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ABSTRACT Comparing various metaheuristics based on an equal number of objective function evaluations
has become standard practice. Many contemporary publications use a specific number of objective function
evaluations by the benchmarking sets definitions. Furthermore, many publications deal with the recurrent
theme of late stagnation, which may lead to the impression that continuing the optimization process could
be a waste of computational capabilities. But is it? Recently, many challenges, issues, and questions have
been raised regarding fair comparisons and recommendations towards good practices for benchmarking
metaheuristic algorithms. The aim of this work is not to compare the performance of several well-known
algorithms but to investigate the issues that can appear in benchmarking and comparisons of metaheuristics
performance (no matter what the problem is). This article studies the impact of a higher evaluation number
on a selection of metaheuristic algorithms. We examine the effect of a raised evaluation budget on overall
performance, mean convergence, and population diversity of selected swarm algorithms and IEEE CEC
competition winners. Even though the final impact varies based on current algorithm selection, it may
significantly affect the final verdict of metaheuristics comparison. This work has picked an important
benchmarking issue and made extensive analysis, resulting in conclusions and possible recommendations
for users working with real engineering optimization problems or researching the metaheuristics algorithms.
Especially nowadays, when metaheuristic algorithms are used for increasingly complex optimization prob-
lems, and meet machine learning in AutoML frameworks, we conclude that the objective function evaluation
budget should be considered another vital optimization input variable.

INDEX TERMS Evolutionary computation, computational intelligence, performance evaluation, cost
function, optimization, benchmark testing, optimization methods.

I. INTRODUCTION
Metaheuristic optimization has become a trendy topic over
the last few decades. It concerns a wide range of applica-
tions from continuous single objective problems to discrete
optimization tasks such as the Travelling Salesman Prob-
lem, engineering applications, circuits design, or scheduling
[1]–[3].

There is a close connection between metaheuristics and
benchmark testing. Metaheuristics typically prove their effi-
ciency on a set of test problems, which should be diverse
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and unbiased [4]. In this context, the official benchmarking
testbeds (e.g., the IEEE CEC benchmarks) provide many
benefits. They include problems with various characteristics.
The problem selection is already predefined, not formed by
the competence of the promoted algorithm. And finally, they
offer performance measures and evaluation rules. As a result,
benchmark testbeds’ influence goes beyond the competitions,
as they are becoming the etalon of current optimization
practice.

One of the significant metaheuristic struggles is stagnation,
in which the algorithms can no longer create a better solution
to the solved problem. This phenomenonmay appear anytime
but usually happens at the end of the convergence curves,
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depicting the mean solutions’ quality based on the number
of objective function evaluations (FEs) or corresponding iter-
ations (see, e.g., [5]–[17]).

In theory, a moment should arise in which most
metaheuristics will not improve the best-found solution.
Therefore, all metaheuristics may be doomed to end their
optimization process in stagnation, though hopefully in the
desirable global optimum.

However, since many convergence curves end in such a
stagnation manner (and given the often employed benchmark
FEs recommendation practice), it may lead to the impression
that further optimization with more evaluations may be point-
less. But is it?

FIGURE 1. Convergence of the mean population error values ending in
apparent stagnation in recommended objective function evaluation
budget scenario (above) and increased budget (below) (CEC
2015 Function 2 - 100D).

A. MOTIVATION
During our research, we came upon several cases where
some algorithms broke through apparent stagnation when the
computation budget increased. Figure 1 presents an instance
of such a case. The figure depicts the mean convergence
of 51 runs on the standard number of FEs and the respective
raised budget. Despite the stagnation that lasted for more than
700,000 FEs, some algorithms managed to invert the trend.
Since this was not an isolated case, we decided to investigate

the influence of FEs budget on the performance and inner
dynamics of selected metaheuristics.

Namely:
• the overall performance of selected optimization
algorithms,

• the success (or failure) of particular optimization
algorithms, especially when compared to other opti-
mization techniques,

• their convergence curve,
• and the population diversity of the algorithms.

B. RESEARCH IMPORTANCE EXPLANATION
The goal of this article is not to compare several selected algo-
rithms and it is not to present the comprehensive performance
comparisons of well known algorithms, but to investigate
the influence of FEs budget on the final interpretation of
the results. The aim here is to examine the issues that can
appear in benchmarking and comparisons of metaheuristics
performance (no matter what the problem is).

Recently, many challenges, issues, questions have been
raised regarding fair comparisons, good practices for bench-
marking of metaheuristic algorithms [18], more in-depth
insights into results, statistics, analysis of behavioral patterns,
and resulting recommendations [19], [20]. Best practices
in benchmarking represent a significant problem nowadays,
when metaheuristic algorithms are used for increasingly
complex optimization problems, and for the evolution of deep
learning architectures in AutoML frameworks [21], [22].
Therefore professional organizations, like IEEE, and
researchers have recently established benchmarking task-
force1 and networks.2

This article has picked an important benchmarking issue
and made extensive analysis, resulting in conclusions and
possible recommendations for users. Our hope and ambition
for this work are to benefit and inspire both real-world appli-
cations and the future direction of benchmark profiling.

The paper is structured as follows: Section II sums up
the current evaluation practice, investigates the most used
number of FEs, and examines alternative performance mea-
sures. Section III briefly introduces the metaheuristic algo-
rithms further examined in the experiments and describes the
parameter tuning process. Section IV presents and partially
discusses the results of the experiment. It compares the per-
formance, convergence, and population diversity given two
FEs budget scenarios first on a selection of swarm-based
algorithms, and then analyses the impact on the effective
optimizers, that won the examined IEEE CEC benchmark
competitions. Section V discusses the results from a broader
perspective. And finally, Section VI concludes the meaning
of our findings for future research and practice.

II. IS THERE ANY STANDARD EVALUATIONS PRACTICE?
Many metaheuristic publications examine the propos-
als or modifications of existing algorithms, which leads to

1https://cmte.ieee.org/cis-benchmarking/
2https://sites.google.com/view/benchmarking-network/home
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an inevitable comparison between the algorithms’ perfor-
mance or their respective versions. The requirement of an
equal number of objective function evaluations has become
the standard practice. It offers several advantages:

• A predefined number of FEs defines a clear and straight-
forward termination condition

• The majority of publications use this approach
• It may provide a fairer condition than the alternative
iteration-based comparison

The last point revolves around the changeable nature
of metaheuristic designs. While some algorithms evaluate
the population only once per iteration, others (for instance,
hybrid algorithms that merge more metaheuristics into one)
may do the same several times during a single iteration loop.
In such a case, comparing these algorithms based on an equal
set of iterations may be biased [23], [24]. Still, an iteration-
based comparison is a standard practice of many publications
(see, e.g., [5]–[9]).

The sole fulfillment of equal FEs alone does not ensure fair
comparisons. There is a general assumption that the objective
function holds for the most complicated computation step
in the metaheuristic optimization process. That is why the
number of FEs sets a base for algorithmic comparison and
the computational complexity approximation [25]. However,
no one can guarantee this assumption. Some optimization
methods may include even more complicated operations than
the currently solved problem defined by the objective func-
tion [24], [26].

Another important objection is that FEs equality is not the
only necessary condition to a fair algorithmic comparison.
A wide range of input variables impact the optimization pro-
cess as well as the chance on an objective comparison: includ-
ing the parameter settings, computational capabilities, used
programming language, or the population size, as pointed out
in [24], [26].

Although the use of evaluation budget is a common prac-
tice (e.g., in [10]–[15]), to the best of our knowledge, there
is no rule limiting the ‘‘standard’’ maximum of FEs. The
range of used evaluation limit reaches from 250 FEs [27], [28]
over 10, 000 × D [29], to no limitation at all [30]. However,
the benchmark test suites may serve as a nonnegligible inspi-
ration source, and many publications adopt the recommended
evaluation budgets from the benchmark definitions (see, e.g.,
[10]–[14], [31]).

Table 1 provides an overview of the IEEE CEC opti-
mization benchmark testbeds and the corresponding limits of
objective function evaluations. The IEEE CEC benchmarks
range the FEs limit from 50 × D to 10,000,000 evaluations
[32], [33]. The difference lies in the problem domain speci-
fication. The high complexity of some real-world problems
indirectly boosted the development of optimization methods
designed to work well with a small number of FEs [27],
[34]–[36]. Computationally expensive problems hence may
be limited by a lower evaluation budget than easily solvable
functions.

The comparison ofmetaheuristics comes hand in handwith
various performance measures. One of the essential founda-
tions of the experiments is the definition of the termination
condition for every algorithm. The primary termination con-
ditions include the maximum number of iterations, evalua-
tions, or predefined execution time. These conditions can also
be further advanced to limit the maximum iterations with-
out improvement or reaching the desired objective function
value [54]. Apart from the budget limitation, some bench-
mark recommendations also suggest additional termination
condition of an error rate lower than a predefined threshold,
for example, set to E−8 [55].
The performance measures often include the mean statis-

tical error of the best, worst, mean and median solutions,
and their standard deviations. However, since the No Free
Lunch theorem [55] states, there is no "universal" best per-
forming algorithm to solve any possible problem, solely
performance-oriented experiments usually cannot lead to
general assumptions. An utter win of one algorithm on one
set of problems does not mean that the algorithm would be
usable on a different set. The comparison experiments need
to deploy further insights of the algorithms’ inner dynamics
to support its future usability. Such performance measures
investigate, e.g., the population diversity, the algorithms’
robustness, or the convergence curves.

A vast number of convergence curves indicate later
stagnation [5]–[17], which may lead to a (possibly false)
impression that raising the FEs budget would lead to a redun-
dant computational effort. Yet several studies imply that the
maximum number of FEs affects the overall performance of
the algorithms [19], [26], [56], [57]. In the Particle Swarm
Optimization Evaluations study [26], Engelbrecht suggests
that a large number of evaluations may not be beneficial to
small populations due to the premature stagnation.

In the proposal of the Passing Vehicle Search algo-
rithm [56], the authors (Savsani and Savsani, 2016) compare
the proposed algorithm on 13 engineering applications. How-
ever, since the results of other algorithms were taken from
broad literature, all the compared algorithms used different
FEs limit. To provide a fair comparison, the authors executed
the Passing Vehicle Search algorithm with the corresponding
FEs budget to many of the respective scenarios. This exper-
iment revealed a slight improvement of the mean and worst
solutions with a higher evaluation budget.

In the Conceptual Comparison of Several Metaheuris-
tics [57], the author (Ezugwu, 2020) shows the mean best
solution error with a variable FEs limit. The results differ
based both on the solved problems and the solving algo-
rithm. Another noteworthy publication [19] (LaTorre, 2020)
presents that the average ranks of compared algorithms differ
significantly, given a various number of FEs.

This article investigates five swarm algorithms and two
benchmark competition winners on two sets of IEEE CEC
benchmark testbeds with two evaluation budgets. We aim to
uncover the effect of the FEs limit on population diversity,
convergence, and the algorithms’ overall performance.

44034 VOLUME 9, 2021



A. Kazikova et al.: How Does the Number of Objective FEs Impact Our Understanding of Metaheuristics Behavior?

TABLE 1. IEEE CEC benchmark test suites and their respective function evaluation budget recommendations.

III. BRIEF DESCRIPTION OF COMPARED ALGORITHMS
To analyze the impact of a higher number of objective
function evaluations, we compared the optimization per-
formance of selected algorithms solving two benchmark
sets of problems IEEE CEC 2015 and 2017. The exam-
ined swarm algorithms were: the Particle Swarm Optimiza-
tion [58], the Cuckoo Search [59], the Bat Algorithm [60],
the Firefly Algorithm [61], and the Bison Algorithm [62].
Further we analysed the impact of FEs budget on the win-
ners of the CEC benchmark competitions: the L–SHADE
with Eigenvector Crossover and Successful Parent-Selecting
Framework [63], and the Effective Butterfly Optimizer with
Covariance Matrix [64]. The following section briefly intro-
duces the examined algorithms.

A. PARTICLE SWARM OPTIMIZATION
The Particle Swarm Optimization algorithm (PSO) was pro-
posed by Kennedy and Eberhart in 1995 [58]. It is by
far the most popular swarm metaheuristic, with more than

55,000 publications in the Web of Science database.3 The
algorithm found inspiration in the emerging behavior of bird
flocks and fish swarms. There are two basic versions of the
algorithm: local best and global best, distinguished by the
solution’s neighborhood topology [65]. This article studies
PSO with the global best topology.

B. CUCKOO SEARCH OPTIMIZATION
The Cuckoo Search (CS) was developed by Yang and Deb
in 2009 [59]. The algorithm simulates the egg-laying patterns
of cuckoos. The algorithm offers the advantage of only two
configurable parameters and has proved to be a mighty opti-
mization tool.

C. BAT ALGORITHM
The Bat Algorithm (BAT) (Yang, 2010) simulates the echolo-
cation ability of microbats [60]. The algorithm employs a

3In January 14th 2021, there were 55,132 publication records in the Web
of Science database addressing the Particle Swarm Optimization topic.
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frequency tuning mechanism, which, by extension, acts as a
mutation factor – as it affects mainly local solutions [66].

D. FIREFLY ALGORITHM
The Firefly Algorithm (FFA) was designed by Yang in
2010 [61]. The algorithm simulates the courtship of fireflies.
In the courting ritual, each firefly looks around, and when
it finds a firefly shining brighter than itself, it moves closer.
The most glowing firefly finally performs a movement in a
random direction.

E. BISON ALGORITHM
The Bison Algorithm (BIA) (Kazikova, 2018) models bison
herds’ protecting and running behavior [67]. It divides the
population into two groups. The first group exploits known
solutions bymoving them closer to the center of several fittest
solutions. In contrast, the second group explores the search
space to avoid the trap of local optima.

F. SPS L SHADE EIG
The L-SHADE with Eigenvector-Based Crossover and Suc-
cessful Parent-Selecting Framework (SPS L SHADE EIG)
was proposed by Guo et al. in 2015 [63]. The acronym
stands for a Success-History based Adaptive Differential
Evolution with a linear decrease of the population size
(L-SHADE), Eigenvector-Based Crossover (EIG), and Suc-
cessful Parent-Selecting Framework (SPS). It is a vari-
ant of a Differential Evolution, which implements the
memories of previously successful parameters. The Suc-
cessful Parent-Selecting Framework provides a way to
overcome stagnation. The algorithm won the IEEE CEC
2015 competition [49].

G. EBO WITH CMAR
The Effective Butterfly Optimizer with Covariance Matrix
Adapted Retreat Phase (EBO with CMAR) was proposed
by Kumar et al. in 2017 [64]. It is a hybrid self-adaptive
algorithm, which combines the features of global and local
optimizers. The original Effective Butterfly Optimizer algo-
rithm is enhanced with success-history based adaptation and
linear population size reduction, while the CovarianceMatrix
Adapted Retreat Phase improves the local search. The algo-
rithm won the IEEE CEC 2017 competition [29].

1) PARAMETER TUNING
To determine the appropriate parameters for the solved prob-
lems, we tested the algorithms in 10 and 30 dimensions on the
IEEECEC 2017 benchmarkwith a selection of recommended
configurations from the following literature: [61], [68]–[76].
We investigated the statistical significance of the results
(p < 0.05) with the Wilcoxon Rank-Sum test and the Fried-
man Rank test. Further experiments use the winning parame-
ter configurations defined in Table 2. The Parameter Tuning
Experiment was extended in [77].

The algorithms implementations were derived from the
EvoloPy library [70] and [78]. All codes of the swarm

TABLE 2. Winning parameter configurations according to the Wilcoxon
Rank-Sum test and the Friedman Rank test (p < 0.05).

optimizers are available andwelcome to use at TBUA.I.Lab’s
GitHub repository.4 The codes of the competition winners:
SPS L SHADEEIG and EBOwith CMARwere adopted from
the official CEC Benchmarking Github5,6 with the included
tuned parameters.

IV. COMPARING ALGORITHMS WITH TWO OBJECTIVE
FUNCTION EVALUATION BUDGETS
We compared the algorithms on two benchmark sets of IEEE
CEC 2015 and 2017 [29], [49] in 10, 30, 50, and 100 dimen-
sions in 51 runs. We examined two evaluation budgets: the
standard evals scenario of 10, 000×D FEs, as recommended
in the Problem Definitions and Evaluation Criteria for both
testbeds, and the 7 evals scenario of 70, 000× D FEs.
Our experiment first analyzed the impact on the swarm

algorithms separately and then added the competition win-
ning optimizers. Separating these two analyses allowed for an
easier recognition of the FEs limit effect, as the influence of
the higher budget is more visible on algorithms of comparable
performance, and it is less complicated to detect a renewed
convergence on a smaller range of error values.

We studied the influence of the FEs budget on the algo-
rithms’ inner dynamics. Therefore, we assumed that the
choice of the algorithms should not be substantial, supposing,
that what works on elementary optimizers may be considered
even with more advanced optimization techniques. To con-
firm (or disprove) this hypothesis, we analyzed the competi-
tion testbeds’ winning algorithms with a higher FEs budget
subsequently.

All the swarm algorithms started with a randomly
generated initial population. They were programmed in
the same environment, using the same programming lan-
guage, with parameters based on the Parameter Tuning
Experiment.

4https://github.com/TBU-AILab/Bison-Algorithm
5https://github.com/P-N-Suganthan/CEC2017-BoundContrained
6https://github.com/P-N-Suganthan/CEC2015-Learning-Based
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The following sections first examined the swarm algo-
rithms for the mean solution errors with statistical tests in
Section IV-A, the convergence curves in Section IV-B, and the
population diversities in Section IV-C. Finally, Section IV-D
examined the impact on the competition winners. The exper-
iments first compare the tested scenarios separately and then
investigate the difference that the bigger evaluation budget
caused.

A. OVERALL PERFORMANCE (MEAN SOLUTION ERROR)
This section investigates the algorithms’ overall perfor-
mance by comparing the solution errors with the Wilcoxon
Rank-Sum tests (p< 0.05). The test determines on howmany
problems an algorithm significantly outperformed the others.

We compared the results across the five swarm algorithms
in one of the scenarios – standard evaluations in Tables 3
and 4 and 7 evals in Tables 5 and 6. Then we investigated
the impact of the different evaluation budgets. Table 7 and
Table 8 examine the difference in the interpretation of the
previous results. Figure 2 shows the ranks computed by the
FriedmanRank test (p< 0.05), which compared all the swarm
algorithms in both scenarios on the IEEE CEC 2015 testbed.
The third column presents the difference in ranks for each
algorithm.

TABLE 3. Winning algorithms on IEEE CEC 2015 benchmark (Wilcoxon,
p < 0.05) in standard evals scenario.

TABLE 4. Winning algorithms on IEEE CEC 2017 benchmark (Wilcoxon,
p < 0.05) in standard evals scenario.

TABLE 5. Winning algorithms on IEEE CEC 2015 benchmark (Wilcoxon,
p < 0.05) in 7 evals scenario.

Finally, we evaluated the individual impact of the bigger
evaluation budget on every tested algorithm separately. The
Wilcoxon pair-wise Rank-Sum tests (p < 0.05) comparing
the 7 evals and standard evals scenarios of one particular
algorithm are in Tables 9 and 10. The benefit is computed
by Eq. 1, which subtracts the sum of 7 evals wins – standard

TABLE 6. Winning algorithms on IEEE CEC 2017 benchmark (Wilcoxon,
p < 0.05) in 7 evals scenario.

TABLE 7. Impact of higher evaluation budget on the IEEE CEC
2015 benchmark: compared the Wilcoxon Rank-Sum test results
in Table 5-Table 3 [7 evals – standard evals] (Positive values mean a
beneficial effect of higher evaluation number on the algorithm’s final
interpretation of results).

TABLE 8. Impact of higher evaluation budget on the IEEE CEC
2017 benchmark: comparing the Wilcoxon Rank-Sum test results
in Table 6-Table 4 [7 evals – standard evals].

evals wins from the Wilcoxon Rank-Sum tests showed in
Tables 16 and 17. The percentual benefit presented on the last
line sums the percentage of problems positively affected by
the higher evaluation budget (Eqs. 1, 2).

BD =

∑Fmax
i=1 Wi −

∑Fmax
i=1 wi

Fmax
(1)

Benefit =
B10D + B30D + B50D + B100D

4× Fmax
× 100% (2)

where:

• BD represents the benefit of the 7 evals scenario against
the standard evaluations scenario,

• D presents the examined dimension,
• Fmax is the number of problems in the benchmark test
bed,

• Wi and wi stand for the number of wins from the
Wilcoxon Rank-Sum test from the 7 evals and standard
evals scenarios respectively (from Tables 16 and 17),

• Benefit represents the percentage of positively affected
problems by higher evaluation budget,

• and B10D presents the benefit computed by Eq. 1 on
10-dimensional benchmark problems.

Similarly, Figure 3 shows the pair-wise Friedman Rank test
(p< 0.05), which compared the evaluation scenarios on every
swarm algorithm individually. All the difference oriented
experiments were computed by subtracting the 7 evals –
standard evals results.
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FIGURE 2. Friedman Rank test comparing all algorithms in two scenarios
across all dimensions on CEC 2015.

OVERALL PERFORMANCE DISCUSSION
The comparison of the swarm algorithms revealed, that the
higher evaluation budget strongly affected the interpretation
of the Wilcoxon Rank-Sum tests (Tables 5, 6). In the stan-
dard evaluation scenario, this discussion would portray the
success of the Bison Algorithm. Be that as it may, the higher
evaluation budget flipped the verdict in favor of the Cuckoo
Search algorithm, particularly in lower dimensions, and the
final summary of Wilcoxon wins.

Tables 7 and 8 outline the extent of the general impact on
the statistical test interpretation. The Cuckoo Search Algo-
rithm enhanced its performance on most of the problems at
the expense of other algorithms. The Bat Algorithm presents
an exception since it was not affected in the IEEE CEC
2017 benchmark. The Friedman Rank test (Figure 2) con-
firmed a slight rank-wise improvement of the Cuckoo Search
and the Bison Algorithm. The ranks of other algorithms
dropped.

It is important to note that previous results compare only
the final interpretations of the results with the statistical tests.
The overall impact, concerning each algorithm on their own,
was investigated in Tables 9 and 10. These tests compared
the final results of both of the tested scenarios on a single
algorithm, to estimate the benefit of higher evaluations for
every individual algorithm separately. The results were then
compared in Tables 9 and 10.

TABLE 9. Impact of higher evaluation budget on one algorithm based on
the evaluation budget scenarios (pair-wise Wilcoxon, p < 0.05, on IEEE
CEC 2015 benchmark) [7 evals – standard evals] (Positive values mean an
overall beneficial effect of higher evaluation number solely on the
algorithm’s performance).

Despite the previous findings, the effect of 7 evals budget
was beneficial for most of the tested algorithms: mostly
for the Firefly Algorithm (with 93% percentual benefit on
CEC 2015) and the Cuckoo Search algorithm. This discovery

TABLE 10. Impact of higher evaluation budget on one algorithm based
on the evaluation budget scenarios (pair-wise Wilcoxon, p < 0.05, on IEEE
CEC 2017 benchmark) [7 evals – standard evals] (Positive values mean an
overall beneficial effect of higher evaluation number solely on the
algorithm’s performance).

underlines the results in Tables 5 and 6 since almost all of the
algorithms performed significantly better than in the standard
evaluation scenario.

Unexpectedly, higher evaluations slightly harmed the Bat
Algorithm, especially in the lower dimensions, whose per-
centual benefit ended up in the negative numbers. The Fried-
man Rank test in Figure 3 confirmed these findings. In the
pair-wise comparison, every algorithm, with the BAT excep-
tion, significantly improved its rank in the higher evaluation
scenario.

FIGURE 3. Friedman Rank test comparing one algorithm in two scenarios
across all dimensions on CEC 2015.

B. CONVERGENCE
The convergence experiment investigated the development
of the mean solution errors based on a varying number of
evaluations. Figure 4 depicts the convergence curve of 15
100-dimensional problems of the IEEE CEC 2015 testbed
with a higher evaluation budget. It also shows the standard
evaluation threshold, which would be the last stop of the
optimization, if it followed the benchmark recommendations
[29], [49].

Figure 5 shows a selection of interesting cases in which the
convergence of the standard evaluation budget ends in stag-
nation. Surprisingly, further evaluations provided an unprece-
dented improvement in the mean error.

It should be noted, that the convergence curves (Figs. 4-6)
were approximated from 14 error values according to the
IEEE CEC 2017 benchmark set recommendation [29]. The
error values were recorded after (0.01, 0.02, 0.03, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) × MaxFES for
each run.
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FIGURE 4. Convergence curves of 15 problems from the IEEE CEC 2015 benchmark in 100D with the 7 evals budget. The vertical line
indicates where the standard evaluation budget would stop the optimization process.

1) CONVERGENCE DISCUSSION
Figure 4 shows a substantial drop of mean error value even
after the standard evaluation threshold in most of the dis-
played cases. The only exception is Function 11, which stag-
nated for more than 6.5E6 FEs.

Figure 5 illustrates the potential benefit of higher eval-
uations, with some remarkable convergence twists. This
figure emphasizes that even apparent stagnation does not
necessarily mean that further optimization is pointless. This
notably concerns the Cuckoo Search optimization but other
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FIGURE 5. Selected cases of mean error values convergences showing surprising development of the convergence curve after a period of
stagnation.

algorithms such as the Firefly Algorithm, the Bison Algo-
rithm, or the Particle Swarm Optimization as well.

C. POPULATION DIVERSITY
Finally, we investigated the impact of a higher evaluation bud-
get on the population diversity of the swarm algorithms. The
population diversity measure is described in Eqs. 3, 4 [80],
and the data are presented in a relative percentage to

a theoretical maximum of the diversity value.

Diversity =
1
NP

NP∑
i=1

D∑
j=1

(xi,j − x j)2 (3)

x j =
1
NP

NP∑
i=1

xi,j (4)
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FIGURE 6. Convergence of the mean population diversity on the 15 problems of IEEE CEC 2015 in 10 D percentual to the maximum
possible diversity, 7 evals scenario.

where:
• NP is the population size,
• D presents the dimensionality of the problem,
• i and j are the population and dimension iterators,
respectively,

• xi,j represents the vector value of the solution at the given
dimension,

• and x j presents the corresponding mean of the solutions.

Figure 6 presents the population diversity development
in the 7 evals scenario on 15 problems of the IEEE CEC
2015 benchmark in 10 dimensions. The vertical line specifies
the standard evaluation threshold. We investigated the pop-
ulation diversity statistics given the standard evals scenario
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TABLE 11. Mean and median values of mean diversities percentual to the theoretical maximal diversity value computed from all functions in IEEE CEC
2015 benchmark with the standard evaluations budget.

TABLE 12. Mean and median values of mean diversities percentual to the theoretical maximal diversity value computed from all functions in IEEE CEC
2015 benchmark with the 7 evals budget.

TABLE 13. The impact of higher evaluation budget: Difference between mean diversities and median mean diversities given different numbers of
evaluations on IEEE CEC 2015 benchmark [7 evals-std evals] (Positive values would mean beneficial effect of higher evaluation budget on population
diversity).

TABLE 14. The impact of higher evaluation budget: Difference between mean diversities and median mean diversities given different numbers of
evaluations on IEEE CEC 2017 benchmark [7 evals-std evals] (Positive values would mean beneficial effect of higher evaluation budget on population
diversity).

(Tables 11, 18) and 7 evals scenario (Tables 12, 19). Since
the population diversities are very similar for both of the
tested benchmarks, the partial diversity results for IEEE CEC
2017 benchmark.

The final difference between the examined diversities
(Table 12 - Table 11 and Table 19 - Table 18) on both tested
benchmark testbeds is calculated in Table 13 and Table 14.
Again, the positive value in these last two tables would mean
a higher diversity of the 7 evals budget.

1) POPULATION DIVERSITY DISCUSSION
The higher evaluation budget effect on the overall population
diversity is both algorithm and problem dependable. While
the population diversitymostly lowers when solving the IEEE
CEC 2015 benchmark (Table 13), the effect on IEEE CEC
2017 population diversity was negligible (Table 14).
Table 13 revealed that formost of the algorithms, the higher

evaluation budget lowered the population diversity on the
IEEE CEC 2015 benchmark testbed. The uncomplimentary
effect concerned foremost the Cuckoo Search optimization,

especially in the lower dimensions, but even so, the diversity
rate still stayed relatively high (see Table 12). The effect
on other algorithms’ diversities was either low (BIA, PSO,
BAT) or none (FFA).

The extremely low population diversities of some algo-
rithms (as can be seen at the end of some algorithms in Fig. 6)
hint that the populationmergedmerely into one location. This
affects the exploration ability of the algorithms and points
to a possible local optimum containment. On the other hand,
the general progress of the population distribution (Figure 6,
Tables 11 and 12) proved a steady diversity rate of the Bison
Algorithm on the whole range of tested problems.

D. IMPACT OF RAISED FEs BUDGET ON THE CEC
COMPETITIONS WINNERS
So far, we have focused on the selected five swarm algo-
rithms available from the TBU AILab’s Github. However,
we were also interested whether the raised budget would
impact even advanced optimizers such as the winners of
the examined CEC competitions. We used the public codes
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FIGURE 7. Pair-wise Friedman Rank test comparing the std evals and
7 evals budget scenarios.

of the competing algorithms available at the official CEC
Benchmarking Github7,8 with raised FEs budget of the
SPS L SHADE EIG on the CEC 2015 test set and EBO
with CMAR on the CEC 2017 learning-based test set.
We followed the benchmark directions during this experi-
ment, with 51 optimization runs per problem and max FEs
of 10,000 × D, and 70,000 × D in the std evals and 7 evals
scenarios, respectively. The parameters of the optimizers
were already tuned in the original source codes provided in
the official CEC Benchmarking Github with the included
tuned parameters.

The following section discusses the results comparing the
algorithm in the two evaluation scenarios. Table 15 presents
the impact of the higher evaluation budget on the CEC
2015 winner and the CEC 2017 winner on their respective
winning pools. The table shows the number of problems
in which the raised budget produced significant improve-
ment against the standard evaluation budget according to the
Wilcoxon Rank-Sum test (α = 0.05) and the corresponding
percentual benefit (see Eqs. 1, 2). Similarly, Figure 7 presents
the Friedman Rank test comparing the two evaluation scenar-
ios on the examined algorithm on its respective winning test
pool.

These results imply that the raised budget helps even suc-
cessful versions of SHADE and EBO. It might appear that
the higher budget provided a lower percentual benefit for
the SPS L SHADE EIG algorithm when compared to other
algorithms (see Table 9). However, it is important to note that
the CEC 2015 winner sometimes found the exact optimum
already within the standard evaluation budget. In these cases,

7https://github.com/P-N-Suganthan/CEC2017-BoundContrained
8https://github.com/P-N-Suganthan/CEC2015-Learning-Based

TABLE 15. Impact of higher evaluation budget on one algorithm based
on the evaluation budget scenarios (pair-wise Wilcoxon, p < 0.05, on IEEE
CEC 2015 benchmark for the SPS L SHADE EIG and IEEE CEC 2017 for the
EBO with CMAR algorithm) [7 evals– standard evals] (Positive values
mean an overall beneficial effect of the higher FEs budget).

raising the budget does not contribute to the algorithm’s
performance, as can be seen in the 10 dimensions in Table 15.
On the other hand, in 30 dimensions, the higher evaluation
budget significantly improved 9 out of 15 problems. These
conclusions were confirmed by the pair-wise Friedman rank
test in Figure 7, in which the 7 evals scenario outperformed
the standard budget scenario significantly.

The improvements appeared even in the convergence anal-
ysis of the winners. Figure 8 shows the mean convergences of
selected cases, in which the algorithms overcame an apparent
stagnation when allowed for the raised FEs budget.

FIGURE 8. Mean convergence of IEEE CEC competition winners - special
cases.

The previous section discussed the impact of a higher FEs
budget on the comparison experiment’s final interpretation.
However, when we added the benchmark winners to the
optimizers, the statistical tests favored the winning algorithm
regardless of the budget scenario. In several cases, the higher
budget neutralized the lead; where the winner had signifi-
cantly better results in the standard FEs budget, it lost the
lead’s significance with a higher budget. Figures 9 and 10
show the Friedman Rank test comparing the algorithms on
their respective winning test pools.

V. DISCUSSION
The heuristic optimization may resemble any other race: even
this year’s Formula 1 champion is not a guaranteed winner
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FIGURE 9. Friedman Rank test comparing all algorithms in two scenarios
across all dimensions on CEC 2015.

TABLE 16. Wilcoxon Rank-Sum test (p < 0.05) comparing the pair
standard evaluations vs 7 evals of each algorithm separately on CEC 2015.

on a different track, riding a backup vehicle, having one liter
of fuel less, or racing other competitors. Similarly, in meta-
heuristics comparison, investigation of inner principles is
preferable than to rank them purely by performance mea-
sures. In this article, we focused not only on the performance
measures but also on the algorithms’ convergence patterns
and population diversities.

FIGURE 10. Friedman Rank test comparing all algorithms in two
scenarios across all dimensions on CEC 2017.

TABLE 17. Wilcoxon Rank-Sum test (p < 0.05) comparing the pair
standard evaluations vs 7 evals of each algorithm separately on CEC 2017.

We investigated the mean error convergences and found
that some algorithms improved significantly even after a
long stagnation. We discovered that the effect of the evalu-
ation budget on population diversity is problem-dependent.
While more evaluations diminished the population diversity
on IEEE CEC 2015 benchmark’s problems, its impact on
IEEE CEC 2017 was negligible. Finally, we found that the
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TABLE 18. Mean and median values of mean diversities percentual to the theoretical maximal diversity value computed from all functions in IEEE CEC
2017 benchmark with the standard evaluations budget.

TABLE 19. Mean and median values of mean diversities percentual to the theoretical maximal diversity value computed from all functions in IEEE CEC
2017 benchmark with the 7 evals budget.

evaluation budget significantly affected six of the tested algo-
rithms and considerably improved their performance.

The most critical effect concerned the interpretation of
the statistical results when comparing the swarm algorithms
separately.While in the standard evaluation scenarios (the last
rows of Tables 3, 4), the sum of Wilcoxon Rank-Sum test
wins was in favor of the Bison Algorithm, more evaluations
(Tables 5, 6) promoted the Cuckoo Search optimization, and
therefore flipped the final winner of this particular race in the
swarm optimizers comparison. The effect was damped, when
we added the competition winners to the list of optimizers,
as the Friedman Rank test in Figures 9 and 10 ranked the SPS
L SHADE EIG and EBO with CMAR the first in both of the
tested scenarios.

We also examined the impact of a higher evaluation budget
on successful optimizers that won the IEEE CEC compe-
titions. The raised budget allowed for a significantly better
performance of these algorithms.

Interestingly, a higher evaluation budget’s overall per-
centual benefit was considerably lower for the CEC
2015 winner (compare Tables 9 and 15). The reason may
be that the SPS L SHADE EIG sometimes found the exact
optimum already within the standard evaluation budget –
hence the 0% benefit for 10-dimensional problems. However,
in higher dimensions, the percentual benefit was renewed (up
to 60% in 30 dimensions). Therefore, we can recommend
raising the evaluation budget even for effective optimizers
when solving problems without the known optimum.

In the end, we would like to highlight that many applica-
tions, like the computationally expensive problems, do not
allow for numerous evaluations. Furthermore, this article
did not mention the algorithms’ complexity, which relatively
does not change with FEs, but can greatly affect the options to
set the evaluations budget due to the limited resources or time
restrictions. The time consumed by the presented experiments
took minutes to days based on the solving algorithm.

VI. CONCLUSION
The function evaluation limit impacts both the performance
and behavior of metaheuristics. Therefore, when one solves

a nontrivial problem without a pressing deadline, it may be
reasonable to use a higher evaluation budget to obtain better
results.

It might seem that our paper states the obvious – that
a longer optimization process sometimes produces better
results. However, there is more to the story. Our primary goal
was to point out the importance of focusing on good prac-
tice in benchmarking and transferring this knowledge into
engineering optimization practice and metaheuristic devel-
opment. The most important findings can be summarised as
follows:

We discovered that some metaheuristics conceal a hidden
asset that only a raised number of objective function evalua-
tions may reveal: the ability to renew the convergence after
apparent stagnation. This feature may be crucial for specific
real–world applications. Also, not every algorithm has this
ability – some algorithms are more affected by the evalua-
tion budget than others. In this context, the Cuckoo Search
optimization with more evaluations carried out impressive
results, as it repeatedly recovered convergence even after
periods of stagnation.

The impact of the function evaluation budget on population
diversity was no less interesting. While one set of problems
was intact by evaluation change, there was a significant drop
in the population diversity on the other one. However, lower
population diversity in higher iterations raises the chance of
capturing the entire population to a local optimum.

The world of metaheuristic optimization is currently ruled
by the No Free Lunch theorem, which states that there is
no universal best-to-solve-it-all algorithm. According to this
theory, various algorithms are more (or less) suitable to solve
different kinds of problems. At the same time, the success of a
metaheuristic stands on a whole list of conditions: including
dimensionality, solving algorithm selection, parameter con-
figuration, adopted border strategies, problem dynamics, and
the objective function. To the account of conditions affecting
optimizations, we cordially recommend adding another input
variable: the function evaluation limit.

So far, the benchmarking testbeds focused mostly on
solving problems fast, which corresponds with most of the
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objective function evaluation budget limitations. However,
as our paper revealed, some algorithms can overcome the
potential stagnation with an increased FEs budget. Hence,
it might be useful if the future direction of benchmark test-
ing would consider increasing the FEs budget besides the
currently adopted limits. The aim of uncovering this feature
and the investigation of why some algorithms can renew the
convergence even after apparent stagnation might form the
next generation of future benchmark profiling.

In this article, we have discovered that some algorithms are
able to renew the convergence within the extended FEs bud-
get. It is possible that with an even larger FEs budget, other
algorithms would be able to renew the convergence as well,
despite failing to do so within our experiments. However,
for practical purposes, the number of function evaluations
must be limited at a finite value. Therefore, we believe that
instead of still increasing the FEs limit, an in-deep study of
the algorithms is necessary to uncover the key features for
convergence renewal ability, and our work should encourage
the meaningfulness of such a study.
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