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Abstract: In this work, various tunable sized spinel ferrite MnFe2O4 nanoparticles (namely
MF20, MF40, MF60 and MF80) with reduced graphene oxide (RGO) were embedded in a
polypropylene (PP) matrix. The particle size and structural feature of magnetic filler MnFe2O4

nanoparticles were controlled by sonochemical synthesis time 20 min, 40 min, 60 min and 80 min.
As a result, the electromagnetic interference shielding characteristics of developed nanocomposites
MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP were also controlled by tuning
of magnetic/dielectric loss. The maximum value of total shielding effectiveness (SET) was 71.3 dB
for the MF80-RGO-PP nanocomposite sample with a thickness of 0.5 mm in the frequency range
(8.2–12.4 GHz). This lightweight, flexible and thin nanocomposite sheet based on the appropriate size
of MnFe2O4 nanoparticles with reduced graphene oxide demonstrates a high-performance advanced
nanocomposite for cutting-edge electromagnetic interference shielding application.

Keywords: spinel ferrite; nanocomposites; electromagnetic interference shielding; magnetic loss;
dielectric loss

1. Introduction

Extensive practice of electronic and communication devices, liberating electromagnetic (EM)
waves, generates EM radiation pollution [1]. Electromagnetic interference (EMI) does not only affect
the working and life of electronic devices but also is harmful to human health [2]. This noble type of
EM radiation pollution delivers a solid motivation to develop efficient EMI shielding materials [3].
Lightweight, thinness and cost efficiency are other additional necessities of high-performance EMI
shielding materials for operational applications [4]. Polymer-based EMI shielding composite materials
are lightweight, resistant to corrosion, flexible and simple in preparation [5]. The performance of
polymer-based EMI shielding materials depends on the intrinsic electrical conductivity, aspect ratio,
and concentration of the fillers [6]. Graphene has received considerable attention as nano-fillers due
to their excellent electrical and thermal conductivities, and ultrahigh mechanical characteristics [7].
Additionally, spinel ferrite nanoparticles as nanofillers have been established as potential magnetic
absorbers due to their outstanding magnetic loss, good stability and cost-effectiveness [8,9].
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The particle shape and size of nanoparticles have a vital impact on the microwave absorption and
electromagnetic interference shielding characteristics of nanoparticles and their nanocomposites [10].
In recent years, researchers have noticed the influence of particle size on microwave absorption
and electromagnetic shielding performance [11]. Yi-Jun Liang et al. [12] noticed the size-dependent
microwave absorption performance of Fe3O4 nanoparticles prepared by the rapid microwave-assisted
thermal decomposition method. Niandu Wu et al. [13] observed particle size-dependent microwave
absorption characteristics of carbon-coated nickel nanocapsules. A correlation of particle size with
electromagnetic parameters can benefit us in better control of electromagnetic interference shielding
performance. Our research group [14] also noticed that the particle size of NiFe2O4 nanoparticles
correlates with the electromagnetic interference shielding performance of nanocomposites.

Efficient electromagnetic interference shielding nanocomposite material having a feature of
lightweight, flexible and excellent shielding characteristics are highly essential. Here, lightweight,
flexible and excellent EMI-shielding nanocomposites with control of magnetic loss/dielectric loss
through the control of particle size of MnFe2O4 spinel ferrite embedded in polypropylene matric with
reduced graphene oxide have been developed. Various sized MnFe2O4 spinel ferrite nanoparticles
were synthesized by sonochemical synthesis at different sonication times.

2. Materials and Methods

2.1. Materials

The reagents manganese nitrate, iron nitrate and sodium hydroxide were procured from Alfa
Aesar GmbH and Co KG (Karlsruhe, Germany). Potassium permanganate and graphite flakes were
acquired from Sigma-Aldrich, (Munich, Germany). Sodium nitrate was obtained from Lach-Ner
(Brno, Czech Republic). The utilized polypropylene (Vistamaxx 6202) was procured from Exxon Mobil
(Machelen, Belgium). The reducing agent Vitamin C (Livsane) was obtained from Dr. Kleine Pharma
GmbH, (Bielefeld, Germany).

2.2. Preparation of Nanoparticles

Various sized MnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis
approach as reported in our previous report [15]. A schematic illustration of the preparation of MnFe2O4

spinel ferrite nanoparticles by the sonochemical synthesis approach is shown in Figure 1. Further,
the synthesis condition for the preparation of these MnFe2O4 nanoparticles by the sonochemical
method is tabulated in Table 1. For the preparation, manganese nitrate and iron nitrate was mixed
with deionized water in a beaker. This solution was stirred on a magnetic stirrer for 5 min at room
temperature. To this prepared mixed solution, sodium hydroxide aqueous solution was added and the
whole mixed solution was placed under sonication (Ultrasonic homogenizer UZ SONOPULS HD 2070
(Berlin, Germany) (frequency: 20 kHz and power: 70 W)) for 20 min. The precipitate was collected
and then washed with deionized water and ethanol and finally dried at 40 ◦C. Further, the increased
particle size MnFe2O4 spinel ferrite nanoparticles were prepared for sonication time 40 min, 60 min
and 80 min. The reaction temperature was 65 ◦C, 74 ◦C, 85 ◦C and 93 ◦C, after sonication time 20 min,
40 min, 60 min and 80 min, respectively. The synthesized MnFe2O4 nanoparticles were designated
as MF20, MF40, MF60 and MF80 related to different sonication times 20 min, 40 min, 60 min and
80 min, respectively. Further, graphene oxide was prepared by the modified Hummer’s method [16].
Furthermore, graphene oxide (GO) was converted into reduced graphene oxide (RGO) by utilizing
vitamin C as a reducing agent.
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Figure 1. Schematic illustration of the preparation of MnFe2O4 nanoparticles by the sonochemical 
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Table 1. Synthesis condition for preparation of MnFe2O4 nanoparticles by the sonochemical method. 
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MF20 0.17 M 0.36 M 1.66 M 20 min 65 °C 
MF40 0.17 M 0.36 M 1.66 M 40 min 74 °C  
MF60 0.17 M 0.36 M 1.66 M 60 min 85 °C 
MF80 0.17 M 0.36 M 1.66 M 80 min 93 °C 
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A schematic illustration of the preparation of polypropylene (PP) based nanocomposites 
embedded with MnFe2O4 spinel ferrite nanoparticles and reduced graphene oxide (RGO) is shown 
in Figure 2. Nanocomposites of PP (50 wt %) with MnFe2O4 nanoparticles (40 wt %) and RGO (10 wt 
%) as nanofillers were developed by using the melt-mixing method. Four nanocomposite samples, 
namely (i) MF20-RGO-PP, (ii) MF40-RGO-PP, (iii) MF60-RGO-PP and (iv) MF80-RGO-PP were 
prepared. The rectangle-shaped sheet of a 22.86 × 10.16 × 0.5 mm3 dimension of prepared 
nanocomposites was developed by the hot-press approach. A representative digital photograph of 
PP nanocomposite embedded with MnFe2O4 spinel ferrite nanoparticles and reduced graphene oxide 
(RGO) as nanofillers is shown in Figure 3. 
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Figure 1. Schematic illustration of the preparation of MnFe2O4 nanoparticles by the sonochemical
synthesis method.

Table 1. Synthesis condition for preparation of MnFe2O4 nanoparticles by the sonochemical method.

Sample
Concentration
of Mn (NO3)2

4H2O

Concentration
of Fe (NO3)2

9H2O

Concentration
of NaOH

Sonication
Time

Reaction
Temperature

MF20 0.17 M 0.36 M 1.66 M 20 min 65 ◦C
MF40 0.17 M 0.36 M 1.66 M 40 min 74 ◦C
MF60 0.17 M 0.36 M 1.66 M 60 min 85 ◦C
MF80 0.17 M 0.36 M 1.66 M 80 min 93 ◦C

2.3. Preparation of Nanocomposites

A schematic illustration of the preparation of polypropylene (PP) based nanocomposites embedded
with MnFe2O4 spinel ferrite nanoparticles and reduced graphene oxide (RGO) is shown in Figure 2.
Nanocomposites of PP (50 wt %) with MnFe2O4 nanoparticles (40 wt %) and RGO (10 wt %)
as nanofillers were developed by using the melt-mixing method. Four nanocomposite samples,
namely (i) MF20-RGO-PP, (ii) MF40-RGO-PP, (iii) MF60-RGO-PP and (iv) MF80-RGO-PP were prepared.
The rectangle-shaped sheet of a 22.86 × 10.16 × 0.5 mm3 dimension of prepared nanocomposites was
developed by the hot-press approach. A representative digital photograph of PP nanocomposite
embedded with MnFe2O4 spinel ferrite nanoparticles and reduced graphene oxide (RGO) as nanofillers
is shown in Figure 3.
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2.4. Characterization Techniques

The EMI shielding effectiveness of prepared nanocomposite (MF20-RGO-PP, MF40-RGO-PP,
MF60-RGO-PP and MF80-RGO-PP) sheets of dimension 22.86 × 10.16 × 0.5 mm3 was studied with
a vector network analyzer (Agilent N5230A) at 8.2–12.4 GHz (the so-called X-band) frequency
range using a waveguide sample holder. X-ray powder diffraction (Rigaku Corporation, Tokyo,
Japan) characterization tool was employed to analyze the crystal structure of nanocomposites.
A field emission scanning electron microscope (FEI NanoSEM450) was employed to observe
the morphology and presence of MnFe2O4 nanoparticles and reduced graphene oxide in the
polypropylene matrix. Raman spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) was
used for Raman spectra of prepared RGO, PP, and its nanocomposites. A vibrating sample
magnetometer (VSM 7407, Lake Shore) was employed to study magnetic hysteresis curves of
prepared nanocomposite (MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP). The FTIR
spectrometer (Nicolet 6700, Thermo Scientific) was utilized to achieve the FTIR spectra of prepared
nanocomposites. Thermogravimetric analyses of prepared nanocomposites were performed on
a Setaram LabSys Evo with TG/DSC sensor in an atmosphere of air (heating ramp 5 ◦C min−1,
up to 1000 ◦C, and air flow 60 mL min−1). Mechanical properties of prepared polypropylene based
nanocomposites were measured on a Testometric universal-testing machine of type M 350–5CT
(Testometric Co. Ltd., Rochdale, UK).

3. Results

3.1. XRD Study

XRD pattern of polypropylene (PP) and its prepared nanocomposites MF20-RGO-PP,
MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP is shown in Figure 4. The X-ray diffraction
peaks indexed with (220), (311), (222), (400), (422), (511) and (440) confirm the presence of cubic spinel
structure of MnFe2O4 nanoparticles in prepared nanocomposites [17]. It is noticeable in Figure 4 that
the diffraction peak intensity of MnFe2O4 spinel ferrite nanoparticles was increased with the increase
of sonication time, which signified an increase of crystallite size also [15]. The X-ray diffraction peaks
at 14.2◦, 16.8◦, 18.2◦, 21.1◦ and 21.9◦, which is associated with (110), (040), (130), (111) and (131) + (041),
respectively, crystal plane of the α-form of polypropylene [18]. Further, no diffraction peak associated
with reduced graphene oxide was observed because of the low XRD intensity of RGO in prepared
nanocomposites [19].
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Figure 4. XRD pattern of polypropylene (PP) and prepared nanocomposites MF20-RGO-PP, MF40-
RGO-PP, MF60-RGO-PP and MF80-RGO-PP. 
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of prepared nanocomposites. FE-SEM image of cross-sections of prepared MF60-RGO-PP and MF80-
RGO-PP nanocomposites is shown in Figure 5. Images display the existence of MnFe2O4 spinel ferrite 
nanoparticles and reduced graphene oxide in the polypropylene matrix system. Further, FE-SEM 
image of prepared MF20-RGO-PP and MF40-RGO-PP nanocomposites is shown in Figure 6a,c, 
respectively. The presence of MnFe2O4 nanoparticles and reduced graphene oxide can be noticed in 
the polypropylene matrix. In addition, energy dispersive X-ray spectrum (EDX) of the MF20-RGO-
PP (Figure 6b) and MF40-RGO-PP (Figure 6d) showed the existence of C, O, Mn and Fe. 
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PP 

MF60 
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Figure 4. XRD pattern of polypropylene (PP) and prepared nanocomposites MF20-RGO-PP,
MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP.

3.2. FE-SEM Study

Field emission scanning electron microscopy (FE-SEM) was utilized to investigate morphology
of prepared nanocomposites. FE-SEM image of cross-sections of prepared MF60-RGO-PP and
MF80-RGO-PP nanocomposites is shown in Figure 5. Images display the existence of MnFe2O4

spinel ferrite nanoparticles and reduced graphene oxide in the polypropylene matrix system. Further,
FE-SEM image of prepared MF20-RGO-PP and MF40-RGO-PP nanocomposites is shown in Figure 6a,c,
respectively. The presence of MnFe2O4 nanoparticles and reduced graphene oxide can be noticed in
the polypropylene matrix. In addition, energy dispersive X-ray spectrum (EDX) of the MF20-RGO-PP
(Figure 6b) and MF40-RGO-PP (Figure 6d) showed the existence of C, O, Mn and Fe.

Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 23 

 

10 20 30 40 50 60 70
0

1000
2000
3000

10 20 30 40 50 60 70
500

1000

10 20 30 40 50 60 70

600
900

1200

10 20 30 40 50 60 70
300
600
900

1200

10 20 30 40 50 60 70
600
900

1200

α
(1

11
)

α
(3

01
) +

 (0
41

)

α(
13

0)
α

(0
40

)

α
(1

10
)

PP

2θ (Degree)

α
(3

01
) +

 (0
41

)
α(

30
1)

 +
 (0

41
)

(4
40

)

(5
11

)

(4
22

)

(4
00

)α
(1

11
)

α
(1

30
)

α
(1

10
)

α(
04

0)

In
te

ns
ity

 (c
ps

)

MF20-RGO-PP

(4
40

)

(5
11

)

(4
22

)

(4
00

)

(2
22

)
(3

11
)

(2
20

)

α(
11

1)
α

(1
30

)

α
(0

40
)

α
(1

10
)

α
(1

10
)

(3
11

)

(2
20

)

MF40-RGO-PP

α(
30

1)
 +

 (0
41

)

(4
40

)

(5
11

)

(4
22

)

(4
00

)

(2
22

)
(2

22
)(3

11
)

(2
20

)

α
(1

11
)

α(
13

0)
α(

04
0)

MF60-RGO-PP

α
(3

01
) +

 (0
41

)

(4
40

)

(5
11

)

(4
22

)

(4
00

)

(2
22

)
(3

11
)

(2
20

)

α
(1

11
)

α
(1

30
)

α(
04

0)

α(
11

0)

MF80-RGO-PP

 
Figure 4. XRD pattern of polypropylene (PP) and prepared nanocomposites MF20-RGO-PP, MF40-
RGO-PP, MF60-RGO-PP and MF80-RGO-PP. 

3.2. FE-SEM Study 

Field emission scanning electron microscopy (FE-SEM) was utilized to investigate morphology 
of prepared nanocomposites. FE-SEM image of cross-sections of prepared MF60-RGO-PP and MF80-
RGO-PP nanocomposites is shown in Figure 5. Images display the existence of MnFe2O4 spinel ferrite 
nanoparticles and reduced graphene oxide in the polypropylene matrix system. Further, FE-SEM 
image of prepared MF20-RGO-PP and MF40-RGO-PP nanocomposites is shown in Figure 6a,c, 
respectively. The presence of MnFe2O4 nanoparticles and reduced graphene oxide can be noticed in 
the polypropylene matrix. In addition, energy dispersive X-ray spectrum (EDX) of the MF20-RGO-
PP (Figure 6b) and MF40-RGO-PP (Figure 6d) showed the existence of C, O, Mn and Fe. 

(a) (b) 
RGO 

MF60 
PP 

MF60 

RGO 

PP 

Figure 5. Cont.



Nanomaterials 2020, 10, 2481 6 of 23Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 23 

 

Figure 5. (a,b) FE-SEM image of cross-sections of the MF60-RGO-PP sample and (c,d) FE-SEM image 
of cross-sections of the MF80-RGO-PP sample. 

 
0 2 4 6 8 10

0

5,000

10,000

15,000

20,000
(b)

Fe
FeMnMnFe

Mn
O

C MF20-RGO-PP

In
te

ns
ity

 (c
ps

)

Energy (keV)  

 

0 2 4 6 8 10
0

2,000

4,000

6,000

8,000

10,000

12,000
(d)MF40-RGO-PP

Fe

Fe

Mn
Mn

Mn
Fe

O

C

In
te

ns
ity

 (c
ps

)

Energy ( keV )  

Figure 6. (a) FE-SEM image of cross-sections of MF20-RGO-PP, (b) EDX spectrum of MF20-RGO-PP, 
(c) FE-SEM image of cross-sections of MF40-RGO-PP and (d) EDX spectrum of MF40-RGO-PP. 

(c) (d) 

MF80 

RGO 
PP 

MF80 RGO 

PP 

MF20 RGO 

PP 

(a) 

RGO 

MF40 

PP 

(c) 

Figure 5. (a,b) FE-SEM image of cross-sections of the MF60-RGO-PP sample and (c,d) FE-SEM image
of cross-sections of the MF80-RGO-PP sample.

Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 23 

 

Figure 5. (a,b) FE-SEM image of cross-sections of the MF60-RGO-PP sample and (c,d) FE-SEM image 
of cross-sections of the MF80-RGO-PP sample. 

 
0 2 4 6 8 10

0

5,000

10,000

15,000

20,000
(b)

Fe
FeMnMnFe

Mn
O

C MF20-RGO-PP

In
te

ns
ity

 (c
ps

)

Energy (keV)  

 

0 2 4 6 8 10
0

2,000

4,000

6,000

8,000

10,000

12,000
(d)MF40-RGO-PP

Fe

Fe

Mn
Mn

Mn
Fe

O

C

In
te

ns
ity

 (c
ps

)

Energy ( keV )  

Figure 6. (a) FE-SEM image of cross-sections of MF20-RGO-PP, (b) EDX spectrum of MF20-RGO-PP, 
(c) FE-SEM image of cross-sections of MF40-RGO-PP and (d) EDX spectrum of MF40-RGO-PP. 

(c) (d) 

MF80 

RGO 
PP 

MF80 RGO 

PP 

MF20 RGO 

PP 

(a) 

RGO 

MF40 

PP 

(c) 

Figure 6. (a) FE-SEM image of cross-sections of MF20-RGO-PP, (b) EDX spectrum of MF20-RGO-PP,
(c) FE-SEM image of cross-sections of MF40-RGO-PP and (d) EDX spectrum of MF40-RGO-PP.



Nanomaterials 2020, 10, 2481 7 of 23

3.3. Raman Spectroscopy

Figure 7 shows the Raman spectra of polypropylene (PP), reduced graphene oxide (RGO) and
prepared nanocomposite MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP samples.
The crystal structure and presence of MnFe2O4 in nanocomposites were confirmed through the
measurement of A1g, Eg and T2g peak positions in the Raman spectrum. In Figure 7, the existence of
characteristics Raman bands, i.e., Eg mode (296 cm−1), T2g mode (242 cm−1, 355 cm−1 and 580 cm−1)
and A1g mode (604 cm−1 and 657 cm−1) of spinel ferrite can be noticed [20]. The appearance of two
characteristics peaks of RGO at 1338 cm−1 and 1594 cm−1 corresponds to the D-band and G-band of
RGO, respectively [21]. Additionally, the other Raman peaks in the nanocomposites are associated
with the chemical group of polypropylene [22].
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3.4. FTIR Spectroscopy

Figure 8 displays the FTIR spectra of polypropylene (PP) and developed nanocomposite samples
MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP. The presence of characteristic FTIR
peaks of MnFe2O4 spinel ferrite nanoparticles and polypropylene can be noticed in the prepared
nanocomposites, as shown in Figure 8. In spinel ferrite, the infrared bands noticed between 100
and 600 cm−1 indicate the formation of single phase spinel ferrite material. The absorption band at
565 cm−1 was associated with the intrinsic stretching vibration of metals at tetrahedral sites in MnFe2O4

nanoparticles [23]. The absorption peak at 840 cm−1 was associated with C–CH3 stretching vibration
in PP. The peak 972 cm−1, and 1165 cm−1 were associated with –CH3 rocking vibration. The absorption
peak at 1375 cm−1 and 2952 cm−1 were related to symmetric bending vibration of the –CH3 group and
–CH3 asymmetric stretching vibration. The absorption peak at 1455 cm−1, 2838 cm−1 and 2917 cm−1 were
related to –CH2-symmetric bending, –CH2-symmetric stretching, and –CH2-asymmetric stretching,
respectively [24]. In amalgamation with Raman and FTIR spectroscopy results, the presence of
MnFe2O4 spinel ferrite nanoparticles and reduced graphene oxide (RGO) in the polypropylene (PP)
were confirmed.
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3.5. Thermogravimetric Analysis (TGA)

Figure 9 depicts the TGA curves of polypropylene (PP) and its prepared MF20-RGO-PP,
MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP nanocomposites under air atmosphere. It can be
noticed that the PP had lower degradation temperature in comparison with its prepared nanocomposites.
Further, nanocomposites exhibited higher thermal stability as compared to PP, which is associated
with the result of an interaction between PP, MnFe2O4 nanoparticles and RGO [25]. Furthermore,
the oxidative residues at 1000 ◦C are 37%, 39%, 46% and 49.2% for MF20-RGO-PP, MF40-RGO-PP,
MF60-RGO-PP and MF80-RGO-PP, respectively, with 50% nanofillers loading [26]. The slightly lower
residue values especially for MF20-RGO-PP and MF40-RGO-PP sample than the corresponding actual
residues (i.e., loaded nano-fillers) were mainly due to the evaporation of surface impurities/chemical
functional group attached on surface of small sized nanoparticles MF20 and MF40 [27].
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3.6. Magnetic Property

Magnetic properties of prepared MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP
nanocomposites were investigated by using a vibrating sample magnetometer. The magnetic hysteresis
curves of MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP nanocomposites are
shown in Figure 10. Ferromagnetic behavior can be noticed in magnetic hysteresis curves as depicted
in Figure 10 for MF20-RGO-PP (Hc = 33.2 Oe, Mr = 0.003 emu/g, Ms = 0.45 emu/g), MF40-RGO-PP
(Hc = 43.57 Oe, Mr = 0.008 emu/g, Ms = 0.55 emu/g), MF60-RGO-PP (Hc = 61.0 Oe, Mr = 1.57 emu/g,
Ms = 14.6 emu/g) and MF80-RGO-PP (Hc = 45.9 Oe, Mr = 2.03 emu/g, Ms = 24.8 emu/g) nanocomposites.
The ferromagnetic behavior of nanoparticles MF20 (Ms = 1.9 emu/g, Hc = 45.0 Oe, Mr = 0.12 emu/g),
MF40 (Ms = 2.5 emu/g, Hc = 42.0 Oe, Mr = 0.13 emu/g), MF60 (Ms = 30.2 emu/g, Hc = 34.0 Oe,
Mr = 2.27 emu/g) and MF80 (Ms = 52.5 emu/g, Hc = 32.0, Mr = 4.50 emu/g) was noticed, as mentioned in
our previous report [15]. The high-frequency resonance in terms of anisotropy constant (K), anisotropy
energy (Ha) and resonance frequency (fr) has the following interrelationship with coercivity (Hc) and
saturation magnetization (Ms) [28]:

K =
uoMsHc

2
(1)

Ha =
4|K|

3uoMs
(2)

2π fr = rHa (3)

where µo is the universal value of permeability in free space (4π × 10−7 H/m) and r is the gyromagnetic
ratio. The correlation of the above equations signifies that the value of Hc and Ms can influence the
magnitude of K, Ha and fr and consequently electromagnetic properties of nanocomposites [29].
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3.7. Electromagnetic Interference Shielding Effectiveness

The electromagnetic interference (EMI) shielding effectiveness (SE) is the degree of the material’s
capability to block the electromagnetic waves. It is represented by the logarithm of the ratio of incident
power (PI) to transmitted power (PT) in decibels

SET(dB) = 10 log
( PI

PT

)
(4)

The attenuation of the electromagnetic waves involves generally three mechanisms: reflection
(SER), absorption (SEA) and multiple reflections (SEM). When the shielding effectiveness associated
with absorption has a higher value than 10 dB, i.e., approximately all the rereflected waves will be
absorbed within the material, the contribution associated with multiple reflections can be neglected [30].
Then, the total shielding effectiveness (SET) can be expressed as

SET = SER + SEA (5)

A two-port network analyzer can be utilized to measure the scattering parameters (S11, S12, S21

and S22), which correlates with reflection (R) and transmission coefficients (T) as [31]:

T = |S12|
2 = |S21|

2 (6)

R = |S11|
2 = |S22|

2 (7)

The shielding effectiveness due to absorption (SEA) and reflection (SER) can be expressed in terms
of the scattering parameters as

SER = 10 log
( 1

1−R

)
= 10 log

(
1

1− |S11|
2

)
(8)

SEA = 10 log
(1−R

T

)
= 10 log

(
1− |S11|

2

|S21|
2

)
(9)

Therefore, total shielding effectiveness (SET) can be obtained from the above relations as

SET = 20 log(S21) (10)

Figure 11 depicts the EMI shielding effectiveness of prepared nanocomposites MF20-RGO-PP,
MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP at a thickness of 0.5 mm. The maximum value
of total shielding effectiveness (SET) was 58.6 dB, 66.4 dB, 69.4 dB and 71.3 dB for MF20-RGO-PP,
MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP samples, respectively, as shown in Figure 11a.
Further, the maximum value of shielding effectiveness due to absorption (SEA) was 35.3 dB, 41.3 dB,
44.3 dB and 45.8 dB for MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP samples,
respectively, as shown in Figure 11b. Additionally, the maximum value of shielding effectiveness
due to reflection (SER) was 23.4 dB, 25.2 dB, 25.1 dB and 25.6 dB for MF20-RGO-PP, MF40-RGO-PP,
MF60-RGO-PP and MF80-RGO-PP samples, respectively, as shown in Figure 11c. The maximum value
of total EMI SE (SET), absorption (SEA) and reflection (SER) of developed nanocomposites were plotted
in Figure 11d. The results imply an absorption dominant shielding mechanism instead of reflection in
the designed nanocomposites.
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MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP at a thickness of 0.5 mm.

A research group, X.-J. Zhang et al. [32] noticed the minimum reflection loss -29.0 dB at 9.2 GHz
for RGO/MnFe2O4/PVDF composites, which contained 5 wt % filler content with a thickness of
3.0 mm. P. Yin et al. [33] observed the optimal microwave absorbing intensity −48.92 dB at 0.78 GHz
at a 2.5 mm thickness for the Apium-derived biochar loaded with MnFe2O4@C. Another researcher,
R. V. Lakshmi et al. [34] observed a total shielding effectiveness value 44 dB in the X band frequency
range for PMMA modified MnFe2O4-polyaniline nanocomposites. R. K. Srivastava et al. [35] noticed
the total shielding effectiveness of −38 dB filler 5 wt % RGO-MnFe2O4 and 3 wt % of MWCNTs in
polyvinylidene fluoride (PVDF) matrix. Another research group, Y. Wang et al. [36] observed the
maximum reflection loss of −32.8 dB at 8.2 GHz with the thickness of 3.5 mm for MnFe2O4/RGO
composite. Further, P. Yin et al. [37] noticed the maximum reflection loss of −14.87 dB at 2.25 GHz with
the thickness of 4 mm. Furthermore, Y. Wang et al. [38] showed the maximum absorption of -38 dB at
6 GHz with the thickness of 3.5 mm for a ternary composite of Ag/MnFe2O4/reduced graphene oxide
(RGO). Additionally, a comparison of electromagnetic wave absorption performance between MnFe2O4

spinel ferrite nanoparticles based developed composites reported in recent years are tabulated in
Table 2.
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Table 2. Comparison of electromagnetic wave absorption performance between MnFe2O4 spinel ferrite
nanoparticles based developed composites reported in recent years.

No. Shielding Material Frequency
(GHz)

Specimens
Thickness (mm)

Effect of
Shielding Ref.

1. RGO/MnFe2O4/PVDF 2–18 GHz 3.0 mm −29.0 dB [32]

2. Biochar/MnFe2O4@C 0.2–3 GHz 2.5 mm −48.92 dB [33]

3. PMMA modified MnFe2O4-PANI 8–12 GHz ~44 dB [34]

4. PVDF/RGO-MnFe2O4/MWCNTs 8–18 GHz −38dB [35]

5. MnFe2O4/RGO 2–18 GHz 3.5 mm −32.8 dB [36]

6. SiO2-MnFe2O4 0.2–3 GHz 4 mm −14.87 dB [37]

7. Ag/MnFe2O4/RGO 2–18 GHz 3.5 mm −38 dB [38]

8. MnFe2O4-RGO-PP 8.2–12.4 GHz 0.5 mm ~71.3 dB This work

The influence of thickness on EMI shielding effectiveness of prepared nanocomposites was also
investigated. Figure 12 depicts EMI shielding effectiveness of prepared nanocomposites MF20-RGO-PP,
MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP nanocomposite sheet at a thickness of 1 mm.
The maximum value of total shielding effectiveness (SET) was 39.15 dB, 41.72 dB, 44.21 dB and
49.11 dB for MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP nanocomposite sheet,
respectively, at a thickness of 1 mm, as depicted in Figure 12a. Further, the maximum value of shielding
effectiveness due to absorption (SEA) was 19.52 dB, 22.07 dB, 23.78 dB and 28.12 dB for MF20-RGO-PP,
MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP nanocomposite, respectively, at a thickness of 1 mm,
as shown in Figure 12b. Furthermore, the maximum value of shielding effectiveness due to reflection
(SER) was 19.64 dB, 19.67 dB, 20.44 dB and 21.00 dB for MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP
and MF80-RGO-PP nanocomposite, respectively, at a thickness of 1 mm, as represented in Figure 12c.
A comparative value of SET, SEA and SER for prepared nanocomposite sheet at a thickness of 1 mm is
represented in Figure 12d. A slight decrease in shielding effectiveness was noticed with an increase in
thickness from 0.5 to 1 mm [39,40], however, the observed value of EMI shielding effectiveness was
higher enough than the limit (20 dB) needed for techno-commercial applications [41].
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and SER for MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP nanocomposite sheet at
thickness of 1 mm.

3.8. Electromagnetic Properties and Parameters

It is well-known that the electromagnetic interference shielding performances of the
nanocomposites are highly associated with complex permittivity (εr = ε′ + jε′′ ) and complex
permeability (µr = µ′ + jµ′′ ). Figure 13a shows the real part of the complex permittivity (ε’) of
prepared nanocomposites. The real part of the complex permittivity (ε’) corresponds to the storage
of the electrical energy and can be controlled by polarization in the material. The existence of
RGO and MnFe2O4 nanoparticles in the PP matrix created a heterogeneous medium that acted as
interface accumulation in the developed nanocomposites. The value of the real part of the complex
permittivity (ε’) was in the range of 4.64–4.84, 4.62–4.76, 4.34–4.42 and 4.20–4.79 for MF20-RGO-PP,
MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP sample, respectively. The real part of the permittivity
(ε’) was associated with the polarization in the material, which consisted of dipolar polarization,
interfacial/surface polarization, orientational polarization, ionic or electronic polarization. The higher
value of the real part of permittivity (ε’) of MF20-RGO-PP and MF40-RGO-PP was due to presence
of a higher number of surface impurity bonds/residual bonds and cluster defects in MF20 and MF40
nanoparticles via a chemical synthesis route, the electrons were not evenly distributed, which led to
orientation polarization and thereby further enhancement in the real part of permittivity [42]. The ionic
or electronic polarization plays a dominant role in enhancing the real part of permittivity at a high
frequency. The existence of this polarization enhanced slowly with increase of frequency. Therefore, the
increase of real part of permittivity (ε’) at higher frequency in MF80-RGO-PP sample could be associated
with dominant role of electronic polarization [43]. The real part of the complex permittivity (ε’) had
no direct relation with the total shielding effectiveness (SET). The imaginary part of the permittivity
(ε”) corresponded to the dielectric loss in the materials. Figure 13b depicts the imaginary part of the
permittivity (ε”) of the developed nanocomposites. It can be observed that the value of the imaginary
part of the complex permittivity (ε”) was in the range of 0.18–0.35, 0.17–0.36, 0.15–0.30 and −0.03–0.15
for MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP nanocomposite, respectively.
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Figure 13. Frequency-dependent (a) real permittivity (ε’), (b) imaginary permittivity (ε″), (c) ac 
conductivity (σac) and (d) Cole–Cole semicircles (ε′ vs. ε′′) of prepared MF20-RGO-PP, MF40-RGO-
PP, MF60-RGO-PP and MF80-RGO-PP composite samples. 
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The value of electrical conductivity was 9.04 × 10−4 to 1.84 × 10−3 S/cm, 8.41 × 10−4 to 1.80 × 10−3 S/cm, 
7.25 × 10−4 to 1.47 × 10−3 S/cm and −8.55 × 10−5 to 1.05 × 10−3 S/cm for prepared MF20-RGO-PP, MF40-
RGO-PP, MF60-RGO-PP and MF80-RGO-PP composite samples, respectively. The MF20 and MF40 
nanoparticles-based nanocomposites had similar electrical conductivity and also higher than the 
other two nanoparticles MF60 and MF80 based nanocomposites. The enhanced electrical conductivity 
is associated with an increased induced microcurrent network and hopping phenomenon in prepared 
nanocomposites [45,46]. 
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Figure 13. Frequency-dependent (a) real permittivity (ε’), (b) imaginary permittivity (ε”), (c) ac
conductivity (σac) and (d) Cole–Cole semicircles (ε′ vs. ε′′) of prepared MF20-RGO-PP, MF40-RGO-PP,
MF60-RGO-PP and MF80-RGO-PP composite samples.

According to free-electron theory, the electrical conductivity (σac) can be evaluated by the following
relation [44]:

σac = εoε′′ω = εoε′′2π f (11)

where σac, εo, ω and f are the electrical conductivity, the dielectric constant of the free space, the
angular frequency and frequency of the electromagnetic waves, respectively. Figure 13c depicts the
frequency dependence variation of the electrical conductivity (σac) of the developed nanocomposites.
The value of electrical conductivity was 9.04 × 10−4 to 1.84 × 10−3 S/cm, 8.41 × 10−4 to 1.80 × 10−3

S/cm, 7.25 × 10−4 to 1.47 × 10−3 S/cm and −8.55 × 10−5 to 1.05 × 10−3 S/cm for prepared MF20-RGO-PP,
MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP composite samples, respectively. The MF20 and
MF40 nanoparticles-based nanocomposites had similar electrical conductivity and also higher than the
other two nanoparticles MF60 and MF80 based nanocomposites. The enhanced electrical conductivity
is associated with an increased induced microcurrent network and hopping phenomenon in prepared
nanocomposites [45,46].

The relative complex permittivity can be expressed by the following relation [47]:

εr = ε∞ +
εs − ε∞

1 + j2π fτ
= ε′ − jε′′ (12)

where f, ε∞, εs and τ corresponds to frequency, optical and stationary dielectric constant and polarization
relaxation time, respectively. The dielectric parameters (ε’, ε”) can be evaluated by the following
relation [48,49]:

ε′ = ε∞ +
εs − ε∞

1 +ω2τ2 (13)
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ε′′ = ε′′r + ε′′c =
εs − ε∞

1 +ω2τ2 +
σ
ωεo

(14)

where σ, ε′′r and ε′′c corresponds to electrical conductivity, polarization loss and conductive
loss, respectively.

The dielectric loss is generally associated with Debye polarization relaxation, which includes ionic
polarization, electron polarization, dipole polarization and interfacial polarization [50]. The interfacial
polarization originated because of the heterogeneous interfaces between MnFe2O4 nanoparticles
and reduced graphene oxide in the polypropylene matrix. Based on Debye theory, the polarization
characteristics can be confirmed by Cole–Cole semicircles, which is resulting from the following
relation [51]: (

ε′ −
εs − ε∞

2

)2
+ (ε′′ )2 =

(
εs − ε∞

2

)2
(15)

Figure 13d depicts the Cole–Cole semicircles (ε′ vs. ε”) of prepared MF20-RGO-PP, MF40-RGO-PP,
MF60-RGO-PP and MF80-RGO-PP composite samples. Several semicircles can be noticed for prepared
nanocomposites, which indicate the coexistence of multiple polarization process. Further, since
the prepared MnFe2O4-RGO-PP composites can simply form conductive networks and therefore
conduction loss cannot be ignored also.

In general, the real permeability (µ’) signifies the energy storage capacity of magnetic energy
and the imaginary permeability (µ”) refers to the energy dissipation capacity of magnetic energy [52].
Figure 14a depicts the frequency dependence variation of the real part of permeability (µ’) of designed
nanocomposites. The value of the real part of permeability (µ’) was 1.01–1.17, 1.06–1.31, 1.04–1.23
and 1.48–1.89 for the prepared MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP,
respectively. Noticeably, the higher value of the real part of permeability (µ’) of the MF80-RGO-PP
sample suggesting the increased storage capacity of magnetic energy in comparison to other prepared
nanocomposites. Figure 14b shows the frequency dependence variation of the imaginary part of
permeability (µ”) of developed nanocomposite samples. The value of the imaginary part of permeability
(µ”) was −0.015–0.057, −0.024–0.042, −0.033–0.023 and 0.52–1.62 for the prepared MF20-RGO-PP,
MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP, respectively. The negative value of imaginary
permeability in the frequency range 9–11.4 GHz for MF60-RGO-PP, 10–11.2 GHz for MF40-RGO-PP
and 10.2–10.7 GHz for MF20-RGO-PP can be associated with the eddy current caused by an extra
magnetic field, which nullifies the inherent magnetic field [53]. Based on the Maxwell equations,
the negative values of the imaginary part of permeability signify that the magnetic energy is radiated
out and converted into electric energy [54].
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Additionally, the dielectric loss tangent (tanδε = ε”/ε’) was utilized to calculate the loss capability
against the stored capacity for electric energy. Figure 14c depicts the frequency dependence
variation of dielectric loss (tanδε) of developed nanocomposites. Noteworthy, the trend of value of
dielectric loss (tanδε) of developed nanocomposites was similar to the trend of the imaginary part
of permittivity (ε”). The value of dielectric loss (tanδε) was 0.042–0.075, 0.037–0.077, 0.035–0.068
and −0.008–0.038 for prepared MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP
composite samples, respectively.

Moreover, the magnetic loss ability of the prepared nanocomposites can be evaluated by the
magnetic tangent loss (tanδµ = µ”/µ’). Figure 14d depicts the frequency dependence changes in
magnetic loss (tanδµ) of prepared nanocomposites. The value of magnetic loss (tanδµ) was−0.014–0.053,
−0.021–0.037, −0.031–0.021 and 0.331–0.853 for prepared MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP
and MF80-RGO-PP, respectively.

Generally, the magnetic loss is attributed to the magnetic resonance (natural resonance and
exchange resonance), eddy current loss, magnetic hysteresis loss and domain wall resonance [55].
The magnetic hysteresis loss had no appearance in the weak electromagnetic field, whereas the domain
wall resonance had occurrence only at 1–100 MHz. The magnetic resonance and the eddy current effect
induced the magnetic loss in the range of GHz frequency. When the magnetic loss was associated
with the eddy current loss, the value of µ”(µ’)−2f−1 should be constant with the variation of the
frequency [56].

The eddy current can be calculated by using the following relation [57]:

Co = µ′′ (µ′)−2 f−1 = 2πσµod2/3 (16)

where µo is the permeability of the vacuum, σ is the electric conductivity and d is the thickness of the
material. As shown in Figure 15a, the value of Co was constant at a lower frequency range from 8.2 to
8.8 GHz for MF20-RGO-PP, MF40-RGO-PP and MF60-RGO-PP nanocomposites, which implies that the
magnetic loss in this frequency range was eddy current loss. Further, for these nanocomposites, the value
of µ”(µ’)−2f−1 varied at a higher frequency from 8.8 to 12.4 GHz, which suggests that the magnetic loss
was not only induced by eddy current effect but also natural ferromagnetic resonance. Furthermore,
for MF80-RGO-PP composite sample, the value of µ”(µ’)−2f−1 was not constant throughout the whole
frequency range.
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RGO-PP and MF80-RGO-PP nanocomposites, respectively. It was noticed that the value of the skin 
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Figure 15. Frequency-dependent (a) eddy current loss, (b) skin depth, (c) impedance matching ratio and
(d) attenuation constant of prepared MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP
composite samples.

The superior value of EMISE was associated with the low skin depth of the prepared
nanocomposites. The skin depth (δ) is the depth where the incident power of the EM waves
fell to 1/e of its value at the surface. It can be given by the following relation [58]:

δ = (π fµσ)−1/2 (17)

where f is the frequency, µ is the permeability of the material and σ is the electrical conductivity.
Figure 15b depicts the variation of skin depth (δ) of prepared MF20-RGO-PP, MF40-RGO-PP,
MF60-RGO-PP and MF80-RGO-PP composite samples. The skin depth varied from 0.003 to 0.007
µm, 0.008 to 0.036 µm, 0.012 to 0.048 µm and 0.0012 to 0.0013 µm for MF20-RGO-PP, MF40-RGO-PP,
MF60-RGO-PP and MF80-RGO-PP nanocomposites, respectively. It was noticed that the value of the
skin depth of nanocomposites was much lower than their thickness, which leads to a high EMI SE [59].
Further, in general, the material with the shallowest skin depth exhibits high absorption loss [60].

In general, to achieve a large role of electromagnetic absorption, the shielding material should
exhibit a large impedance matching ratio (Z) to free space [61]. The impedance matching ratio (Z) can
be evaluated from the following relation [62]:

Z = Z1/Zo = (µr/εr)
1/2 (18)
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where, Z1 is the impedance matching of the electromagnetic wave absorber material, and Zo is the
impedance in free space. As shown in Figure 15c, the impedance matching ratio was increased with the
increase of nanoparticle size of MnFe2O4 spinel ferrite in developed MF20-RGO-PP, MF40-RGO-PP and
MF60-RGO-PP nanocomposites, whereas it was increased more at a lower frequency and decreased
more at a higher frequency in case of the MF80-RGO-PP nanocomposite sample.

The other important electromagnetic parameter for electromagnetic interference shielding
nanocomposites is the electromagnetic wave attenuation, and the attenuation constant (α) can be
evaluated by the following relation [63]:

α =

√
2π f
c

[
(µ′′ ε′′ − µ′ε′ ) +

√
(µ′′ ε′′ − µ′ε′)2 + (µ′ε′′ + µ′′ ε′)2

]1/2

(19)

Figure 15d depicts the attenuation constant of prepared MF20-RGO-PP, MF40-RGO-PP,
MF60-RGO-PP and MF80-RGO-PP composite samples. In general, a large value of attenuation
constant (α) indicates a good attenuation ability, which reveals the great dissipation characteristics
of materials [64]. It can be observed that the nanocomposites MF20-RGO-PP, MF40-RGO-PP and
MF60-RGO-PP had a very similar attenuation constant (α) value in the frequency range 8.2–12.4 GHz,
whereas there was a noticeable gap in the attenuation constant (α) value of MF80-RGO-PP composite
samples, especially in the low-frequency range. These results indicate that the total loss ability of MF80
spinel ferrite nanoparticles based nanocomposites displayed high magnetic loss in comparison with
other samples. Moreover, a clear design of the electromagnetic wave shielding mechanism as reflected
above is illustrated in Figure 16.
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Figure 16. Schematic illustration of the electromagnetic interference shielding mechanism in
prepared nanocomposites.

3.9. Mechanical Properties

In general, the variation in mechanical properties is associated with particle size, morphology
and loading amount of fillers in polymer matrix [65,66]. Figure 17a depicts representative
strain-stress curves of prepared MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP
nanocomposites. The extracted mechanical parameter tensile strength of prepared nanocomposites
is depicted in Figure 17b. The value of tensile strength was 4.84 MPa, 4.32 MPa, 5.56 MPa and
6.42 MPa for MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP, respectively. Further,
Figure 17c depicts the extracted mechanical parameter elongation at break for prepared MF20-RGO-PP,
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MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP nanocomposites. The value of elongation at break
was 711%, 486%, 598% and 699% for MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP,
respectively. Furthermore, the extracted mechanical parameters Young’s modulus is shown in
Figure 17d. The value of Young’s modulus was 15.2 MPa, 17.2 MPa, 17.8 MPa and 8.7 MPa for
MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP, respectively.
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Figure 17. Mechanical behavior of prepared MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and 
MF80-RGO-PP nanocomposites: (a) representative strain–stress curves, (b) the tensile strength, (c) 
elongation at break and (d) Young’s modulus. 

4. Conclusions 

We developed electromagnetic interference shielding nanocomposites based on polypropylene 
(PP) matrix with reduced graphene oxide (RGO) and MnFe2O4 spinel ferrite nanoparticles as 
nanofillers. Different sized magnetic filler MnFe2O4 (namely MF20, MF40, MF60 and MF80 samples) 
nanoparticles were prepared by the sonochemical approach at sonication synthesis time 20, 40, 60 
and 80 min. It was noticed that the electromagnetic interference shielding performances of designed 
nanocomposites MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP were also 
controlled with the tuning of dielectric/magnetic loss. The maximum value of total shielding 
effectiveness (SET) was 71.3 dB for MF80-RGO-PP nanocomposite with a thickness of 0.5 mm in the 
frequency range (8.2–12.4 GHz). The excellent electromagnetic interference shielding properties with 
a lightweight, flexible and thinness sheet of developed nanocomposites was realized. 
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Figure 17. Mechanical behavior of prepared MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and
MF80-RGO-PP nanocomposites: (a) representative strain–stress curves, (b) the tensile strength,
(c) elongation at break and (d) Young’s modulus.

4. Conclusions

We developed electromagnetic interference shielding nanocomposites based on polypropylene
(PP) matrix with reduced graphene oxide (RGO) and MnFe2O4 spinel ferrite nanoparticles as nanofillers.
Different sized magnetic filler MnFe2O4 (namely MF20, MF40, MF60 and MF80 samples) nanoparticles
were prepared by the sonochemical approach at sonication synthesis time 20, 40, 60 and 80 min. It was
noticed that the electromagnetic interference shielding performances of designed nanocomposites
MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP were also controlled with the tuning
of dielectric/magnetic loss. The maximum value of total shielding effectiveness (SET) was 71.3 dB
for MF80-RGO-PP nanocomposite with a thickness of 0.5 mm in the frequency range (8.2–12.4 GHz).
The excellent electromagnetic interference shielding properties with a lightweight, flexible and thinness
sheet of developed nanocomposites was realized.
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M.M. (Milan Masar), M.U., and L.K. performed the characterizations; R.S.Y., I.K., J.V. and J.H. analyzed the
data and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.
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15. Yadav, R.S.; Kuřitka, I.; Vilcakova, J.; Jamatia, T.; Machovsky, M.; Skoda, D.; Urbánek, P.; Masař, M.;
Urbánek, M.; Kalina, L.; et al. Impact of sonochemical synthesis condition on the structural and physical
properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason. Sonochem. 2020, 61, 104839. [CrossRef]
[PubMed]

http://dx.doi.org/10.1021/acsami.6b14853
http://dx.doi.org/10.1021/acsnano.8b00997
http://dx.doi.org/10.1021/acsami.6b11989
http://dx.doi.org/10.1021/acsami.5b11715
http://dx.doi.org/10.1021/am508069v
http://dx.doi.org/10.1021/acs.iecr.5b01182
http://dx.doi.org/10.1021/am503893v
http://dx.doi.org/10.1016/j.ceramint.2016.03.026
http://dx.doi.org/10.1016/j.tca.2018.05.021
http://dx.doi.org/10.1016/j.ceramint.2016.07.067
http://dx.doi.org/10.1039/C5RA28035D
http://dx.doi.org/10.1016/j.colsurfa.2017.06.059
http://dx.doi.org/10.1016/j.jallcom.2015.10.027
http://dx.doi.org/10.1021/acsomega.9b03191
http://www.ncbi.nlm.nih.gov/pubmed/31891087
http://dx.doi.org/10.1016/j.ultsonch.2019.104839
http://www.ncbi.nlm.nih.gov/pubmed/31683238


Nanomaterials 2020, 10, 2481 21 of 23

16. Bai, Y.; Rakhi, R.B.; Chen, W.; Alshareef, H.N. Effect of pH induced chemical modification of hydrothermally
reduced graphene oxide on supercapacitor performance. J. Power Sources 2013, 233, 313–319. [CrossRef]

17. Patade, S.R.; Andhare, D.D.; Somvanshi, S.B.; Jadhav, S.A.; Khedkar, M.V.; Jadhav, K.M. Self-heating
evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application
towards cancer treatment. Ceram. Int. 2020, 46, 25576–25583. [CrossRef]

18. Hsiao, M.-C.; Liao, S.-H.; Lin, Y.-F.; Wang, C.-A.; Pu, N.-W.; Tsai, H.-M.; Ma, C.-C.M. Preparation and
characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility
with polypropylene-based nanocomposite. Nanoscale 2011, 3, 1516. [CrossRef]

19. Yadav, R.S.; Kuritka, I.; Vilcáková, J.; Machovský, M.; Škoda, D.; Urbánek, P.; Masar, M.; Goralik, M.;
Urbánek, M.; Kalina, L.; et al. Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles
and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Application.
Nanomaterials 2019, 9, 621. [CrossRef]

20. Varshney, D.; Verma, K.; Kumar, A. Structural and vibrational properties of ZnxMn1-xFe2O4(x = 0.0, 0.25,
0.50, 0.75, 1.0) mixed ferrites. Mater. Chem. Phys. 2011, 131, 413–419. [CrossRef]

21. Gupta, A.; Jamatia, R.; Patil, R.A.; Ma, Y.-R.; Pal, A.K. Copper Oxide/Reduced Graphene Oxide
Nanocomposite-Catalyzed Synthesis of Flavanones and Flavanones with Triazole Hybrid Molecules in One
Pot: A Green and Sustainable Approach. ACS Omega 2018, 3, 7288–7299. [CrossRef]

22. Wadi, V.S.; Jena, K.K.; Halique, K.; Alhassan, S.M. Enhanced Mechanical Toughness of Isotactic Polypropylene
Using Bulk Molybdenum Disulfide. ACS Omega 2020, 5, 11394–11401. [CrossRef]

23. Thakur, A.; Kumar, P.; Thakur, P.; Rana, K.; Chevalier, A.; Mattei, J.-L.; Queffélec, P. Enhancement of magnetic
properties of Ni0.5Zn0.5Fe2O4 nanoparticles prepared by the co-precipitation method. Ceram. Int. 2016, 42,
10664–10670. [CrossRef]

24. Gopanna, A.; Mandapati, R.N.; Thomas, S.P.; Rajan, K.; Chavali, M. Fourier transform infrared spectroscopy
(FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin
copolymer (COC) blends for qualitative and quantitative analysis. Polym. Bull. 2019, 76, 4259–4274.
[CrossRef]

25. Hassan, M.M.; Koyama, K. Enhanced thermal, mechanical and fire retarding properties of polystyrene
sulphonate-grafted- nanosilica/polypropylene composites. RSC Adv. 2015, 5, 16950–16959. [CrossRef]

26. He, Q.; Yuan, T.; Zhang, X.; Luo, Z.; Haldolaarachchige, N.; Sun, L.; Young, D.P.; Wei, S.; Guo, Z. Magnetically
Soft and Hard Polypropylene/Cobalt Nanocomposites: Role of Maleic Anhydride Grafted Polypropylene.
Macromolecules 2013, 46, 2357–2368. [CrossRef]

27. Zhu, J.; Wei, S.; Li, Y.; Sun, L.; Haldolaarachchige, N.; Young, D.P.; Southworth, C.; Khasanov, A.; Luo, Z.;
Guo, Z. Surfactant-Free Synthesized Magnetic Polypropylene Nanocomposites: Rheological, Electrical,
Magnetic, and Thermal Properties. Macromolecules 2011, 44, 4382–4391. [CrossRef]

28. Lv, H.; Liang, X.; Ji, G.; Zhang, H.; Du, Y. Porous Three- Dimensional Flower-like Co/CoO and Its Excellent
Electromagnetic Absorption Properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783. [CrossRef]

29. Manna, K.; Srivastava, S.K. Fe3O4@Carbon@Polyaniline Trilaminar Core−Shell Composites as Superior
Microwave Absorber in Shielding of Electromagnetic Pollution. ACS Sustain. Chem. Eng. 2017, 5, 10710–10721.
[CrossRef]

30. Shahzad, F.; Kumar, P.; Kim, Y.-H.; Hong, S.M.; Koo, C.M. Biomass-Derived Thermally Annealed
Interconnected Sulfur-Doped Graphene as a Shield against Electromagnetic Interference. ACS Appl.
Mater. Interfaces 2016, 8, 9361–9369. [CrossRef]

31. Song, W.-L.; Gong, C.; Li, H.; Cheng, X.-D.; Chen, M.; Yuan, X.; Chen, H.; Yang, Y.; Fang, D. Graphene-Based
Sandwich Structures for Frequency Selectable Electromagnetic Shielding. ACS Appl. Mater. Interfaces 2017, 9,
36119–36129. [CrossRef] [PubMed]

32. Zhang, X.-J.; Wang, G.-S.; Cao, W.-Q.; Wei, Y.-Z.; Liang, J.-F.; Guo, L.; Cao, M.-S. Enhanced Microwave
Absorption Property of Reduced Graphene Oxide (RGO)-MnFe2O4 Nanocomposites and Polyvinylidene
Fluoride. ACS Appl. Mater. Interfaces 2014, 6, 7471–7478. [CrossRef] [PubMed]

33. Yin, P.; Zhang, L.; Sun, P.; Wang, J.; Feng, X.; Zhang, Y.; Dai, J.; Tang, Y. Apium-derived biochar loaded with
MnFe2O4@C for excellent low frequency electromagnetic wave absorption. Ceram. Int. 2020, 46, 13641–13650.
[CrossRef]

http://dx.doi.org/10.1016/j.jpowsour.2013.01.122
http://dx.doi.org/10.1016/j.ceramint.2020.07.029
http://dx.doi.org/10.1039/c0nr00981d
http://dx.doi.org/10.3390/nano9040621
http://dx.doi.org/10.1016/j.matchemphys.2011.09.066
http://dx.doi.org/10.1021/acsomega.8b00334
http://dx.doi.org/10.1021/acsomega.0c00419
http://dx.doi.org/10.1016/j.ceramint.2016.03.173
http://dx.doi.org/10.1007/s00289-018-2599-0
http://dx.doi.org/10.1039/C4RA15750H
http://dx.doi.org/10.1021/ma4001397
http://dx.doi.org/10.1021/ma102684f
http://dx.doi.org/10.1021/acsami.5b01654
http://dx.doi.org/10.1021/acssuschemeng.7b02682
http://dx.doi.org/10.1021/acsami.6b00418
http://dx.doi.org/10.1021/acsami.7b08229
http://www.ncbi.nlm.nih.gov/pubmed/28945066
http://dx.doi.org/10.1021/am500862g
http://www.ncbi.nlm.nih.gov/pubmed/24779487
http://dx.doi.org/10.1016/j.ceramint.2020.02.150


Nanomaterials 2020, 10, 2481 22 of 23

34. Lakshmi, R.V.; Bera, P.; Chakradhar, R.P.S.; Choudhury, B.; Pawar, S.P.; Bose, S.; Nair, R.U.; Barshilia, H.C.
Enhanced microwave absorption properties of PMMA modified MnFe2O4-polyaniline nanocomposites.
Phys. Chem. Chem. Phys. 2019, 21, 5068–5077. [CrossRef]

35. Srivastava, R.K.; Xavier, P.; Gupta, S.N.; Kar, G.N.; Bose, S.; Sood, A.K. Excellent Electromagnetic Interference
Shielding by Graphene- MnFe2O4 -Multiwalled Carbon Nanotube Hybrids at Very Low Weight Percentage
in Polymer Matrix. ChemistrySelect 2016, 1, 5995–6003. [CrossRef]

36. Wang, Y.; Wu, X.; Zhang, W.; Huang, S. One-pot synthesis of MnFe2O4 nanoparticles-decorated reduced
graphene oxide for enhanced microwave absorption properties. Mater. Technol. 2017, 32, 32–37. [CrossRef]

37. Yin, P.; Zhang, L.; Wang, J.; Feng, X.; Zhao, L.; Rao, H.; Wang, Y.; Dai, J. Preparation of SiO2- MnFe2O4

Composites via One-Pot Hydrothermal Synthesis Method and Microwave Absorption Investigation in
S-Band. Molecules 2019, 24, 2605. [CrossRef]

38. Wang, Y.; Wu, X.; Zhang, W.; Huang, S. Synthesis and electromagnetic absorption properties of Ag-coated
reduced graphene oxide with MnFe2O4 particles. J. Magn. Magn. Mater. 2016, 404, 58–63. [CrossRef]

39. Kashi, S.; Gupta, R.K.; Bhattacharya, S.N.; Varley, R.J. Experimental and simulation study of effect of thickness
on performance of (butylene adipate-co-terephthalate) and poly lactide nanocomposites incorporated with
graphene as stand-alone electromagnetic interference shielding and metal-backed microwave absorbers.
Compos. Sci. Technol. 2020, 195, 108186.

40. Sui, M.; Fu, T.; Sun, X.; Cui, G.; Lv, X.; Gu, G. Unary and binary doping effect of M2+ (M=Mn, Co, Ni, Zn)
substituted hollow Fe3O4 approach for enhancing microwave attenuation. Ceram. Int. 2018, 44, 17138–17146.
[CrossRef]

41. Sankaran, S.; Deshmukh, K.; Ahamed, M.B.; Pasha, S.K.K. Recent advances in electromagnetic interference
shielding properties of metal and carbon filler reinforced flexible polymer composites: A review.
Compos. Part A 2018, 114, 49–71. [CrossRef]

42. Mishra, M.; Singh, A.P.; Singh, B.P.; Singh, V.N.; Dhawan, S.K. Conducting Ferrofluid: A High-performance
Microwave Shielding Material. J. Mater. Chem. A 2014, 2, 13159–13168. [CrossRef]

43. Behera, C.; Choudhary, R.N.P.; Das, P.R. Size dependent electrical and magnetic properties of
mechanically-activated MnFe2O4 nanoferrite. Ceram. Int. 2015, 41, 13042–13054. [CrossRef]

44. Lyu, L.; Wang, F.; Zhang, X.; Qiao, J.; Liu, C.; Liu, J. CuNi alloy/ carbon foam nanohybrids as high-performance
electromagnetic wave absorbers. Carbon 2021, 172, 488–496. [CrossRef]

45. Wang, Y.; Guan, H.; Dong, C.; Xiao, X.; Du, S.; Wang, Y. Reduced graphene oxide(RGO)/Mn3O4

nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness
at high frequency. Ceram. Int. 2016, 42, 936–942. [CrossRef]

46. Yin, Y.; Zeng, M.; Liu, J.; Tang, W.; Dong, H.; Xia, R.; Yu, R. Enhanced high-frequency absorption of anisotropic
Fe3O4/graphene nanocomposites. Sci. Rep. 2016, 6, 25075. [CrossRef]

47. Zhang, H.; Wang, B.; Feng, A.; Zhang, N.; Jia, Z.; Huang, Z.; Liu, X.; Wu, G. Mesoporous carbon hollow
microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers.
Compos. Part B 2019, 167, 167,690–699. [CrossRef]

48. Guanglei Wu, G.; Jia, Z.; Zhou, X.; Nie, G.; Lv, H. Interlayer controllable of hierarchical MWCNTs@C@FexOy

cross-linked composite with wideband electromagnetic absorption performance. Compos. Part A 2020,
128, 105687.

49. Jia, Z.; Gao, Z.; Feng, A.; Zhang, Y.; Zhang, C.; Nie, G.; Wang, K.; Wu, G. Laminated microwave absorbers of
A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. Part B 2019, 176, 107246.
[CrossRef]

50. Meng, X.M.; Zhang, X.J.; Lu, C.; Pan, Y.F.; Wang, G.-S. Enhanced absorbing properties of three-phase
composites based on a thermoplastic-ceramic matrix (BaTiO3+PVDF) and carbon black nanoparticles.
J. Mater. Chem. 2014, 2, 18725–18730. [CrossRef]

51. Zhao, Z.; Kou, K.; Wu, H. 2-Methylimidazole-mediated hierarchical Co3O4/N-doped
carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber. J. Colloid
Interface Sci. 2020, 574, 1–10. [CrossRef] [PubMed]

52. Dong, S.; Hu, P.; Li, X.; Hong, C.; Zhang, X.; Han, J. NiCo2S4 nanosheets on 3D wood-derived carbon for
microwave absorption. Chem. Eng. J. 2020, 398, 125588. [CrossRef]

http://dx.doi.org/10.1039/C8CP06943C
http://dx.doi.org/10.1002/slct.201601302
http://dx.doi.org/10.1080/10667857.2015.1113364
http://dx.doi.org/10.3390/molecules24142605
http://dx.doi.org/10.1016/j.jmmm.2015.12.028
http://dx.doi.org/10.1016/j.ceramint.2018.06.167
http://dx.doi.org/10.1016/j.compositesa.2018.08.006
http://dx.doi.org/10.1039/C4TA01681E
http://dx.doi.org/10.1016/j.ceramint.2015.07.006
http://dx.doi.org/10.1016/j.carbon.2020.10.021
http://dx.doi.org/10.1016/j.ceramint.2015.09.022
http://dx.doi.org/10.1038/srep25075
http://dx.doi.org/10.1016/j.compositesb.2019.03.055
http://dx.doi.org/10.1016/j.compositesb.2019.107246
http://dx.doi.org/10.1039/C4TA04493B
http://dx.doi.org/10.1016/j.jcis.2020.04.037
http://www.ncbi.nlm.nih.gov/pubmed/32298976
http://dx.doi.org/10.1016/j.cej.2020.125588


Nanomaterials 2020, 10, 2481 23 of 23

53. Wang, F.; Li, X.; Chen, Z.; Yu, W.; Loh, K.P.; Zhong, B.; Shi, Y.; Xu, Q.-H. Efficient low-frequency microwave
absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem. Eng. J. 2021,
405, 126676. [CrossRef]

54. Shi, X.-L.; Cao, M.-S.; Yuan, J.; Fang, X.-Y. Dual nonlinear dielectric resonance and nesting microwave
absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 2009,
95, 163108. [CrossRef]

55. Sun, X.; He, J.; Li, G.; Tang, J.; Wang, T.; Guo, Y.; Xue, H. Laminated magnetic graphene with enhanced
electromagnetic wave absorption properties. J. Mater. Chem. C 2013, 1, 765. [CrossRef]

56. Luo, J.; Shen, P.; Yao, W.; Jiang, C.; Xu, J. Synthesis, Characterization, and Microwave Absorption Properties
of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites. Nanoscale Res. Lett. 2016,
11, 141. [CrossRef]

57. Ibrahim, I.R.; Matori, K.A.; Ismail, I.; Awang, Z.; Rusly, S.N.A.; Nazlan, R.; Idris, F.M.; Zulkimi, M.M.M.;
Abdullah, N.H.; Mustaffa, M.S.; et al. A Study on Microwave Absorption Properties of Carbon Black and
Ni0.6Zn0.4Fe2O4 Nanocomposites by Tuning the Matching-Absorbing Layer Structures. Sci. Rep. 2020,
10, 3135. [CrossRef]

58. Hou, Y.; Cheng, L.; Zhang, Y.; Du, X.; Zhao, Y.; Yang, Z. High temperature electromagnetic interference
shielding of lightweight and flexible ZrC/SiC nanofiber mats. Chem. Eng. J. 2021, 404, 126521. [CrossRef]

59. Lai, H.; Li, W.; Xu, L.; Wang, X.; Jiao, H.; Fan, Z.; Lei, Z.; Yuan, Y. Scalable fabrication of highly crosslinked
conductive nanofibrous films and their applications in energy storage and electromagnetic interference
shielding. Chem. Eng. J. 2020, 400, 125322. [CrossRef]

60. Gupta, T.K.; Singh, B.P.; Mathur, R.B.; Dhakate, S.R. Multi-walled carbon nanotube-graphene-polyaniline
multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 2014, 6, 842.
[CrossRef]

61. Lv, H.; Zhang, H.; Zhao, J.; Ji, G.; Du, Y. Achieving excellent bandwidth absorption by a mirror growth
process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813–1822. [CrossRef]

62. Deng, Y.D.; Zheng, Y.; Zhang, D.; Han, C.; Cheng, A.; Shen, J.; Zeng, G.; Zhang, H. A novel and
facile-to-synthesize three-dimensional honeycomb-like nano-Fe3O4@C composite: Electromagnetic wave
absorption with wide bandwidth. Carbon 2020, 169, 118–128. [CrossRef]

63. Xu, Z.; Du, Y.; Liu, D.; Wang, Y.; Ma, W.; Wang, Y.; Xu, P.; Han, X. Pea-like Fe/Fe3C Nanoparticles Embedded
in Nitrogen-Doped Carbon Nanotubes with Tunable Dielectric/Magnetic Loss and Efficient Electromagnetic
Absorption. ACS Appl. Mater. Interfaces 2019, 11, 4268–4277. [CrossRef] [PubMed]

64. Dong, S.; Lyu, Y.; Li, X.; Chen, J.; Zhang, X.; Han, J.; Hu, P. Construction of MnO nanoparticles anchored
on SiC whiskers for superior electromagnetic wave absorption. J. Colloid Interface Sci. 2020, 559, 186–196.
[CrossRef]

65. Zhang, H.-B.; Yan, Q.; Zheng, W.-G.; He, Z.; Yu, Z.-Z. Tough Graphene-Polymer Microcellular Foams for
Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. [CrossRef]

66. Zou, H.; Li, S.; Zhang, L.; Yan, S.; Wu, H.; Zhang, S.; Tian, M. Determining factors for high performance
silicone rubber microwave absorbing materials. J. Magn. Magn. Mater. 2011, 323, 1643–1651. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cej.2020.126676
http://dx.doi.org/10.1063/1.3250170
http://dx.doi.org/10.1039/C2TC00159D
http://dx.doi.org/10.1186/s11671-016-1340-x
http://dx.doi.org/10.1038/s41598-020-60107-1
http://dx.doi.org/10.1016/j.cej.2020.126521
http://dx.doi.org/10.1016/j.cej.2020.125322
http://dx.doi.org/10.1039/C3NR04565J
http://dx.doi.org/10.1007/s12274-016-1074-1
http://dx.doi.org/10.1016/j.carbon.2020.05.021
http://dx.doi.org/10.1021/acsami.8b19201
http://www.ncbi.nlm.nih.gov/pubmed/30607938
http://dx.doi.org/10.1016/j.jcis.2019.10.026
http://dx.doi.org/10.1021/am200021v
http://dx.doi.org/10.1016/j.jmmm.2011.01.028
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of Nanoparticles 
	Preparation of Nanocomposites 
	Characterization Techniques 

	Results 
	XRD Study 
	FE-SEM Study 
	Raman Spectroscopy 
	FTIR Spectroscopy 
	Thermogravimetric Analysis (TGA) 
	Magnetic Property 
	Electromagnetic Interference Shielding Effectiveness 
	Electromagnetic Properties and Parameters 
	Mechanical Properties 

	Conclusions 
	References

