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Abstract. The contribution focuses on the investigation of robust stability for 

fractional-order linear time-invariant (LTI) systems with the multilinear structure 

of ellipsoidal parametric uncertainty, i.e., the analyzed family of fractional-order 

polynomials has the multilinear uncertainty structure and an ellipsoid-shaped un-

certainty bounding set. The robust stability test is based on the numerical calcu-

lation and subsequent plot of the value sets, and the application of the zero ex-

clusion condition. Unlike the previously published works, this contribution 

shows that, contrary to the case of a two-dimensional ellipse of parameters, the 

internal points of a three-dimensional ellipsoid of parameters cannot create the 

boundary of the value set in the complex plane even under more complicated 

uncertainty structures, such as the multilinear one. 
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1 Introduction 

The precise knowledge of all physical parameters is only an idealized scenario in the 

majority of practical control applications. Moreover, the simplifications and lineariza-

tions made during the modeling contribute also to the typical mismatch between the 

mathematical model and the true behavior of the controlled plant. That is why the use 

of uncertain models and robust control techniques has been extremely popular during 

the last decades. 

Since stability is the critical requirement of control loops, we are interested in robust 

stability from the viewpoint of models with uncertainty. It means that the stability of 

the control system must be secured not only for one nominal plant but also for the whole 

group of plants, which is usually called the family of plants. A common way of defining 
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such family consists in the use of parametric uncertainty [1, 2], i.e., the structure is 

“known” and fixed, but the parameters may “slowly” vary within prescribed bounds. 

The commonly used engineering approach is to consider these bounds as real intervals; 

in other words, the bound has a shape of a box. However, there are some other alterna-

tive shapes available, such as a diamond, a sphere, or, more generally, an ellipsoid [2-

10]. 

The popularity of fractional-order systems and their application in control engineer-

ing has been growing rapidly [11-13] for the sake of their improved performance com-

pared with the conventional integer-order systems. It is understandable that great re-

search attention is also paid to the robust stability of fractional-order systems under 

various uncertainty conditions [14, 15]. 

The contribution deals with the investigation of robust stability for fractional-order 

LTI systems with the multilinear structure of ellipsoidal parametric uncertainty. In other 

words, the studied family of fractional-order (characteristic) polynomials has the mul-

tilinear uncertainty structure and an ellipsoid-shaped uncertainty bounding set. The ro-

bust stability analysis takes advantage of the numerical calculation and subsequent plot 

of the value sets and the application of the zero exclusion condition [2]. 

More specifically, this contribution is intended to be a follow-up to the previously 

published works [8-10]. In [8], the families of integer-order polynomials with multilin-

ear uncertainty structure were studied, but the example dealt only with a two-dimen-

sional uncertainty bounding set (ellipse). Then, in [9], the fractional-order version of 

the polynomial family with multilinear uncertainty structure was studied, among other 

structures, but only for the elliptical uncertainty bounding set as well. The case of a 

three-dimensional uncertainty bounding set (ellipsoid) was outlined in [9] in combina-

tion with the polynomic uncertainty structure. In [10], the three-dimensional uncer-

tainty bounding set was combined with the independent uncertainty structure. Unlike 

the previous works, this contribution demonstrates that, contrary to the case of a two-

dimensional ellipse of parameters [8, 9], the internal points from three-dimensional el-

lipsoid of parameters cannot create the boundary of the value set in the complex plane 

even under more complicated uncertainty structures, such as the multilinear uncertainty 

structure. 

Since this contribution is example-oriented and the level of presented theory and 

literature survey is restricted to a minimum, the interested readers are referred to the 

authors’ previous works, especially [9]. 

2 Mathematical Description of Analyzed Family 

Suppose that a family of systems has a corresponding family of fractional-order char-

acteristic polynomials with three uncertain parameters and that this family of fractional-

order polynomials is defined by the multilinear structure of uncertainty, according to: 
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and by the uncertainty bounding set Q in a shape of a (three-dimensional) ellipsoid, 

described by: 
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Alternatively, the same uncertainty bounding set can be written in the form: 
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The graphical representation of this uncertainty bounding set, given either by (2) or 

(3), is depicted in Fig. 1. The axes are plotted in an equal aspect ratio. Unsurprisingly, 

the uncertainty bounding set really has the ellipsoidal shape, and thus, all admissible 

triplets of parameters q1, q2, and q3 have to be located inside or on the surface of this 

ellipsoid. 

 
Fig. 1. Ellipsoidal uncertainty bounding set (2), (3). 
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3 Value Set – Construction and Properties 

The applied graphical test of robust stability is based on plotting the value sets and 

verifying the condition for zero exclusion. Therefore, a discussion on the value set of 

the family (1), (2) follows. 

The value set  ( , ) ( , ) :p j Q p j q q Q    [2] for a chosen fixed frequency 2   

and various “gridding” is shown in Figs. 2-4. As can be seen in [8, 9], in the case of 

multilinear or more complicated uncertainty structure and a two-dimensional uncer-

tainty bounding set, the boundaries of the value set in the complex plane may be 

mapped not only from the boundaries in two-dimensional parameter space (ellipse) but 

possibly also from some internal points. This holds true both for the integer-order [8] 

and for the fractional-order [9] polynomials. However, for the case of a three-dimen-

sional uncertainty bounding set, it is enough to grid just the surface area of the ellipsoid, 

because no internal point from the ellipsoid of parameters (Fig. 1) may be mapped to 

the boundary of the value set. In other words, no internal points can comprise the value 

set boundary. Contrary to the statement in [10], this holds true not only for simple un-

certainty structures but even for the complicated ones (such as multilinear uncertainty 

structure in this paper).  

Thus, the surface area of the ellipsoid from Fig. 1 will be gridded, and subsequently, 

the related value set points will be directly computed and plotted. The surface area can 

be parametrized, e.g., by using the set of parametric equations: 
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where  0,2   and  0,  . 

First, both parameters θ and φ were sampled by 90 equidistant samples within the 

whole range of aforesaid intervals. The value set for 2   and this, relatively sparse, 

gridding can be seen in Fig. 2. 

Next, the number of equidistant samples of θ and φ was tripled, i.e., 270 samples 

within given intervals are used. The resulting value set (again for 2  ) is shown in 

Fig. 3. Obviously, it is much denser compared to the value set from Fig. 2. However, 

the cost for it is a higher computational effort. 
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Fig. 2. Value set of family (1), (2) at 2   for 90 samples of both θ and φ 

 

Fig. 3. Value set of family (1), (2) at 2   for 270 samples of both θ and φ 
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Note that some points from the surface area of the three-dimensional ellipsoid of 

parameters (Fig. 1) are mapped to the boundary of the value set in the complex plane 

while the others are mapped to the interior of the value set (Figs. 2 and 3). Nevertheless, 

as discussed above, no internal point from the three-dimensional ellipsoid of parameters 

can be mapped to the boundary of the value set, even for the family of fractional-order 

polynomials with multilinear uncertainty structure. For illustration, Fig. 4 presents the 

same value set as in Fig. 3, but it also contains 10,000 extra points (red x-marks) that 

are mapped from 10,000 randomly chosen points from the interior of the ellipsoid of 

parameters. 

 

Fig. 4. Value set of family (1), (2) at 2   with 10,000 extra random points 

As can be seen, Fig. 4 is not much convincing, because some red points lie very close 

to the value set boundary, even though not in the boundary itself. Thus, the procedure 

is repeated, but 10,000 random points are taken from the inner space of the ellipsoid 

according to: 
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The value set with 10,000 extra points (red x-marks) mapped from 10,000 randomly 

selected points in the parameter space that comply with (5) is depicted in Fig. 5. It 

demonstrates that, contrary to the case of a two-dimensional ellipse of parameters [8, 

9], the internal points from a three-dimensional ellipsoid of parameters cannot create 
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the boundary of the value set even under more complicated uncertainty structures, such 

as the multilinear one. 

 

Fig. 5. Value set of family (1), (2) at 2   with 10,000 extra random points that fulfill (5) 

4 Robust Stability Test 

In the final phase, the value sets will be utilized for the simple graphical test of robust 
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In accordance with the zero exclusion condition [2, 9], the family of fractional-order 

polynomials with the multilinear structure of ellipsoidal parametric uncertainty (1), (2) 

is robustly stable because the zero point is excluded from the value sets and all neces-

sary preconditions (invariant degree of the polynomial family, pathwise connected Q, 

continuous coefficient functions, and at least one stable member of the family) are ful-

filled. 
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Fig. 6. Value sets of family (1), (2) for 0:0.1: 2.5   

5 Conclusion 

This example-oriented contribution was focused on graphical testing of robust stability 

for fractional-order LTI systems with the multilinear structure of ellipsoidal parametric 

uncertainty via the numerical calculation of the value sets, and the use of the zero ex-

clusion principle. It is intended as a follow-up to some previously published works. 

Unlike them, this contribution showed that the internal points of a three-dimensional 

ellipsoid of parameters could not produce the boundary of the value set even under 

more complicated uncertainty structures, such as the multilinear one, which is not true 

for the case of a two-dimensional ellipse of parameters. 
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