A Comparison of Processes and Threads Creation
Martin Sysell[0000-0001-7177-0203]

! Tomas Bata University in Zlin, FAI, Nad Stranémi 4511,760 05 Zlin, Czech Republic
Sysel@utb.cz

Abstract. This article discusses the differences between processes and threads
in the Linux operating system. Both are represented by the same data structures
and similarly scheduled, and both are called tasks. It tries to answer whether the
names Heavy-weight Process and Light Weight Process (LWP) are appropriate
in Linux. It focuses on the time required to create a process or thread. First, the
mechanism of creating a new process and thread is explained, and then several
measurements are performed under different conditions. A fragments of source
code which is used in the measurement are attached. Finally, the advantages
and disadvantages of processes and threads are summarized with a recommen-
dation when it is better to use processes or threads in the Linux operating sys-
tem.

Keywords: Linux, Process, Thread

1 Introduction

The Traditional concept of processes can be divided into two parts: processes which
dealing resource ownership and threads which are called a unit of execution (a stream
of instructions) [1]. Normally when a program starts up and becomes a process, it
starts with a default thread, e.g. main function in the C language. A process can cre-
ate extra threads, so a single process may contain multiple threads or just only one.
Linux uses a 1-1 threading model (Kernel Level Threads), and do not make distinc-
tion between processes and threads, everything is a runnable task. Every process in
Linux is created by a parent process using a library function called fork (except
INIT or system process), which trigger a proper system call [2]. There is a traditional-
ly UNIX system call with the name fork () but this system call has been replaced by
clone () which allows the child process to share parts of its execution context with
the calling process. On Linux, both processes and threads are created with clone ()
system call, even a thread is created by different library functions — process by the
function fork which means least sharing and thread by the function
pthread create which means most sharing [2].

2 Calling Function fork

A new process is created by the library function fork which trigger system call
clone (). The child process consists of a copy of the address space of the original
process, so it is a duplicate of the parent process. It uses Copy On Write (COW)
method. This is an important optimization because the child's memory pages are ini-
tially mapped to the pages shared by the parent, and only if process tries to modify
them then kernel copies them. Both processes (the parent and the child) continue exe-
cution at the same instruction after the calling function fork, with one difference: the
return code for the fork is zero for the child process, whereas the actual nonzero PID
of the child is returned to the parent [3]. The new child process has of course a unique
PID.

Because executing the same code is useful just only occasionally, typical child
process uses the exec () system call to replace the process’s memory space with a
new code after calling fork function. The new execution starts when exec () sys-
tem call loads another binary code into address space and destroy the memory image
of the previous process [3].

The parent waits with the wait () system call for the child process in-
voke exit () to complete work.

3 Calling Function phread_create

How has been mentioned, pthread create uses system call clone () too, but it
passes more arguments to share the virtual memory, file system, open files, shared
memory and signal handlers with the parent process or thread [4].

While function fork does not have any arguments, pthread create has fol-
lowing synopsis [5]:

#include <pthread.h>
int pthread create(pthread t *thread,
const pthread attr t *attr,
void * (*start routine) (void *), void *arg);

Once the function is called successfully, the variable whose address is passed as
first argument will hold the thread ID of the newly created thread. The second argu-
ment may contain attributes. When an attribute object is not specified, it is NULL,
and the thread is created with the default attributes (unbound, nondetached, default
stack and stack size, inherited priority of parent process). The third argument is a
function pointer. Each thread starts with a function and that functions address is
passed here. The function may accept argument in form of a pointer to a void type. If
a function accepts more than one argument, then this pointer could be a pointer to a
structure [5]. NULL may be used if no argument is to be passed. A lot of beginners
pass argument incorrectly because they pass the address of passing variable.

The fragment of incorrect code is here:

for (i=0; i<5; 1i++)

{
rc = pthread create(&th([i], NULL, PrintHello, &i);
// or (void *) &i // correct is (void *) i

This variable 1 is stored in shared memory space and it is visible to all threads. As
the loop iterates, the value of this memory address changes, very often before the
created thread can access it. For example, it should be right like this (void *)1i or
use a structure.

4 A Time measurement

It exists many methods but there are often not enough accurate or portable to other
platforms because they depend on operating system or compiler version. The meas-
urement in this contribution do not focus on CPU Time because it considers only time
when CPU processing the program’s instructions and e.g. I/O operations time is not
included there. The end user is mainly interested in wall time, it is simply the total
time elapsed during the measurement.

4.1 A Function clock_gettime()

It is available only in Linux systems. It can measure CPU time too, simply by replac-
ing the constant CLOCK_REALTIME with CLOCK PROCESS CPUTIME ID.

#include <stdio.h>

#include <time.h>

int main ()

{
struct timespec begin, end;
clock gettime (CLOCK REALTIME, &begin);
//measured code
clock gettime (CLOCK REALTIME, &end);
long seconds = end.tv_sec - begin.tv_sec;
long nanoseconds = end.tv nsec - begin.tv nsec;
double elapsed = seconds + nanoseconds*le-9;
printf ("Time: %.9f seconds.\n", elapsed);

Time measured by previous code shows overhead of clock gettime function,
this time is about 94 nanoseconds at CPU frequency 3,4 GHz (see chapter 5).

4.2 Using <chrono> library

It is available in Linux and Windows systems. It can measure only wall time, but it
has access to several clocks in the machine, each of them with different purposes and
characteristics. The clock with the highest resolution available is
high resolution clock and provide nanoseconds resolution too.

#include <iostream>
#include <chrono>

int main ()

{
auto begin=std::chrono::high resolution clock::now();
//measured code

auto end = std::chrono::high resolution clock::now();

auto elapsed = std::chrono::duration cast<std::
chrono: :nanoseconds> (end - begin);

std::cout << "Time: " << elapsed.count() * le-9;

Time measured by chrono library has slightly greater overhead, this time is about
110 nanoseconds at high speed CPU frequency.

5 Time Measurement

All time measurement has been processed on the notebook with CPU Intel Core
i7-1065G7 (1.3 GHz, Intel Turbo Boost 3.9 GHz, HyperThreading) [7]; 16 GB RAM
LPDDR4X (3733 GHz); SSD in M.2 PCIe/NVMe slot. Operating system Ubuntu
20.04 LTS, kernel 5.4.0-40-generic version #44-Ubuntu SMP.

As a processor can change a frequency because Intel Turbo Boost Technology is
used, all measurements will be presented together with used CPU frequency.

5.1 Function fork

The following source code fragment presents time measurement of function fork
using clock gettime function.

clock gettime (CLOCK REALTIME, &begin);
if ((child pid = fork()) == 0) //Child process return 0
{

clock gettime (CLOCK REALTIME, &child);

exit (0);

//Parent process
clock gettime (CLOCK _REALTIME, &parent);

At a CPU base frequency of 1.3 GHz, the execution time is around 94 microsec-
onds, but with Intel Turbo Boost on a 3.4 GHz CPU frequency, the fork function
lasts 34 microseconds. This is the execution time of the fork function and return to
the parent process. Executing the fork function and continuing in the child process
takes more time, from 60 to 170 microseconds, depending on the CPU frequency.
Very rarely, a process migrates to another CPU core, but this has no effect on perfor-
mance in this simple case.

The execution speed of the fork function also depends on the size of the address
space [4]. The fork function lasts longer, while allocated address space grow up,
e.g. the execution time is about 20 milliseconds with 4 GB of allocated address space
by malloc(le9 * sizeof (int)). As has been mentioned before, not the en-
tire address space is copied, but only the parts that do not use the COW method
(e.g. page table).

A similar situation occurs when another program is started using the exec () sys-
tem call in a child process. The calling process is overwritten by the program whose
filename is passed as the first argument. This is the most used use case; the fork ()
system call is followed by an exec call in the newly created task (child process).
Even with a simple HelloWorld program that sends text to the standard output, the
time to create a new child process is several times longer and grow up as the program
becomes more complex (see Tab. 1). Returning to the parent process after executing
the fork function takes as long as in the first simple example, it is in the range of
34 - 94 microseconds.

5.2 Function pthread_create

The following source code fragment presents time measurement of function
pthread create using clock gettime function.

void *mythread(void *1ID)
{
clock gettime (CLOCK REALTIME, &thread);

}
int main(int argc, char *argvl[])

{

clock gettime (CLOCK REALTIME, &begin);
pthread create (&pl, NULL, mythread, NULL);
clock gettime (CLOCK REALTIME, &parent);

At a CPU base frequency of 1.3 GHz, the new child thread is created in time
around 260 microseconds, but with Intel Turbo Boost on a 3.4 GHz CPU frequency, it
lasts 94 microseconds. It is slower than creating a new task (child process) by fork
function, but this is because the clone () system call is called with the following
flags:

const int clone flags = (CLONE VM | CLONE FS
| CLONE FILES | CLONE SYSVSEM | CLONE SIGHAND
| CLONE THREAD | CLONE SETTLS | CLONE PARENT SETTID
| CLONE CHILD CLEARTID | 0);

This is defined in function named create thread in
sysdeps/unix/sysv/linux/createthread.c file. It shares the virtual
memory, file system, open files, shared memory and signal handlers with the parent
thread/process [4]. To be POSIX compliant, it passes additional flags to implement
proper identification because all threads created from a single process have share its
process ID as a Thread group ID (tgid). In Linux, thread ID number is indicated by
LWP (Light Weight Process).

The execution time of the pthread create function and returning to the parent
task (thread) is in the range 49 - 143 microseconds. So, this corresponds with previous
results of simple example.

However, a different situation occurs when a new thread is created from a process
that has a large address space allocated, e.g. creating a new thread in a process with a
4 GB address space in the range of 170 - 290 microseconds, so creating a new thread
is not affected by the parent address space size unlike the fork function, which de-
pends on the size of the address space. In addition, this address space can be shared
between threads. The major difference between the multiprocessing and multithread-
ing is the ability for threads to share the resources of the process in which they exist.
Threads share such process resources as global variables and file descriptors. Inde-
pendent processes do not share anything [6].

5.3 Time measurement summary

Table 1 shows measured times with descriptions. The Range of measured time is
caused mainly by different CPU frequencies.

Table 1. Time measurement summary.

Measured Time [pus] Description

Execution time of function fork and return to the child task from

60-170
system call clone().

34_94 Execution time of function fork and return to the parent task from
system call clone().

about 20 000 Fork of a task with a large address space (4 GB). Return to

the parent takes nearly the same time as return to the child task.

Fork and exec of HelloWorld program in the child task.

about 700 and more . .
Time depends on program complexity.

34-94 Execution time of function fork and return to the parent task.

Create new task (thread) and return to the child task (thread) from

system call clone().

Execution time of function pthread create and return to the parent

94— 260

49 - 143 task from system call clone().

170 — 290 Create new task (thread) in a task with a large address space (4 GB)
and return to the child task (thread).

60— 147 Execution time of function pthread_create and return to the parent.

6 Threads versus processes

A question is whether processes or threads are better to use. The answer is: it de-
pends. Task creating time is not the most important reason. The only one advantage of
a process is its own address space. If process crashes or has a buffer overrun, it does
not affect any other processes, whereas if a thread crashes, it influences other threads
in the process. An unshared address space could be beneficial for performance on a
multiprocessor system because synchronizing shared memory between different pro-
CEssors is expensive.

Threads share memory of the process with other threads of the same process, inter-
thread communication is faster, context switching can be less expensive because it
exists chance to use cache memory content [6]. Synchronization is faster, but it de-
pends on application programmer, not on the kernel, so there is a much greater risk of
race condition.

7 Conclusions

There is no difference between processes (the result of fork) and threads (the result
of pthread create) for the Linux kernel. Both are represented by the same data
structures and scheduled similarly, and both are called tasks, the differences are most-
ly about what is shared between parent and child task [4].

It would be expected process creation to be more expensive than thread creation,
but since fork and pthread create route to the same system call clone () in
Linux, the difference come from the different flags they pass in [4].

Processes are safer and more secure than threads, because each process runs in its
own virtual address space, but processes have a higher overhead; it depends on the
size of address space (unlike threads). Inter-process communication (IPC) is harder
and slower than inter-thread communication. So, if the tasks use shared data, it is
better to use threads.

References

1. Stallings W.: Operating Systems: Internals and Design Principles. 8th ed., Pearson Educa-
tion Limited (2014).

2. Pillai Sarath: Difference Between Process and Thread in Linux. Slashroot.in,
https://www .slashroot.in/difference-between-process-and-thread-linux, last accessed
2020/06/07.

3. Silberschatz A., Galvin P. B. & Gagne G.: Operating system concepts. 9th ed. Hoboken,
NJ: Wiley (2013).

4. Bendersky E.: Launching Linux Threads and Processes with clone. Eli Bendersky’s web-
site, https:/eli.thegreenplace.net/2018/launching-linux-threads-and-processes-with-clone/,
last accessed 2020/04/16.

5. Linux manual page, https://man7.org/linux/man-pages/man3/pthread create.3.html, last
accessed 2020/06/30.

6. Farrell J., Buttlar D., Nichols B.: PThreads Programming. O’Reilly online learning,
https://www.oreilly.com/library/view/pthreads-programming/9781449364724/ch01.html,
accessed 2020/06/25.

7. Intel Product Specifications, Intel® Core™ i7-1065G7 Processor
https://ark.intel.com/content/www/us/en/ark/products/196597/intel-core-17-1065g7-
processor-8m-cache-up-to-3-90-ghz.html, accessed 2020/06/30.

https://www.slashroot.in/difference-between-process-and-thread-linux
https://eli.thegreenplace.net/2018/launching-linux-threads-and-processes-with-clone/
https://man7.org/linux/man-pages/man3/pthread_create.3.html
https://www.oreilly.com/library/view/pthreads-programming/9781449364724/ch01.html
https://ark.intel.com/content/www/us/en/ark/products/196597/intel-core-i7-1065g7-processor-8m-cache-up-to-3-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/196597/intel-core-i7-1065g7-processor-8m-cache-up-to-3-90-ghz.html

