

Enhanced magnetorheological effect of suspensions based on carbonyl iron particles coated with poly(amidoamine) dendrons

Citation

PLACHÝ, Tomáš, Martin CVEK, Lukáš MÜNSTER, Barbora HANULÍKOVÁ, Pavol ŠULY, Alenka VESEL, and Qilin CHENG. Enhanced magnetorheological effect of suspensions based on carbonyl iron particles coated with poly(amidoamine) dendrons. In: *Rheologica Acta* [online]. vol. 60, iss. 5, Springer Science and Business Media Deutschland, 2021, p. 263 - 276 [cit. 2022-06-01]. ISSN 0035-4511. Available at https://link.springer.com/article/10.1007/s00397-021-01269-1

DOL

https://doi.org/10.1007/s00397-021-01269-1

Permanent link

https://publikace.k.utb.cz/handle/10563/1010286

Terms of use

Elsevier 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.

This document is the Accepted Manuscipt version of the article that can be shared via institutional repository.

publikace.k.utb.cz

Enhanced magnetorheological effect of suspensions based on 1 carbonyl iron particles coated with poly(amidoamine) dendrons 2 3 Tomas Plachy^{a,b*}, Martin Cvek^a, Lukas Munster^a, Barbora Hanulikova^a, Pavol 4 Suly^a, Alenka Vesel^c, Qilin Cheng^{a,b}* 5 6 7 ^aCentre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase 8 Bati 5678, 760 01 Zlin, Czech Republic ^bKey Laboratory for Ultrafine Materials of the Ministry of Education, School of Materials 9 Science and Engineering, East China University of Science and Technology, Shanghai 200237, 10 China 11 ^cDepartment of Surface Engineering and Optoelectronics, Jozef Stefan Institute, Jamova cesta 12 39, 1000 Ljubljana, Slovenia 13 14 *Corresponding plachy@utb.cz (T. Plachy); 15 authors: e-mail address: chengql@ecust.edu.cn (Q. Cheng) 16 **Abstract** 17 Particle oxidation constitutes a serious ageing phenomenon in magnetorheological suspensions, 18 bringing about deterioration in performance. This study describes commercial carbonyl iron 19 20 particles that were successfully coated with poly(amidoamine) dendrons and then applied as an oxidation-resistant dispersed phase in magnetorheological suspensions. A synthesis method 21 22 was adhered to whereby the particles were sequentially treated with ethylenediamine and methyl acrylate, leading to the formation of generation 2 and 2.5 dendrons; these had the 23 24 capacity for composite particles with a nano-scale dendritic layer to be prepared on their 25 surfaces. Success in applying the coating was confirmed by various techniques, including XPS,

TEM, EDX, FTIR and Raman spectroscopy. The controlled approach adopted to coating the

carbonyl iron particles resulted in them exhibiting sufficient oxidation stability, with only a

~4.5–4.7% decrease in saturation magnetization. Of interest was that their magnetorheological

26

27

suspensions demonstrated ca 4.8% and 4% higher dynamic yield stress than a suspension based on non-modified particles at the highest intensity of magnetic field investigated, i.e. 438 kA m⁻ 1. Notably, sedimentation stability was evaluated by a unique method that involved the use of a tensiometer with a specific testing probe. The aforementioned coating process led to enhanced sedimentation stability of the magnetorheological suspensions based on coated particles possibly due to decrease in the overall density of the particles, enhanced dispersion stability and reduction in the size of their agglomerates in the silicone oil mixtures that were confirmed by optical microscopy. Modification of the particles as proposed has the potential to overcome one of the primary drawbacks of magnetorheological suspensions, this being oxidation instability (which leads to what is referred to as "in-use-thickening"), without negatively affecting their performance in the presence of a magnetic field.

Keywords

29

30

31

32

33

34

35

36

37

38

39

40

42

51

Carbonyl iron; magnetorheology; yield stress; sedimentation stability; poly(amidoamine) 41

Introduction

- Magnetorheological (MR) suspensions (MRSs) are intelligent systems whose rheological 43 parameters can be controlled through applying a magnetic field. They are generally composed 44 of a non-magnetic liquid medium and a dispersed phase of magnetic particles, most commonly 45 carbonyl iron particles (CIPs). These otherwise randomly distributed particles create chain-like 46 structures when exposed to a magnetic field (Feijoo et al. 2020, Machovsky et al. 2015, Marins 47 et al. 2019), causing an abrupt rise in viscosity and other rheological parameters of such MRSs 48 (Bell et al. 2008, Bombard et al. 2015, Cvek et al. 2020, De Vicente et al. 2011, Han et al. 2019, 49 Morillas et al. 2018). Behaviour of this type is referred to as the MR effect, which has found 50 numerous industrial applications, including in damping systems, shock absorbers, as a medium
- in an MR clutch and in MR polishing (Bucchi et al. 2013, Chen et al. 2003, Kwon et al. 2015, 52
- Park et al. 2010, Utami et al. 2018, Zhu et al. 2012). 53
- A recognized issue affecting MRSs is that during long-term operation they undergo what is 54
- referred to as "in-use-thickening" (IUT) (Carlson and Jolly 2000, Utami, Ubaidillah, Mazlan, 55
- 56 Imaduddin, Nordin, Bahiuddin, Aziz, Mohamad and Choi 2018). This brings about increase in
- 57 the resistive force of the instrument, accompanied by the given system showing rise in yield
- stress values in the absence of a magnetic field (Roupec and Mazurek 2011, Roupec et al. 2013). 58
- 59 In-use-thickening is caused by abrasion or delamination of the oxidized layers on the surfaces
- 60 of CIPs (Ulicny et al. 2007), constituting a primary drawback of MRSs. For example, Ulicny et

al. (Ulicny, Balogh, Potter and Waldo 2007) utilized an MRS as an operating medium in an MR clutch. During the investigation and simulation of its use, the MRS was exposed to temperatures of up to 250°C, leading to significant oxidation of the CIPs and increase in the oxygen content on their surfaces, rising from 0.47 wt% to 7 wt%. Indeed, a layer of iron oxide on the surfaces of the CIPs also diminishes rheological parameters in the presence of a magnetic field (Plachy et al. 2018, Ulicny, Balogh, Potter and Waldo 2007). Even though the MR effect of such a device may only be slightly lessened in some cases (Roupec and Mazurek 2011), IUT dramatically depreciates the properties of MRSs and raises operating demands connected to lower performance and higher power consumption in the absence of a magnetic field, hence is considered an undesirable phenomenon of MRSs (Carlson and Jolly 2000, Roupec and Mazurek 2011).

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

A potential means of improving the oxidation stability of the particles is to fabricate core–shell particles, wherein the magnetic core is coated with a polymeric or inorganic shell (Cvek et al. 2015b, Han et al. 2018, Park et al. 2015, Park et al. 2016, Seo et al. 2018, Zhang et al. 2018). Magnetorheological suspensions based on such composite particles have been shown to exhibit a lower coefficient of friction compared to MRSs based on bare particles, as they can lower their general abrasion and extend the service life of an MR device (Zhang, Dong, Choi and Lee 2018). Supplementing a non-magnetic polymeric layer on the surface of CIPs, however, generally leads to decrease in values for saturation magnetization (M_s) (Lee et al. 2017, Machovsky et al. 2014)of the particles; this plays an important role in determining the rheological parameters of an MRS in the presence of a magnetic field. Cvek et al. (Cvek, Mrlik, Ilcikova, Plachy, Sedlacik, Mosnacek and Pavlinek 2015b) have recently proposed surfaceinitiated atom transfer radical polymerization (ATRP) as a tool to facilitate a controlled CIP coating process. They demonstrated that the M_s of the core-shell CIPs (CIP-poly(glycidyl methacrylate)) only decreased by about 4% in comparison with bare CIPs. An approach like theirs could result in an MRS with heightened oxidation stability, wherein the M_s of the particles is retained together with enhanced MR effects. Nevertheless, ATRP requires a complex reaction system, usually one containing a copper halide catalyst and amide-based ligand (Matyjaszewski 2012). Removal of the catalyst is considered the main drawback, which alongside the air sensitivity of the reaction, hinder general adoption by industry. These reasons explain the motivation to introduce a different method capable of providing complementary results with significant potential for practical application.

- The goal of this study is to introduce a novel approach to coating a CIP surface with an organic
- 94 polymeric layer based on poly(amidoamine) (PAMAM) dendrons with step-by-step synthesis,
- 95 which enables control over the thickness of the layer. Poly(amidoamine) is a common
- dendrimer that possesses a globular, monodisperse and highly branched structure (Fréchet J.M.J.
- and D.A. 2001). It is prepared by sequential synthesis, facilitating the preparation of dendrimers
- of various generations (Gx), permitting further definition of properties and size (Demir et al.
- 99 2014). For these reasons it represents a suitable candidate for application as an organic layer on
- 100 the surface of CIPs in magnetorheology, reducing the agglomeration of particles and
- 101 concurrently providing chemical and oxidation protection.
- Herein, two novel magnetic core–shell particles were prepared, utilizing PAMAM dendrons of
- generation 2 (G2) and G2.5. This led to formation of a very thin organic layer on the surface of
- the CIPs, which preserved their level of M_s while also exhibiting enhanced thermal and
- 105 chemical stability. The MR performance of their MRSs was examined, and dynamic and static
- yield stress values were estimated. Interestingly, the values for dynamic yield stress were found
- to be ca 5% higher for the MRSs based on the coated particles than the reference MRS based
- on carbonyl iron particles.

Materials and methods

110 Materials and chemicals

- 111 Commercial CIPs, grade SL ($d_{50} = 8.5 \mu m$; with a minimum Fe content of 99.5%) were obtained
- from BASF (Germany). Ethylenediamine (ED; purity >99.5%), methyl acrylate (MA;
- purity >99%) and potassium bromide (FT-IR grade, ≥99% trace metals basis) were purchased
- 114 from Sigma-Aldrich (USA). The methyl acrylate and APTES were utilized in the form as
- received, while the ED and anhydrous methanol were dried prior to use using layers of sodium
- or molecular sieves, the latter at a mesh pore size of 0.3 nm. Hydrochloric acid (HCl), ethanol
- 117 (p.a.), acetone (p.a.) and toluene (purity >99%) were purchased from Penta Chemicals (Czech
- 118 Republic). Silicone oil (Lukosiol M200, Chemical Works Kolín, Czech Republic, viscosity
- 119 $\eta_c = 194 \text{ mPa s at } 25^{\circ}\text{C}$) was employed as a medium for preparing the MRSs.
- 120 Application of CIP coating with PAMAM dendrons
- The surface of the CIPs was initially activated in order to create hydroxyl groups, besides
- removing undesirable non-magnetic species from the surface, by 0.5 M HCl (Belyavskii et al.
- 2006). The particles were carefully washed afterwards in distilled water, ethanol and acetone.

A decantation process was carried out with a help of an external magnet; this occurring two 124 times with each of the above-mentioned liquids, and the mixture was mixed for approximately 125 10 minutes, followed by further drying at 60°C under the pressure of 200 mbar. These treated 126 particles were designated as CIP-0. 127 128 In the next step, the CIP-0 was modified with APTES to introduce -NH2 groups onto their surface (Belyavskii, Mingalyov, Giulieri, Combarrieau and Lisichkin 2006, Cvek, Mrlik, 129 Ilcikova, Plachy, Sedlacik, Mosnacek and Pavlinek 2015b) that could serve to facilitate the 130 growth of PAMAM dendrons. The CIP-0 particles (~44 g) were treated in a mixture of a 131 redundant amount of toluene (200 ml) and APTES (5 ml) at 110°C under vigorous stirring and 132 in a reflux system. After such treatment, the particles were rinsed and dried as previously. These 133 134 particles were designated as CIP-APTES. The dendrons were grown in accordance with a synthesis procedure reported in the literature 135 (Fréchet J.M.J. and D.A. 2001). The dried CIP-APTES particles were mixed with anhydrous 136 methanol and MA was added drop-wise, where the amount of MA was in proportion to the 137 molar ratio 2:1 to the amount of APTES. The reaction took place in an N₂ atmosphere, under 138 vigorous stirring (250 rpm) and the fixed temperature of 5°C for the first hour. Subsequently, 139 the reaction proceeded for 24 hours at room temperature. The particles were washed after 140 141 treatment and dried as described previously. Following this, they were mixed with the anhydrous methanol and ED was subsequently added drop-wise; the amount of ED was in 142 143 proportion to the molar ratio 1:1 to MA, as previously described. The reaction was performed under an N₂ atmosphere and vigorous stirring (250 rpm), and maintained at 5°C for the first 144 hour. The reaction ran for 30 hours at room temperature, upon which the particles were rinsed 145 again and dried following the procedure given above. 146 147 The reaction of the particles with MA and ED was repeated several times, until particles of generation GX had been prepared, where X represents the number of reactions with both MA 148 and ED (see Figure 1). Finally, the CIPs with PAMAM dendrons of G2 and G2.5 were obtained, 149 the particles of which being designated as CIP-PAMAM-G2 and CIP-PAMAM-G2.5, 150 respectively. 151

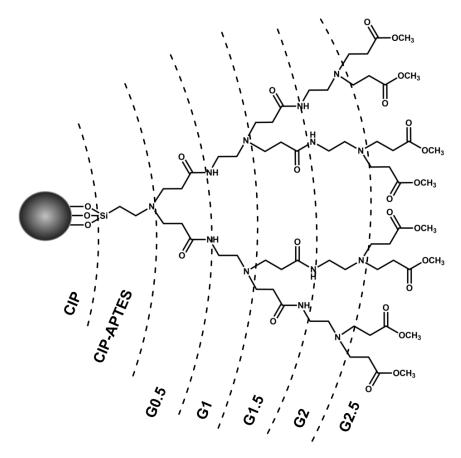


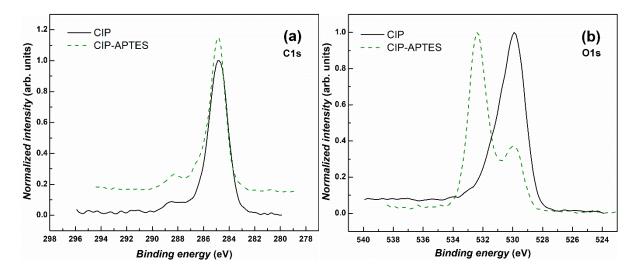
Figure 1. Schematic illustration of the hypothetical chemical composition and structure of the PAMAM dendron on the CIP.

Particle characterization

Sample imaging took place on a high resolution transmission electron microscope (HR-TEM) JEM 2100 (JEOL Japan), operated at the acceleration voltage of 180 kV, and equipped with a LaB6 cathode and a 5 megapixel TENGRA camera (Olympus, Germany). The diluted sample suspensions in methanol (5 mg/ml) were drop-cast onto carbon coated copper grids with a mesh size of 300 (Structure Probe Inc., USA) and dried at 70°C. The prepared particles were further characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT; Nicolet 6700, Thermo Scientific, USA) in combination with KBr, Dispersive Raman microscopy (Nicolet DXR, Thermo Scientific, USA) and energy dispersive X-ray spectroscopy (EDXS) performed on an Octane SSD (area of 30 mm²) EDX detector (AMETEC) integrated into a scanning electron microscope (Nova NanoSEM 450, FEI company, Japan). Magnetic curves for the prepared samples were measured on a vibration sample magnetometer (VSM; Model 7404, Lake Shore, USA) in the magnetic field range of ±760 kA m⁻¹ at room temperature. Thermogravimetric analysis (TGA) was performed on a thermogravimetric analyser (TGA Q500, TA Instruments, USA) at a temperature range of 25–800°C in an N₂ atmosphere at a

heating rate of 10°C min⁻¹. X-ray photoelectron spectroscopy measurements were gauged on a 171 TFA XPS device (Physical Electronics). The base pressure in the XPS analysis chamber 172 equalled approximately 6×10⁻⁸ Pa. The samples were excited by X-rays over a 400 μm² spot 173 area with monochromatic Al Kα_{1,2} radiation at 1486.6 eV. Photoelectrons were detected by a 174 175 hemispherical analyser positioned at an angle of 45° from normal with respect to the sample surface. Survey scan spectra were acquired at a pass energy of 187.85 eV and an energy step of 176 0.4 eV, whereas for Fe 2p, C 1s, O 1s, N 1s and Si 2p individual high-resolution spectra were 177 taken at the pass energy of 29.35 eV and energy step of 0.125 eV. All the spectra were 178 179 referenced to the main C 1s peak of the carbon atoms, which had been assigned a value of 284.8 eV. The spectra were analysed in MultiPak v8.1c software (Ulvac-Phi, Japan) from 180 Physical Electronics, which came supplied with the spectrometer. 181

- 182 Preparation of magnetorheological suspensions and their characterization
- Magnetorheological suspensions containing 60 wt% of the particles were prepared by
- dispersing the particles within the silicone oil. Thus, three different MR formulations containing
- 185 CIP-0, CIP-PAMAM-G2 and CIP-PAMAM-G2.5 particles were fabricated and labelled as
- 186 MRS-0, MRS-PAMAM-G2 and MRS-PAMAM-G2.5. Prior to each measurement, the
- suspensions were thoroughly homogenized by mechanical mixing and ultrasonication (K-12LE,
- 188 Kraintek, Slovakia).
- Magnetorheological measurements were performed on a rotational rheometer (MCR 502 Anton
- Paar, Austria), with an external magnetic cell and gapped parallel plates of 300 μm (the width
- between the upper and lower) in the presence of an external magnetic field of intensity 0-
- 438 kA/m at 25°C. MR characterization was conducted in shear test mode, involving both
- controlled shear rate (CSR) and controlled shear stress (CSS). Measurement for the former was
- performed at the shear rate of $0-80 \text{ s}^{-1}$; in the case of the latter, firstly measurements at the
- constant shear rate of 50 s⁻¹ were taken to obtain a value for shear stress, τ_{50} , and subsequently
- 196 a CSS ramp from 0 Pa to τ_{50} was applied.
- 197 Sedimentation stability was evaluated on a Krüss K100 Tensiometer (MK2/SF/C, Germany)
- 198 fitted with a SH0640 measuring probe, in the shape of an upside-down umbrella. The measuring
- technique adopted was recently introduced, based on weight gain by the particles, which settled
- 200 into the probe immersed in the tested suspension after a certain period of time (Sedlacik and
- 201 Pavlinek 2014). Diluted MR suspensions containing 10 wt% of the particles were used for this
- 202 purpose.


Diluted MR suspensions supplemented with 20 wt% of the particles in silicone oil were investigated by optical microscopy analysis. The samples were homogenized, then put between two glass slides, and a magnetic field with magnetic flux density of 120 mT was applied to create chain-like structures. The suspensions were observed on an optical microscope (Leica DVM2500, Germany) linked to a digital camera.

Results and discussion

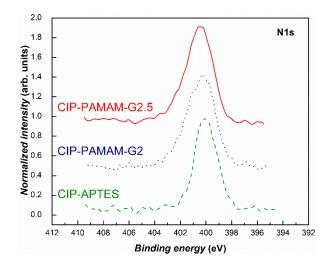

XPS analysis revealed that the CIP particles had been successfully coated with APTES, in addition to further growth of the PAMAM dendrons (Li et al. 2016, Yin et al. 2015). While the bare CIP particles only showed the presence of carbon, oxygen and iron, the CIP-APTES particles possessed nitrogen and silicon from the APTES (Table 1). The carbon spectrum for sample CIP-APTES was similar to that for the bare CIP sample (Figure 2a). In both cases, C–C, C–OH and C=O groups were observed, however, the oxygen spectrum differed for the sample with APTES Figure 2b); two peaks were clearly visible - besides oxygen from the oxidized iron, oxygen from the organic coating was evident. The CIP-APTES sample showed a clear N 1s peak (Figure 3). The nitrogen peaks for CIP-PAMAM-G2 and CIP-PAMAM-G2.5 approximated the one for APTES (Figure 3). Since nitrogen is known for very slight chemical shifts in binding energy, it is not possible to distinguish different configurations of nitrogen in functional groups such as amino, amide or \sqrt{N} , the presence of which would be expected according to Figure 1.

Table 1. Surface composition of the prepared samples in atomic per cent; the data wereobtained from XPS analysis.

Sample	С	0	Fe	N	Si
CIP	31.9	52.7	15.4		
CIP-APTES	46.3	31.0	3.4	6.6	12.8
CIP-PAMAM-G2	49.2	30.8	3.0	10.5	6.4
CIP-PAMAM-G2.5	49.7	31.0	3.0	8.8	7.5

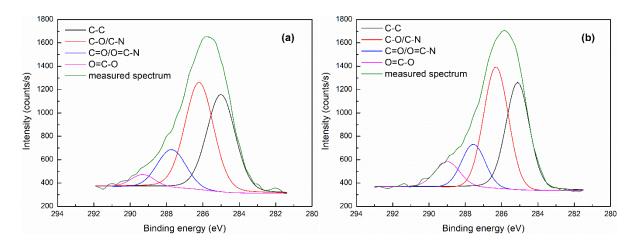


Figure 2. Comparison of XPS high-resolution spectra for (a) C1s and (b) O1s of the CIP and CIP-APTES particles.

Figure 3. XPS high-resolution spectra of N1s for the samples CIP-APTES, CIP-PAMAM-G2 and CIP-PAMAM-G2.5.

Unlike nitrogen, the carbon spectra for CIP-PAMAM-G2, and CIP-PAMAM-G2.5 revealed significant differences from the carbon spectra for the CIP-APTES and CIP samples. The carbon spectra for the samples CIP-PAMAM-G2 and CIP-PAMAM-G2.5 were much wider than for CIP-APTES and CIP, indicating the presence of different functional groups originating from the PAMAM (Figure 4). Fitting the carbon spectra for the samples CIP-PAMAM-G2, and CIP-PAMAM-G2.5 showed some similarities, as functional groups such as C-OH/C-NH₂, C=O/N-C=O and O=C-OR were observed in both. Nevertheless, while the concentration of C-OH/C-NH₂ and C=O/N-C=O was almost the same, the concentration of O=C-OR was much higher for the sample CIP-PAMAM-G2.5 since acrylate constituted its top layer.

Figure 4. Carbon C1s spectra with subcomponents for the samples (a) CIP-PAMAM-G2 and (b) CIP-PAMAM-G2.5

249

250

251

252

253

254

255

256

257

258

259

260

261

262

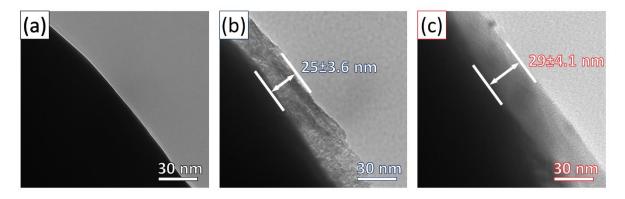
263

264

265

266

243


244

245

246

Figure 5 shows TEM images of a bare particle and its modified analogues, demonstrating that the samples CIP-PAMAM-G2 and CIP-PAMAM-G2.5 clearly possessed a layer of coating on the surface of the particles. While CIP-0 had bare particles, a sharp contrast between the iron particle and background could be discerned. In the case of particles CIP-PAMAM-G2 and CIP-PAMAM-G2.5, a thin layer was distinguishable, confirming the formation of PAMAM dendrons on the surface of the CIP. The thickness (<30 nm) observed is highly desirable in the context of magnetorheology, since suppression of chemical and thermal oxidation of the particles is presumed to occur when values for M_s are maintained (Cvek et al. 2015a, Cvek, Mrlik, Ilcikova, Plachy, Sedlacik, Mosnacek and Pavlinek 2015b). It is worthy of note that the theoretical thickness of the layers, according to Figure 1, was significantly less than the thickness detected. It is known that during silanization of a surface with APTES, obtaining a monolayer of APTES is difficult to achieve. It is more likely that, under certain reaction conditions, a silane layer of ca 10 nm thick on the surface is possible (Aissaoui et al. 2012). A recognized aspect is that growth of a generation 2 PAMAM dendrimer can bring about rise in particle size by about 8 nm (Khodadust et al. 2013). In the case of dendron growth, some side reactions may occur due to the given concentrations of the monomers and reaction conditions; furthermore, due to polarization forces and adsorption, a dendrimer has the potential to increase the size of the particles to 15 nm (Baykal et al. 2012, Jafari-Soghieh et al. 2019). The thicker

layer discerned in this study could have been caused by either a trace amount of precursors remaining on the particles after the washing cycle or the chosen precursor ratio.

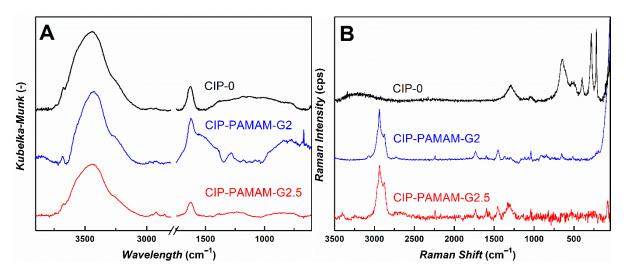


Figure 5. TEM images of (a) the bare CIP-0 and its analogues (b) CIP-PAMAM-G2 and (c) CIP-PAMAM-G2.5.

The DRIFT spectra for the prepared samples showed a broad band in the region above 3200 cm⁻¹ and a medium band at 1628 cm⁻¹, ascribed to the moisture of the samples (Figure 6a). The sample CIP-PAMAM-G2.5 also exhibited peaks at 2921 cm⁻¹ and 2856 cm⁻¹ typical for PAMAM dendrons or dendrimers (Gautam S. P. et al., Parsian et al. 2016), representing the stretching of the functional groups –CH₃ and –CH₂, respectively. However, no other significant peaks were presented due to very thin layer of PAMAM dendrons on the surface of the CIPs (Figure 5).

Figure 6b details the Raman spectra for the bare CIP and PAMAM samples. These spectra are not influenced by moisture, which significantly deteriorates infrared measurements and associated bands that prevail in FTIR findings. Raman analysis clearly confirmed that the PAMAM dendrons were present in both CIP-PAMAM samples. CIP-PAMAM-G2.5 contained acrylate groups corresponding to bands at 1745 cm⁻¹ and 1320 cm⁻¹, representing C=O and C-O-C stretching, respectively; weak bands were also visible at 1040 cm⁻¹ and 820 cm⁻¹ pertaining to skeletal vibrations of MA. The spectrum for CIP-PAMAM-G2 included bands at 1732 cm⁻¹ and 1035 cm⁻¹, which probably constituted C=O stretching from the O=C-NH-C-group and C-N stretching, respectively. The two spectra outlined above comprised similar bands, however, interpretation of them was informed by the fact that G2 and G2.5 contained acrylate and amine (amide) groups, respectively. The spectra for both CIP-PAMAM samples featured bands in the regions 3000–2800 cm⁻¹ and 1460–1455 cm⁻¹, confirming the presence of CH groups. Interestingly, the spectrum for Fe is typical for Fe₂O₃, due to possible oxidation of the surface layer of the particles, with no indication of acrylate and amine groups. This

confirmed that binding MA and ED to CIP-0 in step-wise synthesis had been successful and CIP-PAMAM particles had been created. It was not possible to carry out precise differentiation of the G2 and G2.5 dendrons any further with vibrational spectra, as certain Raman bands (e.g. C=O, N-C, N-H and others) were present in the Raman spectra and, thus, also in both CIP-PAMAM samples. This result corresponded to EDXS analysis, as described below.

Figure 6. DRIFT (A) and Raman (B) spectra for the bare CIP-0 and its analogues CIP-PAMAM-G2 and CIP-PAMAM-G2.5.

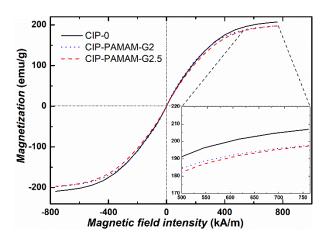

Table 2 lists the results of EDXS, a semi-quantitative analysis describing the chemical composition of a surface of a material (from depth upwards, in units of μm). Besides iron, the CIP-0 sample contained a small amount of carbon and oxygen, the former originating from iron pentacarbonyl - a precursor for preparing CIPs, while the latter comes from the hydroxyl groups on the surface of the particles; however, it is not possible to fully disprove the presence of iron oxide. As for CIP-PAMAM-G2 and CIP-PAMAM-G2.5, the small portions of nitrogen and silicon from the APTES and PAMAM dendrons confirmed that the coating process of the CIP-0 with PAMAM dendrons had taken place successfully.

Table 2. Results of EDXS analysis (values are given in weight per cent) and the saturation magnetization values for the prepared particles.

Element		CIP-0 (wt%)	CIP-PAMAM-G2	CIP-PAMAM-G2.5	
Element	CII -0 (Wt/0)	(wt%)	(wt%)		
	С	3.06 ± 0.18	2.88 ± 0.19	3.37 ± 0.20	

N	_	0.38 ± 0.17	0.43 ± 0.19		
O	1.28 ± 0.09	1.14 ± 0.10	1.13 ± 0.11		
Si	_	0.15 ± 0.03	0.13 ± 0.03		
Fe	95.66 ± 0.20	95.18 ± 0.26	94.94 ± 0.29		
Magnetic saturation M _S (emu/g)	207.0	197.7	197.3		
Decrease in M _S against CIP-0 (%)	-	4.5	4.7		

The value for M_S of the magnetic particles is important in relation to the MR effect of an MRS. In low magnetic fields, yield stress (τ_y) - the minimal amount of stress that has to be applied before the system starts to flow - is primarily dependent on magnetic field intensity, scaling as $\tau_y \sim H^2$; with increase in the intensity of the magnetic field, M_S emerges as an important parameter, and τ_y scales as $\tau_y \sim M_S^{1/2} H^{3/2}$ (Fang et al. 2011, Ginder et al. 1996). It is consequently crucial to follow a controlled procedure for coating magnetic particles in order to keep values for M_S as high as possible. Herein, the CIP coating process only subtly affected the M_S values for the prepared particles (Figure 7), which is a desirable quality for an MRS since its MR effect persists correspondingly. The M_S values for the samples are given in Table 2, revealing that the M_S for the sample with the greatest dendron generation of a non-magnetic layer on its surface (CIP-PAMAM-G2.5) merely decreased by about 4.7% compared to the neat CIPs (CIP-0). This finding is similar to the lowest drop in M_S values found in the literature, wherein atom transfer radical polymerization was employed for controlled application of layers of a polymeric coating on CIPs (Cvek, Mrlik, Ilcikova, Plachy, Sedlacik, Mosnacek and Pavlinek 2015b).

Figure 7. Magnetic curves for the bare CIP-0 and its analogues CIP-PAMAM-G2 and CIP-PAMAM-G2.5.

Oxidation stability in an acidic solution is a test often performed to gauge improvement in chemical stability and confirm the presence of a compact coating on particles. Rise in pH value during the treatment of CIP-0 in 0.05 M solution of HCl (Figure 8a) indicated that oxidation of the particles had occurred, evident through neutralization of the acidic solution. In contrast, CI-PAMAM-G2 and CI-PAMAM-G2.5, with a thin layer of coating on their respective surfaces, showed high stability in acidic conditions, confirming the PAMAM coating was free of defects and able to inhibit contact between the acidic solution and the iron core. This extreme stability suggests that the uniform coating in place could additionally protect the iron particles from entry by moisture or other substances containing oxygen during use, thus preventing oxidation from affecting the service life of any instruments featuring them. Figure 8b depicts the change in weight exhibited by the prepared particles during heat treatment in a N₂ atmosphere at up to 800°C. In the case of CIP-0, the particles were stable until 370°C, whereupon an abrupt gain in weight by the particles occurred. Even though the test happened in a N₂ atmosphere, the weight of the samples increased considerably during the heating process. The gain in weight could been arisen from initiation of a nitriding phase, causing formation of Fe₄N or various Fe₃N_x (Konig et al. 2017). Nevertheless, the particles still possessed omnipresent oxygen adsorbed to their surfaces with the potential to oxidise them. The coated particles demonstrated improved thermal stability upon a sudden increase in weight at 500°C. It has been stated in the literature that - concurrent with or following thermal decomposition of a polymeric layer - should a nitriding phase develop or the particles oxidise, thermal decomposition of the polymer still takes place, despite the fact that no decrease in weight is evident (Cvek, Mrlik, Ilcikova, Plachy, Sedlacik, Mosnacek and Pavlinek 2015b).

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

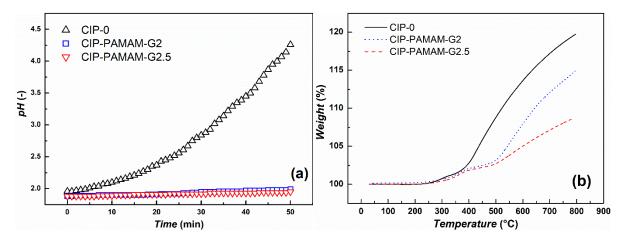
351

352

353

354

355


356

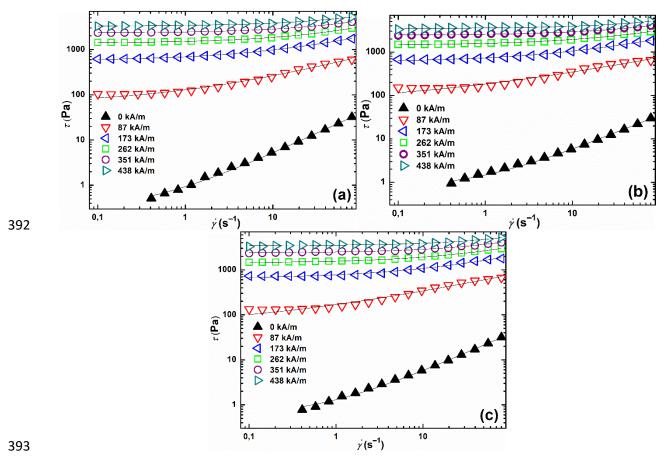
357

358

359

360

Figure 8. (a) Oxidation stability of the bare CIP-0 and its analogues CIP-PAMAM-G2 and CIP-PAMAM-G2.5, as tested in 0.05 M solution of HCl at room temperature in relation to the dependence of pH values of the solution over time. (b) TGA curves for the bare CIP-0 and its


analogues CIP-PAMAM-G2 and CIP-PAMAM-G2.5, as tested in an N_2 atmosphere at a heating rate of 10° C min⁻¹.

Magnetorheology and sedimentation stability

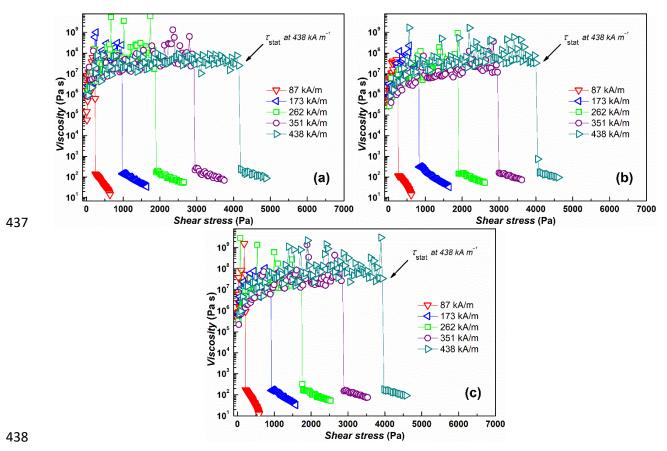
The MRSs exhibited transition from liquid to a solid-like state after applying an external magnetic field, a typical characteristic for an MRS. In the absence of an external magnetic field they demonstrated slightly pseudoplastic behaviour, whereas in a presence of one their values for shear stress increased by several orders of magnitude and they exhibited field-dependent values for τ_y (Figure 9) (Anupama et al. 2019, Kwon et al. 2020). Several rheological models are capable of estimating τ_y for an MRS. Even though some exist with the capability to fit flow curves (Cvek et al. 2016, Seo, Han, Choi, Takahara, Choi and Seo 2018), for reasons of feasibility and simplicity, herein the classic Herschel-Bulkley (H-B) rheological model was employed to fit the experimental data. The H-B equation is expressed below (Equation 1), where *K* represents the consistency index and *n* is the non-Newtonian flow index.

$$\tau = K \cdot \dot{\gamma}^n + \tau_{\gamma} \tag{1}$$

The field-off viscosities of the MRSs based on coated particles have the potential to slightly exceed the value for MRS-CIP, since the branched polymeric surfaces on CI-PAMAM-G2 and CI-PAMAM-G2.5 increase interactions between both them and the carrier fluid (silicone oil), which brings about a minor decrease in the parameter n from 0.89 to 0.84 that describes the evolved pseudoplasticity of the system (Table 3). Interestingly, values for τ_y are higher for the MRSs based on coated particles than MRS-CIP (Table 3). The polymeric coating should hinder possible particle agglomeration and improve the arrangement of particles upon application of a magnetic field, thereby enhancing the MR effect of the MRS (Lopez-Lopez et al. 2008b). When tested with the strongest applied magnetic field of 438 kA m⁻¹, the MRSs with coated particles (CI-PAMAM-G2 and CI-PAMAM-G2.5) exhibited τ_y values approximately 4.8% and 4.0% higher than the reference MRS, respectively. Thus, the ability to control the thickness of the organic layer on magnetic particles in an MRS could result in suitable particles with significantly heightened oxidation stability as well as the absence of any undesirable decrease in MR performance by the MRS.

Figure 9. Log-log dependencies of shear stress on the shear rate for the prepared MRSs: (a) MRS-CIP, (b) MRS-PAMAM-G2 and (c) MRS-PAMAM-G2.5 in various magnetic fields; measurements were performed in CSR mode, and the solid lines represent the H-B fit.

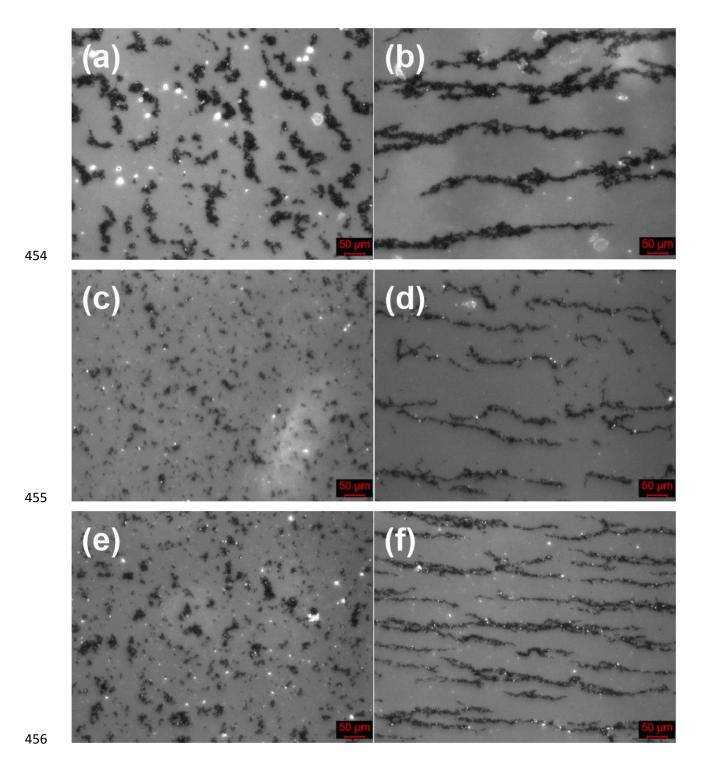
Table 3. Values for rheological parameters obtained from the H-B model and τ_{stat} values for the prepared MRSs at various intensities of magnetic field.


Commle	Danamatan	Magnetic field intensity (kA/m)					
Sample	Parameter	0	87	173	262	351	438
MRS-CIP	n [-]	0.89	0.50	0.51	0.58	0.60	0.61
	K [Pa s ⁿ]	0.64	63	128	121	127	137
	τ _y [Pa]	0.29	65	563	1 390	2 320	3 290
	n [-]	0.85	0.31	0.45	0.54	0.59	0.64
MRS-PAMAM-	K [Pa s ⁿ]	0.76	113	147	147	130	124
G2	τ _y [Pa]	0.71	70	597	1 440	2 430	3 450
MRS-PAMAM- G2.5	n [-]	0.85	0.40	0.49	0.55	0.60	0.64
	K [Pa s ⁿ]	0.73	112	144	144	124	110
	τ_y [Pa]	0.57	57	629	1 410	2 370	3 420
Static wield atmos		Magnetic field intensity (kA/m)					
Static yield stress values	Parameter	0*	87	173	262	351	438
MRS-CIP	τ _{stat} [Pa]	_	239	961	1870	2920	4140
MRS-PAMAM- G2 MRS-PAMAM- G2.5	$\tau_{\rm stat}$ [Pa]	_	261	817	1880	2960	4000
	τ _{stat} [Pa]	_	219	910	1760	2850	3930

^{*}The prepared MRSs did not exhibit any inherent τ_{stat} .

Another way to evaluate the stiffness of an MRS is to determine static yield stress, denoted as τ_{stat} , and different methods exist to do so experimentally (De Vicente et al. 2010, Yang et al. 2009). Controlled shear stress measurement, with an ascending shear stress ramp rising to the value τ_{50} , was employed for this purpose. In this context, no macroscopic flow occurs in the system below τ_{stat} , as represented by high values for viscosity. When the value for shear stress exceeds that for τ_{stat} , flow is initiated and an abrupt drop in viscosity is observed (Figure 10). The final value recorded for shear stress before such dramatic reduction in viscosity is designated as τ_{stat} (De Vicente, Vereda, Segovia-Gutierrez, Morales and Hidalgo-Alvarez 2010, Fang, Liu, Choi and Seo 2011). In tests, unlike the τ_{y} values, τ_{stat} was found to be higher for MRS-CIP than systems with coated particles, even though the difference is less than <6% at the magnetic field intensity of 438 kA m⁻¹ (Table 3). It should be further noted that τ_{stat} values were generally higher than τ_0 values due to the different origins of both phenomena and methods

for their estimation. While τ_y is estimated by indirect methods (De Vicente, Klingenberg and Hidalgo-Alvarez 2011), τ_{stat} , which is often referred to as frictional yield stress, is considered collapse of the top layer of a built-up structure close to the moving part of its geometry (or "slip"), rather than the collapse of built-up structures throughout the MRS (Volkova et al. 2000). Having a coating on the particles can prevent them from agglomerating and facilitate enhanced arrangement of them upon application of a magnetic field as a consequence; in addition, they demonstrate higher τ_y values than bare CIPs (Lopez-Lopez, Zugaldia, Gomez-Ramirez, Gonzalez-Caballero and Duran 2008b). In the case of τ_{stat} , its values are not significantly affected by such built-up structures, since particles collapse from the top part of the measured geometry.



439440 Figure

Figure 10. Dependencies of viscosity on shear stress for the prepared MRSs: (a) MRS-CIP, (b) MRS-PAMAM-G2 and (c) MRS-PAMAM-G2.5 in various magnetic fields; measurements were performed in CSS mode.

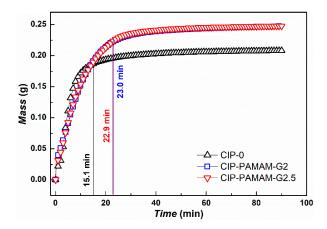

The fact that CIP formed agglomerates in the silicone oil is evident from images obtained from optical microscopy (Figure 11a). Since such particles possess a polar surface, they tend to group together in silicone oil. The coated surfaces of those in CIP-PAMAM-G2 and CIP-PAMAM-G2.5 led to good dispersion in the liquid medium, both exhibiting a low amount of agglomerates of small size compared to CIPs (Figure 11c, e). After applying a magnetic field, the particles created chain-like structures in the direction of the magnetic field (Figure 11b, d, f). While thick CIP chains of agglomerates were evident, CIP-PAMAM-G2 and CIP-PAMAM-G2.5 created thinner columns of coated particles that were more uniform than the CIP chains. Comparing CIP-PAMAM-G2 and CIP-PAMAM-G2.5 with a terminating –NH₂ group or –O–CH₃, the former demonstrated less aggregation than the latter.

Figure 11. Optical microscopy of a 20 wt% silicone oil suspensions of (a, b) CIP-0, (c, d) CI-PAMAM-G2 and (e,f) CI-PAMAM-G2.5). Images (a), (c) and (e) are taken in the absence of a magnetic field; images (b), (d) and (f) are taken in the presence of a magnetic field with magnetic flux density of 120 mT.

Poor sedimentation stability is another drawback of MRSs that has to be overcome for possible everyday applications. Although the coating process of the particles itself does not provide MRSs with long-term stability, it can reduce the sedimentation rate of the particles, which takes

place through decrease in overall density of the particles and heightened friction forces between the particles and carrier fluid. Furthermore, coating the particles also diminishes their tendency to agglomerate, potentially lending the system greater stability (Lopez-Lopez et al. 2008a). Figure 12 details measurements of sedimentation stability for the prepared MRSs. These describe a comparative approach for the given MRSs and are expressed as t_{90} , i.e. the time in which 90% of the particles from the area above the probe settle into it. While t_{90} was 15.1 min for MRS-CIP, the same for the two MRSs based on the PAMAM coated particles were found to be ~ 23.0 min. for both. Unfortunately, it is not possible to compare the findings with another MRS due to unique nature of the sedimentation testing method adopted.

Figure 12. Test of sedimentation stability of the prepared MRSs; results are expressed as the mass of particles settled in the measuring probe over a certain period of time.

Conclusions

This paper presents application of a coating of carbonyl iron particles with poly(amidoamine) dendrons as an efficient means for preventing particle oxidation and extending the service life of suspensions. The particles were coated with poly(amidoamine) of 2 and 2.5 generations, giving rise to different functional groups on their surfaces. The thickness of the dendritic layers equalled approximately 30 nm, which provided sufficient thermal and chemical oxidation stability, as tested by thermogravimetric analysis and treatment in an acidic solution, thereby confirming the particles had been completely coated. In addition, their saturation magnetization decreased by only ca 4.5% compared to the bare carbonyl iron particles. The particles were further employed as a dispersed phase in magnetorheological suspensions, and their performance was investigated through measuring controlled shear rate and controlled shear stress in order to determine dynamic yield stress, conducted by means of the Herschel-Bulkley

model and static yield stress. Interestingly, the magnetorheological suspensions based on coated particles exhibited values of ca 4% higher for dynamic yield stress, as well as demonstrating enhanced sedimentation stability, compared to magnetorheological suspensions based on the original carbonyl iron particles. Optical microscopy revealed that the organic layer on the surface hinders the coated particles from forming agglomerates; thus, as stated in the literature, the potential exists for developing MR suspensions with heightened magnetorheological effects. Such coated particles would appear to make it possible to prepare magnetorheological suspensions with high oxidation stability, thereby overcoming the issue of in-use-thickening which is known to limit the utilization of magnetorheological suspensions, with the consequent advantage of persistent high performance in the presence of a magnetic field. In addition, the improvement in reduced abrasion of the particles during their use can be expected.

499

500

488

489

490

491

492

493

494

495

496

497

498

Author information

- 501 Corresponding Author
- *E-mail: plachy@utb.cz
- 503 504
- The authors declare no competing financial interests.
- 506 Conflicts of interest
- There are no conflicts to declare.
- 508 Data availability
- 509 The datasets generated and/or analysed during the current study are available from the corresponding
- author upon request.

511

512

Acknowledgements

- This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic
- 514 DKRVO (RP/CPS/2020/003) and DKRVO (RP/CPS/2020/006). Research was also aided by
- 515 the Operational Programme Research and Development for Innovations initiative co-funded by
- the European Regional Development Fund (ERDF) and the state budget of the Czech Republic,
- within the framework of a Centre of Polymer Systems project (CZ.1.05/2.1.00/19.0409).

518

References

520

- Aissaoui N, Bergaoui L, Landoulsi J, Lambert JF, Boujday S (2012) Silane Layers on Silicon Surfaces:
 Mechanism of Interaction, Stability, and Influence on Protein Adsorption. Langmuir 28: 656665. https://doi.org/10.1021/la2036778
- Anupama AV, Kumaran V, Sahoo B (2019) Synthesis of highly magnetic Mn-Zn ferrite (Mn0.7Zn0.3Fe2O4) ceramic powder and its use in smart magnetorheological fluid. Rheol Acta 58: 273-280. https://doi.org/10.1007/s00397-019-01137-z
 - Baykal A, Toprak MS, Durmus Z, Senel M, Sozeri H, Demir A (2012) Synthesis and Characterization of Dendrimer-Encapsulated Iron and Iron-Oxide Nanoparticles. J Supercond Nov Magn 25: 1541-1549. https://doi.org/10.1007/s10948-012-1454-z
 - Bell RC, Karli JO, Vavreck AN, Zimmerman DT, Ngatu GT, Wereley NM (2008) Magnetorheology of submicron diameter iron microwires dispersed in silicone oil. Smart Mater Struct 17: 6. https://doi.org/10.1088/0964-1726/17/01/015028
 - Belyavskii SG, Mingalyov PG, Giulieri F, Combarrieau R, Lisichkin GV (2006) Chemical modification of the surface of a carbonyl iron powder. Protect Met 42: 244-252. https://doi.org/10.1134/s0033173206030064
 - Bombard AJF, Goncalves FR, de Vicente J (2015) Magnetorheology of Carbonyl Iron Dispersions in 1-Alkyl-3methylimidazolium Ionic Liquids. Ind Eng Chem Res 54: 9956-9963. https://doi.org/10.1021/acs.iecr.5b02824
 - Bucchi F, Forte P, Franceschini A, Frendo F (2013) Analysis of differently sized prototypes of an MR clutch by performance indices. Smart Materials and Structures 22: 10. https://doi.org/10.1088/0964-1726/22/10/105009
 - Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10: 555-569. https://doi.org/10.1016/s0957-4158(99)00064-1
 - Cvek M, Mrlik M, Ilcikova M, Mosnacek J, Babayan V, Kucekova Z, Humpolicek P, Pavlinek V (2015a) The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv 5: 72816-72824. https://doi.org/10.1039/c5ra11968e
 - Cvek M, Mrlik M, Ilcikova M, Plachy T, Sedlacik M, Mosnacek J, Pavlinek V (2015b) A facile controllable coating of carbonyl iron particles with poly(glycidyl methacrylate): a tool for adjusting MR response and stability properties. J Mater Chem C 3: 4646-4656. https://doi.org/10.1039/c5tc00319a
 - Cvek M, Mrlik M, Pavlinek V (2016) A rheological evaluation of steady shear magnetorheological flow behavior using three-parameter viscoplastic models. J Rheol 60: 687. https://doi.org/10.1122/1.4954249
 - Cvek M, Torres-Mendieta R, Havelka O, Urbanek M, Plachy T, Cernik M (2020) Laser-induced fragmentation of carbonyl iron as a clean method to enhance magnetorheological effect. J Clean Prod 254: 8. https://doi.org/10.1016/j.jclepro.2020.120182
 - de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7: 3701-3710. https://doi.org/10.1039/c0sm01221a
 - de Vicente J, Vereda F, Segovia-Gutierrez JP, Morales MD, Hidalgo-Alvarez R (2010) Effect of particle shape in magnetorheology. J Rheol 54: 1337-1362. https://doi.org/10.1122/1.3479045
 - Demir M, Senel M, Baykal A (2014) Reversible immobilization of BSA on Cu-chelated PAMAM dendrimer modified iron oxide nanoparticles. Appl Surf Sci 314: 697-703. https://doi.org/10.1016/j.apsusc.2014.07.082
 - Fang FF, Liu YD, Choi HJ, Seo Y (2011) Core-Shell Structured Carbonyl Iron Microspheres Prepared via Dual-Step Functionality Coatings and Their Magnetorheological Response. ACS Appl Mater Interfaces 3: 3487-3495. https://doi.org/10.1021/am200714p
 - Feijoo AV, Lopez-Lopez MT, Galindo-Gonzalez C, Stange S, Nguyen TT, Mammeri F, Merah S, Ponton A (2020) Rheological investigation of magnetic sensitive biopolymer composites: effect of the

- ligand grafting of magnetic nanoparticles. Rheol Acta 59: 165-176. https://doi.org/10.1007/s00397-020-01191-y
- 573 Fréchet J.M.J., D.A. T (2001) Dendrimers and Other Dendritic Polymers. John Wiley & Sons, Edithvale (Australia)

- Gautam S. P., Keservani R. K., Gautam T., Gupta A. K., K. SA An Alternative Approach for Acetylation of Amine Terminated Polyamidoamine (PAMAM) Dendrimer. Ars Pharmaceutica 56: 155-159.
- Ginder JM, Davis LC, Elie LD (1996) Rheology of magnetorheological fluids: Models and measurements. Int J Mod Phys B 10: 3293-3303. https://doi.org/10.1142/s0217979296001744
- Han JK, Lee JY, Choi HJ (2019) Rheological effect of Zn-doped ferrite nanoparticle additive with enhanced magnetism on micro-spherical carbonyl iron based magnetorheological suspension. Colloid Surf A-Physicochem Eng Asp 571: 168-173. https://doi.org/10.1016/j.colsurfa.2019.03.084
- Han S, Choi J, Seo YP, Park IJ, Choi HJ, Seo Y (2018) High-performance magnetorheological suspensions of pickering-emulsion-polymerized polystyrene/Fe₃O₄ particles with enhanced stability. Langmuir 34: 2807-2814. https://doi.org/10.1021/acs.langmuir.7b04043
- Chen ZQ, Wang XY, Ko JM, Ni YQ, Spencer BF, Yang G (2003) MR damping system on Dongting Lake cable-stayed bridge. In: Liu SC (ed) Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, vol 5057. Spie-Int Soc Optical Engineering, Bellingham, pp 229-235
- Jafari-Soghieh F, Maleki B, Behniafar H (2019) Effect of dendrimer-functionalized magnetic iron oxide nanoparticles on improving thermal and mechanical properties of DGEBA/IPD epoxy networks. High Performance Polymers 31: 24-31. https://doi.org/10.1177/0954008317749020
- Khodadust R, Unsoy G, Yalcin S, Gunduz G, Gunduz U (2013) PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations. J Nanopart Res 15: 13. https://doi.org/10.1007/s11051-013-1488-6
- Konig R, Muller S, Dinnebier RE, Hinrichsen B, Muller P, Ribbens A, Hwang J, Liebscher R, Etter M, Pistidda C (2017) The crystal structures of carbonyl iron powde revised using in situ synchrotron XRPD. Z Krist-Cryst Mater 232: 835-842. https://doi.org/10.1515/zkri-2017-2067
- Kwon SH, Hong CH, Do PX, Choi SB, Choi HJ (2015) Magnetorheology of a carbonyliron microsphere suspension with a halloysite additive and its damping force characteristics. Ind Eng Chem Res 54: 4655-4663. https://doi.org/10.1021/acs.iecr.5b00233
- Kwon SH, Na SM, Flatau AB, Choi HJ (2020) Fe-Ga alloy based magnetorheological fluid and its viscoelastic characteristics. J Ind Eng Chem 82: 433-438. https://doi.org/10.1016/j.jiec.2019.11.007
- Lee JW, Hong KP, Kwon SH, Choi HJ, Cho MW (2017) Suspension rheology and magnetorheological finishing characteristics of biopolymer-coated carbonyliron particles. Ind Eng Chem Res 56: 2416-2424. https://doi.org/10.1021/acs.iecr.6b03790
- Li YZ, Guan YQ, Liu Y, Yin JB, Zhao XP (2016) Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior. Nanotechnology 27: 11. https://doi.org/10.1088/0957-4484/27/19/195702
- Lopez-Lopez MT, Kuzhir P, Bossis G, Mingalyov P (2008a) Preparation of well-dispersed magnetorheological fluids and effect of dispersion on their magnetorheological properties. Rheol Acta 47: 787-796. https://doi.org/10.1007/s00397-008-0271-6
- Lopez-Lopez MT, Zugaldia A, Gomez-Ramirez A, Gonzalez-Caballero F, Duran JDG (2008b) Effect of particle aggregation on the magnetic and magnetorheological properties of magnetic suspensions. J Rheol 52: 901-912. https://doi.org/10.1122/1.2931008
- Machovsky M, Mrlik M, Kuritka I, Pavlinek V, Babayan V (2014) Novel synthesis of core-shell urchinlike ZnO coated carbonyl iron microparticles and their magnetorheological activity. RSC Adv 4: 996-1003. https://doi.org/10.1039/c3ra44982c
- Machovsky M, Mrlik M, Plachy T, Kuritka I, Pavlinek V, Kozakova Z, Kitano T (2015) The enhanced magnetorheological performance of carbonyl iron suspensions using magnetic Fe₃O₄/ZHS hybrid composite sheets. RSC Adv 5: 19213-19219. https://doi.org/10.1039/c4ra14054k

- Marins JA, Plachy T, Kuzhir P (2019) Iron-sepiolite magnetorheological fluids with improved performances. J Rheol 63: 125-139. https://doi.org/10.1122/1.5048051
- Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules 45: 4015-4039. https://doi.org/10.1021/ma3001719

- Morillas JR, Bombard AJF, de Vicente J (2018) Magnetorheology of bimodal fluids in the single-multidomain limit. Ind Eng Chem Res 57: 13427-13436. https://doi.org/10.1021/acs.iecr.8b03438
 - Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6: 5246-5253. https://doi.org/10.1039/c0sm00014k
 - Park DE, Chae HS, Choi HJ, Maity A (2015) Magnetite-polypyrrole core-shell structured microspheres and their dual stimuli-response under electric and magnetic fields. J Mater Chem C 3: 3150-3158. https://doi.org/10.1039/c5tc00007f
 - Park DE, Choi HJ, Vu CM (2016) Stimuli-responsive polyaniline coated silica microspheres and their electrorheology. Smart Materials and Structures 25: 11. https://doi.org/10.1088/0964-1726/25/5/055020
 - Parsian M, Mutlu P, Yalcin S, Tezcaner A, Gunduz U (2016) Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery. International Journal of Pharmaceutics 515: 104-113. https://doi.org/10.1016/j.ijpharm.2016.10.015
 - Plachy T, Kutalkova E, Sedlacik M, Vesel A, Masar M, Kuritka I (2018) Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions. J Ind Eng Chem 66: 362-369. https://doi.org/10.1016/j.jiec.2018.06.002
 - Roupec J, Mazurek I (2011) Stability of magnetorheological effect during long term operation. Springer-Verlag Berlin, Berlin
 - Roupec J, Mazurek I, Strecker Z, Klapka M (2013) The behavior of the MR fluid during durability test. In: Unal HI (ed) 13th International Conference on Electrorheological Fluids and Magnetorheological Suspensions, vol 412. Iop Publishing Ltd, Bristol
 - Sedlacik M, Pavlinek V (2014) A tensiometric study of magnetorheological suspensions' stability. RSC Adv 4: 58377-58385. https://doi.org/10.1039/c4ra11842a
 - Seo YP, Han S, Choi J, Takahara A, Choi HJ, Seo Y (2018) Searching for a stable high-performance magnetorheological suspension. Adv Mater 30: 13. https://doi.org/10.1002/adma.201704769
 - Ulicny JC, Balogh MP, Potter NM, Waldo RA (2007) Magnetorheological fluid durability test Iron analysis. Mater Sci Eng A-Struct Mater Prop Microstruct Process 443: 16-24. https://doi.org/10.1016/j.msea.2006.06.050
 - Utami D, Ubaidillah, Mazlan SA, Imaduddin F, Nordin NA, Bahiuddin I, Aziz SAA, Mohamad N, Choi SB (2018) Material characterization of a magnetorheological fluid subjected to long-term operation in damper. Materials 11: 17. https://doi.org/10.3390/ma11112195
 - Volkova O, Bossis G, Guyot M, Bashtovoi V, Reks A (2000) Magnetorheology of magnetic holes compared to magnetic particles. J Rheol 44: 91-104. https://doi.org/10.1122/1.551075
 - Yang YB, Li L, Chen G (2009) Static yield stress of ferrofluid-based magnetorheological fluids. Rheol Acta 48: 457-466. https://doi.org/10.1007/s00397-009-0346-z
 - Yin JB, Wang XX, Zhao XP (2015) Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency. Nanotechnology 26: 9. https://doi.org/10.1088/0957-4484/26/6/065704
 - Zhang P, Dong YZ, Choi HJ, Lee CH (2018) Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid. J Ind Eng Chem 68: 342-349. https://doi.org/10.1016/j.jiec.2018.08.005
- Zhu XC, Jing XJ, Cheng L (2012) Magnetorheological fluid dampers: A review on structure design and analysis. J Intell Mater Syst Struct 23: 839-873. https://doi.org/10.1177/1045389x12436735