimization process), and 
three cyber-attacks CA2_7, CA2_8, CA,2_9 for anomaly detection system 
evaluation. 

The third dataset was developed at Mississippi State University. [10] 
The data in dataset 3 was captured from the gas pipeline system. 
Moreover, the ICS system consists of sensors and actuators which 
regulate the pipe pressure. Additionally, six cyber-attacks were chosen 
CA3_1, CA3_2, CA,3_3, CA3_4, CA3_5, CA3_6 for the creation of the 
anomaly detection system (optimization process), and three 
cyber-attacks CA3_7, CA3_8, CA,3_9 for anomaly detection system 
evaluation. 

The five metrics were chosen for the evaluation of machine learning 
models. Moreover, this set includes well-known and robust metrics that 
suits well ICS environment. Each machine learning model is evaluated 
using a binary confusion matrix that expresses the relationship between 
predicted classes and real classes. The first expresses the normal oper
ation of the system (negative class), the second a cyber-attack on the 
system (positive class). 

Each of the three datasets for experiments is divided into a training 
dataset and a testing dataset. Training dataset always contains only data 
with negative class. Therefore, only data without cyber-attacks are 
included in training datasets. The testing dataset contains data of both 
classes. Moreover, data of normal operation of ICS and cyber-attacks are 
included. However, each training dataset is unique. None of the data is 
shared between training and testing datasets. This separation guarantees 
the validity of results where none of the data from the testing dataset is 
included in training the machine learning model. 

All machine learning algorithms are implemented in a semi- 
supervised (one-class classification) manner. Therefore, only data with 
one class is included in the training dataset. Moreover, the training 
dataset must not be contaminated by cyber-attacks. There is a common 
approach to evaluate classification models. The k-fold cross-validation 
technique enables the estimation of how well the classification model 
predicts new and unseen data. However, this technique cannot be used 
in the case of one-class classification because the training dataset cannot 
contain different classes (cyber-attacks) except one (normal operation of 
the ICS system). Therefore, a different approach was established. Each 
testing dataset consists of completely unique data of both classes 
(normal operations and cyber-attacks). Therefore, each testing dataset is 
contained by unseen data. This applies even between individual testing 
datasets. 

The confusion matrix is a fundamental basis for the calculation of 
metrics. Additionally, the metrics are as follows:  

• MMCC - (Matthews Correlation Coefficient) expresses all aspects of 
the confusion matrix. Moreover, the metric is resilient against the 
usage of unbalanced datasets.  

• MF1 - (F1 score) is the second popular metric. It is a robust metric for 
model evaluation in the case of a binary confusion matrix. However, 
unlike MMCC, it does not consider the True negative class within the 
confusion matrix. Therefore, it is more focused on the evaluation of 
model classification errors. 

• MPrec - (precision) This metric was chosen because it takes into ac
count the false-positive (FP) classification in the calculation of the 
metric. Moreover, the classification represents falsely classified 
cyber-attacks that are critically harmful to ICS.  

• MFPR - (False positive rate (FPR)) MFPR expresses positive cases that 
are identified as a false class. Thus, cases when normal and harmless 
communication in the computer network is evaluated as dangerous. 
False alarms are a major problem for ICS. The metric is focused on 
monitoring false alarms. Therefore, MFPR is the most important 
metric.  

• Time - Time is the criterion that expresses the time required to 
predict and classify the test dataset by the model. Furthermore, time 
is a parameter that expresses the computational complexity of each 
classification model. 

The research can be divided into three main parts. An extensive 
number of experiments were conducted to select the best version of the 
anomaly detection system. The first part focuses on selecting the best- 
suited preprocessing techniques for each machine learning algorithm 
based on detection performance (evaluation metrics). We tested nine 
combinations of preprocessing methods. Three techniques for missing 
values problem and three techniques for data scaling problem shown in 
Table. 1. It is important to note that the preprocessing techniques were 
utilized only in the case of numerical features. Moreover, preprocessing 
techniques experiments were based on four cyber-attacks in dataset 1. 
The results were considered optimal settings and, therefore, are used in 
further experiments. 

The second part of the research is focused on the computationally 
excessive demanding process of hyperparameter optimization in the 
machine learning field. The machine learning algorithms were exam
ined in conjunction with three optimization algorithms for three data
sets. The main goal of this section is to create an anomaly detection 
system that has acceptable detection capabilities and a low MFPR. We 
examined all possible combinations of the algorithms and datasets. The 
execution of experiments was a highly time and computational 
demanding task. Therefore, the advanced infrastructure for the calcu
lation of complex tasks had to be used. The MetaCentrum supplied by 
the project "e-Infrastruktura CZ" (e-INFRA LM2018140) was used to 
complete all tasks. Furthermore, the OF is calculated by the TOPSIS 
algorithm according to the metrics. However, there is a necessity to set 
up weights for all metrics. A Fuller’s triangle was created for these 
metrics, where the dependencies between the individual metrics were 
calculated by pairwise comparison. The weights are shown in Table. 2. 

Each hyperparameter combination of the machine learning algo
rithm, datasets, and optimization algorithms is calculated in the meta
centrum for 300 h. Also, each combination is processed tenfold due to 
the stochastic nature of machine learning algorithms. The final combi
nation of hyperparameters will be collected from the metacentrum re
sults. Moreover, every combination of hyperparameters will be 
evaluated via the metrics one hundred times. The Friedman test [26] 
was implemented to compare all results via metrics. Milton Friedman 
developed this non-parametric statistical test to detect differences across 
a considerable number of samples. The second evaluation of the results 
will be focused on one metric. MFPR is the most important metric for ICS. 
Therefore, a deep analysis of MFPR is appropriate. The evaluation of the 
anomaly detection system is based on three cyber-attacks from dataset 2 
(CA2_7, CA2_8, CA2_9) and three cyber-attacks from dataset 3 (CA3_7, 
CA3_8, CA3_9) are used. These cyber-attacks are completely separated 
from the optimization process. Thus, none of them were used in the first 
and second part of the research. Additionally, the Friedman test and 

Table 2 
Weights for metrics.  

Metrics/ weights MF1 MMCC MPrec Time MFPR 

Weights 0.12 0.16 0.17 0.2 0.35  
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MFPR metric comparison are used for evaluation. The third part of the 
research dealing with the interpretation of results based on the impor
tance of dataset features. 

6. Results 

The first part of the research focuses on selecting the most suitable 
preprocessing techniques for each machine learning algorithm. All the 
combinations of data preprocessing techniques and machine learning 
stochastic algorithms are tested for four cyber-attacks in dataset 1. Every 
combination is one hundredfold repeated due to the stochastic nature of 
selected machine learning algorithms. Differently, there was no need for 
repetition of experiments in the case of the deterministic OCSVM algo
rithm. The results of all experiments are shown in Table. 3. The arith
metic mean of all values represents the stochastic algorithms for each of 
the metrics in relation to preprocessing techniques combinations. We 
also take into account the aspect of machine learning algorithms and 
different cyber-attacks. 

There are nine combinations of preprocessing techniques in the 
Table. 3. Data1 stand for combination (mean, <0,1>), data2 stands for 
combination (mean, <− 1,1>), data3 stands for combination (mean, 
standardized), data4 stands for combination (median, <0,1>) etc. Every 
machine learning algorithm evaluates each combination via five metrics 
(MF1, MMCC, MPrec, Time, MFPR). The best preprocessing techniques 
combination for each machine learning algorithm is selected according 
to the performance of all metrics. Moreover, the stochastic algorithms 
(ANN, LSTM, IF) are evaluated by Friedman non-parametric statistical 
test via all five metrics. 

The deterministic algorithm OCSVM is the first to evaluate. There is 
only one result for each experiment (combination) in the case of 
OCSVM. The mean value of the feature is the best-suited technique to 
handle missing values. Additionally, the scale 〈-1,1〉 of the feature is the 
optimal technique to handle scaling issues for the OCSVM algorithm. 
The results for the best combination are highlighted in Table. 3. 

The results of the rest machine learning algorithms are evaluated by 
the Friedman test due to a considerable number of machine learning 
models for each combination (one hundred per each). Therefore, the 
Friedman test was calculated for each combination of three machine 
learning algorithms, six preprocessing techniques, and four cyber- 
attacks. The demonstrational results for ANN are shown in Fig. 2 in 
the case of CA1_1. 

As shown in Fig. 2, all combinations are ranked where data3 is the 
best combination and data8 is the worst combination. Moreover, the 
dashed line represents the Nemenyi test result, where critical distance is 
calculated between data. 

Over ten thousand machine learning models were created. There
fore, the summarization of the result was implemented. The Friedman 
test ranks were overall summarized of various data preprocessing 
techniques combinations for four cyber-attacks. Moreover, the best 
combination was ranked as one, and the worst combination was ranked 
as nine. A summary of all results over four cyber-attacks can be seen in 
Fig. 3. 

As shown in Fig. 3, there is no best combination of data pre
processing techniques for all machine learning algorithms. Therefore, 
the individual approach should be adopted for every machine learning 
algorithm. The best combination of the ANN techniques is the mean of 
feature values in case of missing values. The scaling of the dataset should 
be in the range 〈0,1〉. Moreover, the same best combination of the 
techniques can be seen in the case of the LSTM algorithm. The possible 
explanation is the same origin of algorithms. Furthermore, the best 
preprocessing technique to address the missing values in the dataset 
includes the median in the case of IF. IF has the best results if the 
standardization technique is used to change the dataset scale. Addi
tionally, the overall results indicate ANN as the best representative in 
this experiment. The best representatives of preprocessing techniques 
combination are also highlighted in Table. 3. Finally, these 

preprocessing techniques are used for further experiments. 
The second part of the research is focused on a hyperparameter 

optimization of machine learning algorithms. The first tested machine 
learning algorithm is OCSVM. Due to its deterministic nature and only 
one hyperparameter to optimize the limited number of machine learning 
models can be created. The gamma parameter is set to a range of values 
from interval 〈0,1〉 with step 0.05. Thus, twenty models were created 
with different gamma parameters for every cyber-attack in each dataset. 
All results are shown in Fig. 4. 

Multiple machine learning models with variable gamma parameters 
were created for each cyber-attack. Therefore, the box chart was used to 
summarize the results. The summary of the MFPR results for OCSVM can 
be seen in Fig. 4. Moreover, the MFPR is the most important metric for 
ICS. Therefore, the MFPR should be the main criteria for the evaluation of 
every anomaly detection system, which is focused on the ICS environ
ment. The presented results are insufficient in every case. Moreover, 
similar poor results were achieved in the case of the Time metric. 
Therefore, we decided to exclude the algorithm from further 
experiments. 

The research was primarily focused on hyperparameter optimization 
of ANN, LSTM, and IF algorithms according to the anomaly detection 
performance in case of cyber-attacks. Moreover, an extensive number of 
experiments were executed. Each machine learning algorithm was 
optimized according to RS, GA, TPE for dataset 1 (four cyber-attacks), 
dataset 2 (six cyber-attacks), and dataset 3 (six cyber-attacks). Thus, 
27 combinations were established. Moreover, each combination was 
executed tenfold due to the stochastic(probabilistic) nature of the ma
chine learning algorithms. Therefore, 270 individual optimization runs 
had to be done. This time consuming and resources exhausting task was 
carried out by the MetaCentrum. More than 81,000 h of experiments 
were computed. Such an extensive computational task could not be 
realistically solved in real-time without outsourced resources. 

The optimal hyperparameter combination was calculated for each 
machine learning algorithm in the case of different datasets. Moreover, 
the optimal setup of machine learning algorithms was evaluated by six 
cyber-attacks (dataset 2 - CA2_7, CA2_8, CA2_9, and dataset 3 - CA3_7, 
CA3_8, CA3_9). The cyber-attacks were completely separated from the 
optimization process and, therefore, were not influencing optimization 
results. The final results were compared according to the Friedman test. 
Thus, each representative was ranked based on five metrics for each 
individual cyber-attack. The summed results can be seen in Fig. 5. 

Fig. 5 shows the summarized results for each dataset (cyber-attacks) 
and all optimized machine learning algorithms. The machine learning 
algorithm IF optimized by GA has the best overall anomaly detection 
performance of all representatives. 

Moreover, the overall results for each optimized algorithm are shown 
in Table. 4. Each optimized algorithm is tested on six cyber-attacks. The 
performance is evaluated via five metrics. The results for the best variant 
(IF - GA) are highlighted in the table. We can see a highly promising 
performance in terms of MFPR. The performance of the rest of the metrics 
is modest. However, despite the performance, the cyber-attacks are 
classified and identified. 

Evaluating the most important metric (MFPR) is required to develop a 
reliable anomaly detection system in an ICS environment. Therefore, the 
summarization graphs were introduced. Moreover, we use multiple box 
charts to present results. Every optimized machine learning algorithm 
created 100 models that were evaluated via six cyber-attacks. The re
sults for dataset 2 are shown in Fig. 6, and results for dataset 3 are shown 
in Fig. 7. 

As shown in Fig. 6, algorithm IF optimized by GA has the best results 
in all instances. Additionally, the margin between the best algorithm and 
the second-best algorithm is enormous. In the case of dataset 3 (shown in 
Fig. 7), the results are not unambiguous. However, we can identify the 
two best-suited representatives. The first is the algorithm IF optimized 
by GA, and the second is the algorithm IF optimized by TPE. Both of the 
algorithms have identical results for all cyber-attacks. Moreover, they 
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Table 3 
Overall results of preprocessing techniques combination.    

CA1_1 CA1_2 CA1_3 CA1_4  

Combinations MF1 MMCC MPrec MFPR Time MF1 MMCC MPrec MFPR Time MF1 MMCC MPrec MFPR Time MF1 MMCC MPrec MFPR Time 

ANN Data1 0.67 0.65 0.75 0.02 0.01 0.82 0.62 0.93 0.11 0.01 0.59 0.59 0.68 0.01 0.04 0.05 0.06 0.09 0.01 0.06  
Data2 0.67 0.65 0.76 0.02 0.01 0.76 0.45 0.86 0.22 0.01 0.59 0.59 0.64 0.01 0.04 0.02 0.02 0.04 0.01 0.07  
Data3 0.73 0.71 0.80 0.02 0.01 0.76 0.38 0.80 0.32 0.01 0.28 0.26 0.29 0.02 0.04 0.00 0.01 0.00 0.06 0.07  
Data4 0.72 0.70 0.80 0.02 0.01 0.78 0.50 0.88 0.19 0.01 0.55 0.55 0.64 0.01 0.04 0.10 0.11 0.17 0.00 0.07  
Data5 0.68 0.67 0.81 0.01 0.01 0.77 0.46 0.86 0.21 0.01 0.41 0.41 0.46 0.01 0.04 0.05 0.05 0.07 0.01 0.06  
Data6 0.74 0.72 0.82 0.01 0.01 0.77 0.42 0.83 0.28 0.01 0.26 0.24 0.27 0.02 0.05 0.00 0.01 0.00 0.06 0.07  
Data7 0.72 0.71 0.79 0.02 0.01 0.79 0.51 0.87 0.20 0.01 0.55 0.55 0.62 0.01 0.05 0.11 0.12 0.19 0.01 0.07  
Data8 0.47 0.44 0.56 0.03 0.01 0.77 0.48 0.88 0.19 0.01 0.52 0.51 0.56 0.01 0.04 0.02 0.02 0.04 0.01 0.07  
Data9 0.62 0.60 0.74 0.02 0.01 0.76 0.43 0.83 0.26 0.01 0.18 0.16 0.19 0.02 0.04 0.00 0.01 0.00 0.06 0.06 

LSTM Data1 0.89 0.88 0.91 0.01 0.01 0.96 0.90 0.98 0.03 0.02 0.72 0.72 0.83 0.00 0.35 0.28 0.28 0.34 0.00 0.07  
Data2 0.73 0.71 0.77 0.02 0.01 0.91 0.75 0.93 0.13 0.02 0.42 0.40 0.46 0.02 0.37 0.07 0.07 0.11 0.03 0.07  
Data3 0.42 0.36 0.42 0.05 0.01 0.76 0.30 0.77 0.46 0.02 0.06 0.04 0.06 0.02 0.39 0.00 0.01 0.00 0.16 0.07  
Data4 0.87 0.86 0.90 0.01 0.01 0.95 0.89 0.98 0.04 0.02 0.72 0.72 0.81 0.01 0.35 0.23 0.23 0.28 0.01 0.07  
Data5 0.71 0.69 0.74 0.03 0.01 0.92 0.77 0.93 0.13 0.02 0.49 0.48 0.54 0.02 0.37 0.05 0.04 0.06 0.04 0.07  
Data6 0.44 0.38 0.44 0.05 0.01 0.75 0.26 0.76 0.48 0.02 0.04 0.02 0.05 0.02 0.35 0.00 0.01 0.00 0.17 0.07  
Data7 0.82 0.81 0.89 0.01 0.01 0.94 0.84 0.97 0.06 0.02 0.63 0.63 0.75 0.01 0.35 0.22 0.22 0.26 0.01 0.07  
Data8 0.18 0.17 0.33 0.02 0.01 0.80 0.48 0.85 0.26 0.02 0.15 0.13 0.16 0.02 0.35 0.05 0.05 0.08 0.02 0.07  
Data9 0.42 0.37 0.43 0.05 0.01 0.73 0.21 0.74 0.52 0.02 0.08 0.06 0.08 0.02 0.35 0.00 0.01 0.00 0.11 0.07 

IF Data1 0.31 0.24 0.22 0.16 0.07 0.62 0.42 0.87 0.09 0.08 0.17 0.18 0.11 0.08 0.12 0.00 0.00 0.00 0.08 0.43  
Data2 0.39 0.34 0.30 0.13 0.07 0.75 0.53 0.94 0.08 0.08 0.09 0.07 0.06 0.08 0.12 0.00 0.00 0.00 0.08 0.43  
Data3 0.39 0.34 0.30 0.13 0.07 0.74 0.55 0.96 0.04 0.08 0.15 0.13 0.12 0.04 0.12 0.00 0.00 0.00 0.05 0.43  
Data4 0.32 0.26 0.24 0.16 0.07 0.56 0.36 0.83 0.09 0.08 0.18 0.19 0.12 0.08 0.12 0.00 0.00 0.00 0.08 0.43  
Data5 0.38 0.32 0.29 0.13 0.07 0.74 0.52 0.93 0.08 0.08 0.06 0.04 0.04 0.07 0.12 0.00 0.00 0.00 0.07 0.44  
Data6 0.38 0.33 0.30 0.14 0.07 0.75 0.56 0.96 0.05 0.08 0.15 0.13 0.12 0.05 0.13 0.01 0.01 0.00 0.05 0.44  
Data7 0.29 0.23 0.21 0.17 0.07 0.52 0.33 0.82 0.09 0.08 0.18 0.18 0.11 0.09 0.13 0.00 0.00 0.00 0.09 0.45  
Data8 0.41 0.36 0.31 0.14 0.07 0.77 0.56 0.94 0.08 0.08 0.17 0.16 0.11 0.07 0.13 0.00 0.01 0.00 0.08 0.45  
Data9 0.45 0.41 0.39 0.10 0.07 0.75 0.55 0.95 0.05 0.08 0.18 0.17 0.14 0.04 0.12 0.00 0.00 0.00 0.05 0.43 

OCSVM Data1 0.20 0.11 0.11 0.52 4.08 0.71 0.25 0.75 0.42 5.23 0.08 0.11 0.04 0.41 9.42 0.00 0.01 0.00 0.41 31.36  
Data2 0.21 0.19 0.12 0.67 4.14 0.72 0.27 0.75 0.41 5.36 0.08 0.11 0.04 0.40 9.58 0.00 0.03 0.00 0.41 32.60  
Data3 0.17 0.09 0.09 0.90 4.00 0.74 0.31 0.77 0.39 5.18 0.09 0.14 0.05 0.40 9.31 0.00 0.04 0.00 0.40 31.15  
Data4 0.18 0.08 0.10 0.58 4.10 0.71 0.25 0.75 0.42 5.82 0.08 0.11 0.04 0.41 9.54 0.00 0.01 0.00 0.41 32.53  
Data5 0.21 0.19 0.12 0.67 3.99 0.72 0.27 0.76 0.41 5.23 0.08 0.11 0.04 0.40 9.26 0.00 0.03 0.00 0.41 31.33  
Data6 0.17 0.09 0.09 0.90 4.01 0.74 0.32 0.77 0.39 5.25 0.09 0.14 0.05 0.40 9.27 0.00 0.04 0.00 0.40 31.32  
Data7 0.16 0.01 0.09 1.00 3.98 0.71 0.26 0.75 0.42 5.22 0.08 0.11 0.04 0.41 9.27 0.00 0.01 0.00 0.41 31.22  
Data8 0.01 0.00 0.01 0.09 4.09 0.72 0.27 0.75 0.41 5.35 0.08 0.11 0.04 0.40 9.66 0.00 0.02 0.00 0.41 32.08  
Data9 0.01 0.00 0.01 0.09 3.90 0.73 0.30 0.76 0.40 5.06 0.09 0.14 0.05 0.40 9.11 0.01 0.04 0.00 0.40 30.57  
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achieve the best possible results were almost all extremely low values of 
MFPR metric. 

Lastly, the possibility of the anomaly interpretation is investigated. 
The first step in interpreting the results is to gather information related 
to the model prediction. However, up to our knowledge, there are no 
possibilities of result interpretation in the case of IF. Therefore, a new 
approach was needed to implement. The second machine learning al
gorithm has to be implemented in parallel. We choose the Random 
Forest (RF) algorithm due to its exceptional interpretation abilities. 

The IF algorithm performs the identification of anomalies. If there is 
no anomaly detected, then the prediction continues without change. 
Otherwise, the detection output is processed by RF to calculate the 
importance of different features (principal components) due to a single 
data point. The binary selection is used to separate important principal 
components from unimportant principal components (can be seen in 
Fig. 8). Afterward, the reverse method can be used to select the most 
important original attributes within the main component. Thus, the 
most relevant features are required for the detected anomaly. Addi
tionally, the results are used to detect the anomaly and potentially 
cyber-attack to improve the reaction and mitigation measures. 

7. Conclusion 

The article was focused on the protection of ICS systems, which are 
becoming an essential part of modern society due to digitization and 
Industry 4.0. Therefore, there is a necessity for a reliable cyber-security 
solution for ICS. We introduced a comprehensive system for anomaly 
detection based on machine learning algorithms. Moreover, the anomaly 
section system was designed to solve the following issues:  

• Detection of unknown cyberattacks,  
• Scalability of the anomaly detection system,  
• The adaptability of the anomaly detection system,  
• High false alarm rate,  
• High computational complexity of the anomaly detection system,  
• Interpretation of cyberattacks. 

The problem of detection of unknown cyber-attacks was addressed at 
the beginning of the anomaly detection system creation. All machine 
learning algorithms were implemented in semi-supervised learning 
mode. This approach guarantees the ability to detect unknown cyber- 
attacks. Moreover, the detection capabilities were proven by the 
detection of six evaluation cyber-attacks, which were not part of the 
training dataset for machine learning model creation. Hence, the 

Fig. 4. Results summary OCSVM for different gamma parameters.  

Fig. 5. Summarized rank results of the Friedman test for various combinations of machine learning hyperparameter obtained through the optimization process.  
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detection of unknown cyber-attacks was proven. 
The feature transformation ensured the scalability of the detection 

system via the PCA algorithm. This procedure enables the anomaly 
detection system to process theoretically very large (high dimensional) 
ICS datasets. The dataset can theoretically have an unlimited number of 
attributes, which are reduced to an acceptable level. The process of 
feature space reduction was described in the article. Moreover, the 

preprocessing techniques were investigated in terms of anomaly detec
tion performance. Thus, the deployment of the anomaly detection sys
tem in a complex (high dimensional) ICS environment was ensured. 

The optimization algorithms were implemented for the anomaly 
detection system to ensure the optimal performance of machine learning 
algorithms. The approach increases effectivity of the detection capa
bilities of the system via hyperparameters. Thus, each machine learning 

Table 4 
Overall results of the evaluation process for optimized algorithms.    

GA RS TPE 

CA results ANN LSTM IF ANN LSTM IF ANN LSTM IF 

CA2_7 MF1 0.58 0.58 0.06 0.58 0.56 0.28 0.57 0.59 0.27  
MMCC 0.01 0.01 0.03 0.00 − 0.02 0.00 − 0.01 0.04 0.00  
MPrec 0.58 0.58 0.70 0.58 0.57 0.58 0.58 0.60 0.58  
MFPR 0.57 0.56 0.04 0.57 0.57 0.19 0.58 0.54 0.17  
Time 3.30 7.13 5.52 7.34 7.59 12.07 4.96 12.51 33.55 

CA2_8 MF1 0.48 0.49 0.08 0.51 0.48 0.24 0.47 0.51 0.23  
MMCC 0.01 0.02 0.07 0.06 0.01 − 0.01 − 0.02 0.06 − 0.01  
MPrec 0.49 0.49 0.77 0.51 0.49 0.48 0.47 0.51 0.48  
MFPR 0.46 0.47 0.05 0.45 0.47 0.16 0.48 0.44 0.15  
Time 3.51 7.81 5.53 7.32 8.19 12.11 4.99 12.47 33.38 

CA2_9 MF1 0.37 0.40 0.06 0.39 0.40 0.23 0.39 0.39 0.20  
MMCC − 0.03 0.00 0.05 − 0.01 0.01 − 0.02 − 0.01 0.00 − 0.03  
MPrec 0.38 0.40 0.68 0.39 0.40 0.38 0.39 0.39 0.37  
MFPR 0.40 0.39 0.04 0.39 0.38 0.17 0.39 0.39 0.16  
Time 3.47 6.97 5.52 7.30 7.46 12.21 4.94 12.56 33.40 

CA3_7 MF1 0.51 0.51 0.25 0.51 0.50 0.48 0.51 0.50 0.24  
MMCC 0.33 0.33 0.32 0.32 0.32 0.28 0.32 0.31 0.32  
MPrec 0.54 0.51 1.00 0.52 0.51 0.48 0.52 0.50 1.00  
MFPR 0.17 0.18 0.00 0.18 0.18 0.20 0.18 0.19 0.00  
Time 0.29 1.35 0.53 0.31 0.76 0.37 0.24 1.41 0.43 

CA3_8 MF1 0.01 0.23 0.03 0.01 0.02 0.11 0.01 0.16 0.03  
MMCC − 0.38 − 0.04 0.10 − 0.33 − 0.27 − 0.14 − 0.35 − 0.10 0.09  
MPrec 0.01 0.24 1.00 0.01 0.03 0.15 0.01 0.17 1.00  
MFPR 0.39 0.25 0.00 0.32 0.24 0.20 0.34 0.23 0.00  
Time 0.11 0.16 0.56 0.12 0.10 0.39 0.10 0.16 0.47 

CA3_9 MF1 0.27 0.41 0.37 0.27 0.25 0.27 0.27 0.34 0.37  
MMCC 0.07 0.19 0.42 0.06 − 0.01 0.03 0.05 0.11 0.42  
MPrec 0.35 0.42 1.00 0.34 0.28 0.32 0.34 0.37 1.00  
MFPR 0.17 0.21 0.00 0.18 0.24 0.20 0.18 0.22 0.00  
Time 0.11 0.16 0.56 0.12 0.10 0.40 0.09 0.15 0.45  

Fig. 6. Summarized MFPR metric for various combinations of machine learning hyperparameter obtained through the optimization process - dataset 2.  
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algorithm is adapted according to the ICS dataset. Moreover, there is no 
best hyperparameter setup for all ICS system. Therefore, hyper
parameter tuning is necessary for each ICS system separately. Moreover, 
a total of 270 experiments were performed. Where each experiment 
lasting 300 h. In total, it was 81,000 h of machine time consumed to 
carry out the experiments. 

Every hyperparameter combinations were evaluated via six cyber- 
attacks. The Friedman test was implemented to evaluate every ma
chine learning algorithm via five metrics. Moreover, the MFPR metric 
comparison was created to find the most suitable combination of opti
mization algorithm and machine learning algorithm. There is one best- 
suited solution in the form of machine learning algorithm IF, which is 

Fig. 7. Summarized MFPR metric for various combinations of machine learning hyperparameter obtained through the optimization process - dataset 3.  

Fig. 8. Interpretation of IF algorithm results.  
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optimized by GA. The combination has the best results in terms of all five 
metrics according to the Friedman test. Moreover, the solution has a 
considerably low value of the MFPR metric. Thus, we can conclude that 
this combination has relatively exceptional detection capabilities of 
cyber-attacks, including time consumptions with a considerably low 
number of false alerts (MFPR). Thus, it can be stated that the most 
important parameters of the detection system are preserved, i.e., the 
identification of the cyber-attack, practically zero amount of false 
identification, and an acceptable amount of time consumption. 

The final chapter focused on the interpretation of detected anoma
lies. The reverse procedure was used to obtain the most significant at
tributes for each classified anomaly record. However, the interpretation 
concept does not aim at the identification of origin and type of cyber- 
attack. In many cases, a deep knowledge of the ICS system and its pro
cesses is necessary for effective analysis as well as the adoption of 
measures. Therefore, close coordination with the technical staff of the 
ICS system is necessary to resolve the issue. 

According to the results, we identify unfit machine learning algo
rithms for ICS systems. This is mainly the OCSVM algorithm which has 
unacceptable performance in all metrics. Even though bad results, there 
is a considerable number of authors that recommend the implementa
tion of OCSVM for ICS systems. 

The article was focused on the dynamic area of anomaly detection 
related to ICS cyber-security. The anomaly detection system was 
developed and tested. The results confirm the applicability of the system 
in a real environment. Mainly due to the considerable low number of 
false alarms. However, other metrics (MF1, MMCC, MPrec), in addition to 
metric time, show promising results. 

It is important to note the weakness of the presented system of cyber- 
attacks detection. The strength of every anomaly detection model relies 
on training data. If any malicious activities corrupt the data, then it will 
be reflected in the final model and therefore decrease its detection ca
pabilities. This important and actual topic is called Adversarial Machine 
Learning (AML). There are a considerable number of AML attack vectors 
and mitigation strategies that are investigated by researchers in detail. 
Moreover, AML can be a serious threat to machine learning solutions as 
a whole in years to come. However, the research was not focused on this 
topic. Nonetheless, there should be implemented AML mitigation stra
tegies for the implementation of any anomaly detection system based on 
machine learning algorithms in a real environment. 

There are multiple possible ways of future research. One possible 
way is the parallel application of machine learning algorithms for 
anomaly detection, where the results would be based on the voting of 
used algorithms. Another possible area of future research is the precise 
interpretation of cyber-attacks. Thus, the development of an analytical 
tool for the analysis of the results is needed. 
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