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Abstract

Forecasting energy consumption in buildingsis crucia for achieving effective energy management as
well as reducing environmental impacts. With the availability of large amounts of relevant data
through smart metering, gas consumption forecasting is becoming an integral part of smart building
design so that these requirements are met. In this study, we investigate week-ahead forecasting of
daily gas consumption in three types of buildings characterized by different gas consumption profiles
during a five-year period. As gas consumption in buildings is highly correlated with the average
outdoor temperature, regression models with additional residual modeling are used for forecasting.
However, conventional regression models with autoregressive moving averages (ARMA) errors
(regARMA) perform poorly when the temperature forecasts are inaccurate. To address this, anew
forecasting model termed genetic-algorithm-optimized regression wavelet neural network (GA-
optimized regWANN) is proposed. It uses the wavelet decomposition of the residuals of temperature
regression time-series, which are modeled by multiple nonlinear autoregressive (NAR) models based
on sigmoid neura networks. The appropriate delays in the regression vectors of the NAR models are
selected using a binary GA. Compared with regARMA and seasona regARMA, the GA-optimized
regWANN model achieved in the three buildings a reduction of 22.6%, 17.7%, and 57% in the mean
absolute error (MAE) valuesin ex posfforecasting with recorded temperatures, and a 52.5%, 27%, and
43.6% reduction in the MAE values in ex anteforecasting with week-ahead forecasted temperatures,

even under conditions of relatively significant errorsin the forecasted temperature.
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Comparative Study of Week-ahead Forecasting ofylizds
Consumption in Buildings Using Regression ARMA/SARNNd
Genetic-algorithm-optimized Regression Wavelet ldeNetwork
Models

Alexander Hoovsky', Jan Pitd’®, Milan Adamek®, Jana Mizakov&, Kamil Zidek?

2 Faculty of Manufacturing Technologies with seaPieSov, Technical University of KoSice, BayerovA8)01 Presov, Slovakia

® Faculty of Applied Informatics, Tomas Bata Univeran Zlin, Nad Stragmi 4511, 76005 Zlin, Czech Republic

* - corresponding author

Abstract

Forecasting energy consumption in buildings is ieddor achieving effective energy management as
well as reducing environmental impacts. With theikbility of large amounts of relevant data
through smart metering, gas consumption forecassirtgecoming an integral part of smart building
design so that these requirements are met. Instbidy, we investigate week-ahead forecasting of
daily gas consumption in three types of buildingaracterized by different gas consumption profiles
during a five-year period. As gas consumption inldings is highly correlated with the average
outdoor temperature, regression models with aduitioesidual modeling are used for forecasting.
However, conventional regression models with ag@ssive moving averages (ARMA) errors
(regARMA) perform poorly when the temperature f@sts are inaccurate. To address this, a new
forecasting model termed genetic-algorithm-optirdizeegression wavelet neural network (GA-
optimized regWANN) is proposed. It uses the wavditomposition of the residuals of temperature
regression time-series, which are modeled by meltonlinear autoregressive (NAR) models based
on sigmoid neural networks. The appropriate delaybe regression vectors of the NAR models are
selected using a binary GA. Compared with regARMA geasonal regARMA, the GA-optimized
regWANN model achieved in the three buildings auntidn of 22.6%, 17.7%, and 57% in the mean
absolute error (MAE) values i&x postforecasting with recorded temperatures, and &%6229%, and
43.6% reduction in the MAE values @x anteforecasting with week-ahead forecasted tempergture

even under conditions of relatively significantaesrin the forecasted temperature.

Keywords: wavelet transform, neural networks, ARMA modelsefrasting accuracy, temperature regression



1 Introduction

In general, the prediction of energy use is cutyehighly relevant with regard to improving the ege
performance in buildings as well as reducing theepiial environmental impact. Even though shoréedaisting
horizons may be relevant in certain applicatiomsaar(e.g., electrical energy), the total daily gpeonsumption
(including, for example, gas) can also be importamt effective energy management. The conditionsaof
particular application usually determine the sdiigbof a forecasting model. Various approachesenheen
successfully used for energy-use prediction inedéht types of buildings [1]. Although a univergadiccepted
classification may not be available, three appreaclare distinguished in this study: prediction gsin
engineering, statistical, and artificial intelligen(Al) methods. As pointed out in [1], engineermgthods use
standard calculations based on known physical {#vesmodynamics and energy behavior), thus necgisgjta
large number of physical variables and parametargontrast, the other approaches are data-basedihe
identified prediction models have no relation te tnderlying physical laws (except for the possiide of, for
example, meteorological variables as predictorsgimilar but slightly more refined classificatioarcbe found

in [2], where data-driven and large-scale buildemgergy-based approaches (LSBE) are distinguishld. T
former are further classified into approaches basedeural networks (NNs), clustering, statisticethods and
machine learning, and support vector machines (SVMhbereas the latter into black-, gray-, and white
model approaches. A more focused review of energgals can be found in [3], where the emphasis is on
energy demand forecasting specifically through -th@tsed approaches that fall under the aforemerntione
statistical and Al categories. It should be notedt tdespite the distinctive characteristics of tigegies for
different types of energy (e.g., thermal, electrica wind), the general characteristics of the hods used for
time-series forecasting in these areas are simildrcan be used as a reference from one fielddgthan The
authors of [4], compared three machine learning@gghes (feedforward NNs, regression trees, and UM
forecast the thermal load in several residential monresidential buildings. The results demonstraiet the
SVM approach was superior to the other two in teohshe normalized root mean square (NRMSE) value.
Neural networks were also used in [5]. Specificalhey were trained to forecast daily energy comngion in
buildings based on data classification and a dinegltistep approach. A simple type of feedforward Was
used to forecast the energy load in an iterativarmeabased on the load during the previous fivesdeipwever,

[5] is specifically concerned with energy forecastsinstitutional buildings, which have distinctivenergy
profiles compared with other types of buildings.spiaar et al. [6] used NNs for short-term foreaagtof

natural gas consumption; several meteorologicaialsbes (moisture, atmospheric pressure, wind spaed,



ambient temperature) were added to improve accuidty analyzed time series exhibited a strong sedisp
of seven lags, and thus the SARIMAX (seasonal agr@ssive moving average) model with exogenoustinpu
was used as a reference. It was demonstratechéhgierformance of SARIMAX was highly satisfactondain
fact, superior to that of NN models. In [7], an Mdbdel based on a multiobjective genetic algorit@A)Y was
used for energy consumption prediction in a bioatimbuilding. Here the authors used MOGA to desiBF
models for 4-steps ahead forecasting the electrigep consumption in selected buildings. Their moatdd
much lower number of samples then the models tetwauthors compared the performance (2592 vs. 3834
However, even this number of samples may be highlddy samples-based forecasting of energy consomp
Jovanovic et al. [8] proposed an ensemble of thii€ferent architectures (FFNN, RBF, and ANFIS) tbe
prediction of heating energy consumption. The otstmf these models were combined by simple and veig
averaging, and by calculating the median. Severtearological variables (outside mean daily temijeea
heating consumption of the previous day, day ofwkek, maximum daily temperature, relative humidiotal
solar radiation, and month of the year) were careid. However, it appears that only a short fortaogs

horizon was used, and the effect of seasonalityigrased.

Regardless of model architecture, forecasting amyumay be improved by using advanced signal peings
techniques, which may either extract useful featirem the predicted time series or perform decasitjpms to
decrease forecasting errors. A signal processirthades the wavelet transform (WT), which is wideised in
time series analysis because of its locality ndy am the frequency domain but also in the time dom[9].
Rana and Koprinska [10] used this approach in dhen fof a wavelet NN, where the entropy cost furnctias
used to select the best wavelet basis for datandieesition, a mutual information criterion for feeduselection,
and the NN itself for forecasting. The combinatmhwavelet decomposition with autoregressive (irdéed)
moving averages (AR(I)MA) models was proposed it [This led to an improvement in forecasting aacyr
for short-term forecasts of PM10 concentration themr improvements were achieved in [12] by usingelet
decomposition and an NN trained by a criss-crogsmigation algorithm, which reportedly had a sigrdint
advantage over typical training algorithms. A WTséd approach was also used in [13], where it wathowed
with three other computational intelligence parawig(ANFIS, NNs, and GA) to perform one-day-ahead
natural-gas demand forecasting. In [13], a largelmer of towns were analyzed, but a comparison with-
established forecasting models was missing; funtbee, weather conditions were not considered. Hiléyaof
wavelets to detect non-stationary features of 8emes was combined with nonlinear Volterra motisrovide

a forecasting framework for nonlinear and non-staiy time series in [14]. This combination wasom@d to



achieve better results than certain benchmark rspdhelwever, Volterra models are high complex, amd t

should be considered.

Recently, time-series forecasting has also beereadéd using deep learning approaches [15, 16,8179]. In
[15], multi-layer Bi-LSTM and LSTM with a GA wereombined for hourly forecasts of natural-gas demand,
where the GA was used for network optimization. rNeteorological variables were included in the mpHat
differences between summer and winter seasons emrsidered. The number of samples used to train the
proposed model were not reported, but it is coratder that a large number is required for satisfgcto
performance. Liu et al. [16] used deep learningetatechniques specifically for forecasting the gper
consumption in buildings. In this work authors usess conventional approach for forecasting, wiaenember

of deep reinforcement techniques was exploredh@performance enhancement in single- and muli-atead
prediction of the energy consumption. It was found that one of the investigated techniques waswedit
suited to this problem (Asynchronous Advantage A€dtic) but Deep Deterministic Policy Gradientdan
Recurrent Deterministic Policy Gradient performesdtér. This was, however, achieved at the costigtidn
computational cost typically associated with thepléearning methods. To improve generalizabilityjoaible
deep extreme learning ensemble system with a dalfteve ReTSP-Trend pruning technique was propased
[17] and was demonstrated to perform better thatesif-the-art algorithms. Even though NNs with glee
architecture appear to be highly effective for tisagies forecasting, their effectiveness dependsilyeon the
use of large datasets, typically containing thodsanf samples. Chitalia et al. [18] tested nindedént
combinations of recurrent NNs and clustering teghes for the short-term forecasting of electriadd in
different types of commercial buildings. It was demstrated that the combination of long short-teetworks
and clustering techniques can significantly imprémecasting accuracy compared with other techrquith
good robustness towards errors in weather forecastsvever, the proposed models are complex and
computationally intensive. Moreover, the time resioh is 1 h or 15 min, which is sufficient to gesie large
amounts of data in a relatively short time. Therefdhe method would not be suitable for forecasta daily

resolution.

Despite the large number of studies related toude of Al methods in time-series forecasting, AR@)
models, either in pure form or hybridized with aothmodels, are widely used for numerous time series
encountered in practice [20]-[30]. Vaghefi et @DJused a generalized form of the Cochrane—Oestitnation
technique, in which a multiple linear regressiondelovas combined with a seasonal ARMA (SARMA) model

to forecast cooling and electricity load demand itooling, heating, and power plant. Seasonal isffeere also



considered by Akpinar and Yumusak [21], who comg@dhe forecasting performance of two approache#t{Ho
Winters exponential smoothing and ARIMA) for theay@head natural gas demand in Sakarya province
(Turkey). It was demonstrated that the ARIMA mogided the best results. An interesting approaels w
taken in [22] and [23], where short-term load fa®ing was based on the similarity of patternseaissnal
cycles using various methods (kernel estimatioares neighbor estimation, and clustering). A caispa was
made with other, more conventional forecasting mash(e.g., ARIMA, exponential smoothing, and NN)da
the results demonstrated that the proposed metleobrmed highly satisfactorily. In [24], the sigic#int
complexity of factors related to the energy behainduildings was addressed using a feature sefeatethod
based on support vector regression with two kefungdtions (RBF and polynomial). It was demonstratteat
this method has high prediction accuracy and redgtishort computational time. In addition to wastednalysis,
Fourier analysis is also a powerful method withhhiptential for forecasting. Yukseltan et al. [25kd Fourier
analysis with feedback for hourly electricity derdaforecasting. The method was also combined with a
conventional autoregressive model to slightly inyergperformance. The time series in that study étdub
strong seasonality, but the performance of the atktin data with more complex seasonality was redrb}
evaluated. Owing to the strong correlation of eperpnsumption with weather conditions, certain
meteorological variables are occasionally usedctiexe lower prediction errors. In addition to thislendar
effects can also be a factor that can be takendotmunt in forecasting energy load in resideriizldings.
Lusis et al. [26] analyzed the effects of caleneffiects, forecasting granularity and training ssi®s on the
forecasting accuracy. However, it was found thaipted with the weekly seasonality and weather daitg
specific factor may not have significant effecttba forecasting performance. As a result, morantitie may be
paid to the measurement of additional meteoroldgiadables (ambient temperature, global radiataomd wind
speed). These additional meteorological variatdasb{ent temperature, global radiation, and windedpavere
also considered in [27]. This was combined withpdida linear time-series models, resulting in gati®ry
forecasting performance of the load for a groupaafily houses in Denmark. Nevertheless, in mangsdke
range of monitored meteorological variables is tédiand the outdoor temperature remains the masly ea

available variable of this type.

Several observations regarding energy forecastamy lee made based on this literature review. Gdgeral
electrical energy forecasting appears to be donimaterms of the number of studies. Even thoughrttethods
used in the present study are similar, gas consampt buildings has certain specific features tifferentiate

forecasting. Various techniques are used for fatiog, but statistical and Al-based methods appeadbe



particularly attractive. It is important to noteathrARMA/ARIMA models, which are the most commonlyedl
forecasting models, can be advantageously apptiesetveral real-world processes. Therefore, thesdelmno
should serve as a reference for comparison with Ainynethod. Moreover, the recent trend of usingpdee
learning methods in forecasting has brought sevmmaéfits, which, however, depend on the availgbif large
amounts of data. When short time intervals aren@frest (e.g., hourly data), a sufficient numbesarhples can
be obtained in a reasonable time. However, in #s® ©f longer intervals (e.g., daily data), thesjpaony of
deep learning models may be compromised. It cam ladsobserved that the use of wavelet decomposition
forecasting is relatively popular. However, thelgsia carried out in [31] using the fast Fouriertsform for the
wavelet decomposition components of the gas consamprofiles in various buildings indicated theepence

of complex seasonality, which should be considérdte development of forecasting models.

With regard to the purpose of forecasting week-dhdsdly gas consumption in different types of bungs, the

objectives of our work can be summarized as follows

1. To develop a reference forecasting model using RMA/SARMA in rigorous way so that possible
improvements are compared to the best obtainabferpgance of a standard model

2. To propose the model with improved performance use of which will be simple and possible for heat
sources where the possibilities for measuring vesrimeteorological data are limited.

3. To present the systematic methodology for the ifleation of this model as well as forecasting loét

week-ahead consumption in a possible online sagnari

To meet the objectives above and also addresddhengentioned points identified in the knowledge ganew
forecasting model for the week-ahead gas consumpiidlifferent types of buildings is introduced.dddition

to the temperature regression part, this model tiee®abeuchies wavelet decomposition of regressiodel
residuals, neural network-based NAR models for ringehe wavelet decomposition components and linar
genetic algorithm for searching for near-optimagsian NAR models regressor vectors. This arguabproves

the performance of the (S)ARMA model and is rekdiivsimple to implement given the availability efevant
data. Even though the inclusion of various metemjichl variables may further improve forecastingumacy

[8, 26], we used only the average daily outdoorperature in the proposed model. Therefore, in kwedd
scenario, only the measurements of gas consumgtimh temperature, which can be easily obtained, are
required. The model is intended to be simple toarsz the identification has been carried out anldelp with

that a systematic methodology of its identificatiand use is presented. The data acquisition methods



devices as well as the related data processing paatly based on previous experiments in biomassbostion
monitoring and control [32], [33], whereas a gehdescription of the approaches used in the manigoof heat
production and distribution under conditions simiia those in the present study was given in [34].address
the issue of multiple seasonal cycles in the gaswmption time series obtained from the monitoreitdings
[31], the wavelet decomposition approach was agpland these cycles were included in the variouailde
components of the decomposed time series. Nonlaegt@regressive (NAR) models were used to appragima
the WT components of the underlying process, asetheodels are easier to train (than (nonlinear) ARM
models); however, they usually have more param§®éis To determine suitable lags in the regressotors of
the NAR models (this is related to the aforemergttboomplex seasonality of the gas consumption |psotif
the examined buildings), a binary GA was applietlisTenabled a near-optimal selection of the lagshin

regressor vector for forecasting the temperatugeession residuals.

The remainder of the paper is organized as folld®extion 2 contains basic information regarding tihee
series describing the total daily gas consumptiafilps in each type of building, and the relatedlgsis from

an identification and/or forecasting perspectivectidn 3 describes the relevant methods used fer th
identification of linear regression with (S)ARMArers (reg(S)ARMA) and the GA-optimized regWANN.
Section 4 contains the description and discussfomeak-ahead forecasting results obtained using batdels

for each building. Section 4.4 describes the magportant observations based on the results and thei
significance. Section 5 presents a broader viewhefresults by drawing general conclusions and imeing

several aspects important for future work.

2 Data description

In this study, we are concerned with both residérgnd non-residential buildings: a healthcareding, an
elementary school, and military quarters (also w®d hotel). They are located in the eastern/raasitern part

of Slovakia (Fig. 1). The basic data used in theeeixnents consisted of six separate datasetsah tmintaining
daily records of the gas consumption (taken at @u@Ofor the previous day) and average outdoor tesmte
measured in the vicinity of the buildings. The tatae of these datasets differed because the diegpof the
data became possible in a different period for dadlling. The raw time series corresponding torénsorded
gas consumption in the given buildings is shownFig. 2, with the Tatranské Zruby dataset startimg o
December 22, 2013, and ending on December 15, PIAA) consecutive days or samples), the Krompachy
dataset starting on November 29, 2013, and endinDecember 24, 2018 (1851 consecutive days or ssnpl

and the S&vce dataset starting on September 20, 2014, atidgean January 30, 2019 (1594 consecutive days



or samples). It was assumed that the gas consumfetiecasting was useful only during the heatingsea
(from October 1 to May 1; indicated by HT in thguie). Accordingly, the corresponding data wereasted

from each time series.

———

Fig. 1. Buildings for week-ahead forecasting ofydgas consumption (left: hotel in Tatranské Zrulmyddle: an elementary school in
Krompachy, right: healthcare building in&®ece, source: Google Maps).
By considering a leap day (February 29, 2015) etlseparate datasets with 213 samples (years 2018, and
2018), and one with 214 samples (year 2015) wetairsdd for each building. An additional dataset (iihe
figure) was formed in each case by extracting #ha dtarting from October 1, 2018, until the endhef given
(main) dataset to obtain test data not used inidhatification process (76 samples for the Tatrangkuby

dataset, 86 samples for the Krompachy dataset] 2adamples for the 8avce dataset).
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Fig. 2. Raw time series characterizing daily gasscmption in each building (HT: heating seasorfsum years, TD: test data).

The extracted time series for the considered psrattl the corresponding daily average outdoor teatyres
are shown in Fig. 4. Moreover, basic data statiggégarding the time series can be examined usabdx plots

in Fig. 3. The actual gas consumption profilesdach building were affected by various factorshsags main



purpose and size, geographical location (manifetstaxligh different statistics of the outdoor tengpere), and
specific boiler operation conditions. The daily gamsumption in S®vce was, on average, considerably lower
(median: 88.57 i maximum value: 233 ) than that in Krompachy (median: 336°,nmaximum value:
1003.63 ) and Tatranské Zruby (median: 459.8 maximum value: 891 ¥ It is interesting to observe that
the median values of the yearly gas consumptiorabmest equal in Krompachy; this is possibly beeathss
building has a more stable operation (elementanpa( than the other two. It should also be noted, tafter the
extraction of the relevant data, no samples wemoved from any time series for identification and#esting
because none of the data points indicated as cu(i@d calculated ag — 1.57(q; — q,)/VN, wheregs, Gp, 05
are the 25th, 50th, and 75th percentitespectively, and\ is the number of samples) were attributed to larki

in the measurement process, resulting in cleartpriect gas consumption values. The largest nurober
statistical outliers was observed in Tatranské ¥r(®7 points in total compared with 2 and O poifds
Krompachy and S®vce, respectively). This is most probably relatedthe sudden changes in outdoor
temperature (which might have been more seveta@smrégion), but their distribution and number aoé simply
correlated with the outliers in the temperatureaddhe daily average outdoor temperatures arestitatly in
correspondence with the geographical location efithildings, with Tatranské Zruby being the coldesation
(median value 2.6€, and max/min 17.4T/-18.38C), followed by Krompachy (median value 3’8 and

max/min 18.50C/-15.18C) and S&ovce (median value 4.83, and max/min 23.28/-15.09C).
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Fig. 3. Boxplots of daily gas consumption in givmrnldings and average daily outdoor temperaturéisceste locations for the heating season
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Visual inspection of the time series graphs in Bigndicates not only a significant correlationtbé daily gas
consumption with the outdoor temperature but alstreng seasonality. This is considerably more puoced
in the Krompachy and 8evce datasets than in the Tatranské Zruby datasahe gas consumption in these
buildings is characterized by typical weekly seatoperiods, with weekends being almost visitor-free
(elementary school and healthcare building). Theden drop in gas consumption close to the middléhef
heating season is due to the holidays at that fithis. has more pronounced in Krompachy (elemergahnpol),

as the other buildings continue to operate dutiregé periods.
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Fig. 4. Time series of daily gas consumption aretaye daily outdoor temperatures in given heatagaens.

3 Methods

Two types of models are used to forecast the wéeka gas consumption in the three buildings. Asdtily

gas consumption in any these buildings is strowoglyelated with the outdoor temperature, regressiodels
are selected, where time-independent regressidntantperature is used, and the time-series modafipgoach
is adopted for the residuals. The conventional SARKkbdel is used a reference with which the perforoeaof
the proposed model is compared. To improve thec&sting accuracy for week-ahead gas consumpti@h-a
optimized wavelet NN forecasting model is introddic&his model uses a wavelet decomposition of ithe-t
series residuals into approximation and detail comepts, each of which is modeled using an NAR mauadie

a sigmoid NN. Lag selection in the regressor vectdrthe NAR models is performed by using a bina#d so

that a suitable combination may be obtained. Thebdoation of temperature regression and NAR mouls

appropriate lag selection is then used to forettwstveak-ahead gas consumption in the selecteditgsl. In



the following section, reg(S)ARMA, the WT, and théary GA are briefly reviewed. Subsequently, the

methodology for identifying and using the GA-opta®il regWANN forecasting model is introduced.
3.1 reg(S)ARMA forecasting model

It is readily observable from Fig. 4 that the dajgs consumption in all buildings is strongly ctated with the
average daily outdoor temperature, suggesting thelslity of regression forecasting models. Whéme t
residuals are serially correlated after a regressiodel is applied, it is appropriate to use a RN approach,
that is, a regression model with ARMA-modeled tisegies error terms [35]. Thus, the following equatcan
be used to describe a process that dependgpoadictor variables denoted Ry, Xp,..., X and contains a noise

term in the form of al\RMA(p,q) model:

Ve = Bixer + Baxen + 0+ BiXe + He )1

whereg is an ARMA process with zero mean value. Thisthasfollowing basic form [36]:

a(L)pe = b(L)e, ()

wheret = 1, ..., Ky, is the response serigs, ..., B, are the regression coefficients fopredictor variablesg is
the innovation seried,/y, = ye—; is the differencing operatar(L) = (1 —a;L—-— apLP) is the p-degree
nonseasonal autoregressive polynomial, &fid = (1 + b L+ -+ quq) is theg-degree nonseasonal moving

average polynomial. The ARMA process described tqm E can also include seasonal and nonseasonal

integration terms to handle the non-stationarityhef modeled time series, resulting in the SARIMAd®I for

K¢ [36]:
a(L)AL)(1 = L)P(A = L), = b(L)e, 3

whereA(L) = (1 —AL—-— ApSL”S) is theps-degree seasonal autoregressive polynorfiiat; L) is theD-

degree nonseasonal integration term, @nég L) is thes-degree seasonal integration term.

As mentioned previously, if the residuals obtaiaéiér the regression in Eq. 1 is applied are exgobtd exhibit

correlation, it is reasonable to perform a leasiasgs fit to obtair and then analyze and model the residuals

[35]:

e = yr = Brxes + BaXes + -+ + BreXex 4)

In this equation, the estimates of the parametetov for the autocorrelated residuals are



B=(XVX)'XVu )

whereV is the covariance matrix estimate, &his now obtained iteratively from the maximum likedod

estimates of the parametersiinby minimizing the log-likelihood objective functicC given by [37]

logL = —glog(Zn) - glogrf2 - zL K &2 (6)

o2 t=1

whereK is the number of samples in the dataset, @isl the variance of innovations. A SARIMA model is
typically defined using a single integer seasongtlec (defined by the degreps in Eqg. 3), possibly

complemented by seasonal integration (given byldggees in the same equation).

If the Box—Jenkins method is used to identify abéasting model [35], the time series should béostaty. The
non-stationarity of a time series can be heurilificaferred by examining the autocorrelation fuoat
however, a rigorous treatment requires formal tespecifically, a test for the presence of a uaiitrin the
autoregressive part of the model. In the caseeatigmented Dickey—Fuller test used here, thisiiopmned for

the (autoregressive) model

Ve = Yee1 + B1AYeq + -+ BrAy - + & —null againsy, = ¢y,_1 + f1Ay,_1 + -+ B Ay + &, ¢ <1 (7)

wherer is the user-defined number of lags. The followdegnmonly used criterion for determinirrg,y is

applied [37]:

2 .

where [.] is the integer part of the number, &hid the number of samples.
3.2 Wavelet transform

The WT is one of the most powerful methods in sigmacessing, and is a highly effective techniqaethe
analysis of multiscale systems (MS) [38]. It isdxh®n the use of wavelets, which are specializadtions that
are localized in both the time and the frequenayaia, and allow the separation of slow and fastadyics of

MS [39].

The continuous WT (CWT) is defined as follows [3&0]:

Wrs) o * . -7
Wx(t,s) = |<|xl/)f—s||§ = f_:o x(O)P; s (®)dt with i, = %1/) (tT), T,SERs#0 (9)



wherey (t) is the “mother wavelet,” which satisfies the zarerage and unity-norm conditions

22 9(®)dt = 0 = H(w) g0 lp@©)ll, = 1 (10)

andiy, s is a wavelet generated by scaling and transléatiegmother wavelet. The first condition in Eq. 10
implies that wavelets can be regarded as bandffieegs, where scaling moves the center frequenuy the
bandwidth of the wavelet filter. To address its siderable redundancy, the CWT should be evaluatdg ai
certain scales, and with translations determinethbyength of a wavelet at a given scale. Assummirg2’ and
7 =m2/ with j,m € Z, the discrete WT (DWT) corresponds to the evatmbf the CWT at scales and

translationsr [35]:

® . —m2J
WEn,J) = [15 FOW) 1 ,(Odt and ;i) = 559 (F52) (11)
Then, by using the definition of the scaling funatifor the CWT [38], [40]
~ | ~ o |0 2
B = [Ty L = [ g (12)

it is possible to decompose a signal into an appration component at given sc@deand detail components (up

to the finest level of resolution):
xX(t) = Xom A jy P, jo (6) + Xjzjo 2em Dim joWim jo (£) = Aj, + Z?:l D; (13)

where {a,, ; } are the approximation coefficients at a given ecand{d,, ; },j = 1, ...,jo, are the detalil
coefficients at this level and all finer scalesughthe signal can be reconstructed by summinggpeoximation

component at a given scale and all the detail corapts up to this scale.

Driginal data

Scaling function

0.8
0.6
0.4
0.2

-0.2
-0.4

0 5 10 15
Wavelet function

Fig. 5. Wavelet decomposition of original time ssrto level 5 (left), and scaling and wavelet fiorcfor db10 wavelets (right).



In this study, we used Daubechies wavelets of dipfa€, with scaling and wavelet functions shownha tight
part of Fig. 5. The maximum level of decompositisgiven by the number of samples in the given,datach

in our case (929 samples for heating seasons)spameled to a value of 10. Determining the optiraagl of
decomposition remains an open question in timessddrecasting. We experimentally demonstratedahavel
of 5 achieved a reasonable balance between decdimpamplexity and improvement over the reg(S)ARM
approach. As shown in the left part of Fig. 5, thigiinal signal can be reconstructed by summinghilgbest-
level approximation component (A5) and all detaifsto this level (D1 + D2 + D3 + D4 + D5). Each alket
signal at thg-th level allows the observation of cyclic compotsewith periods between2and 2 [41]; thus,
details D5 and d4 contain components with periogtsveen 16 and 32 days, and 8 and 16 days, resplgctiv
which can be recognized visually. Likewise, the a@ring details contain cyclic components with pdsio

between 4 and 8 days, 2 and 4 days, and 1 andsX @y 6).
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Fig. 6. Approximation and detail components of rentime series characterizing daily gas consumg8@9 days).

3.3 Forecasting using neural networks with genetialgorithm-optimized regressors

Generally, two basic strategies are used for ntefiimhead forecasting: direct and recursive [4Bg former is
computationally more demanding, and in generalltges$n quite different models for each forecasthgizon
[43]. In contrast, the latter uses one model féfedent forecasting horizons and is based on miziimgi the error
for one-step-ahead forecasts. Owing to its compastand lower computational complexity, the ladi@pears

to be more widely used in typical forecasting frareks.



If, for simplicity, we assume that there &esamples of the univariate procgss, ..., yp} from, possibly, a NAR

process, then this can be expressed as [43]

Ve = @Xe—q) + & andx, = [ye, o, Vool (14)

wheree, is an iid process with zero mean arfdvariance. In fact, for one-step-ahead forecastirmgestimate

the model

Ve =W (Xe1;0) + e and Xy = [Vg, oo, Yeonsal’ (15)

wherey is a function for the estimated modél,is the model parameter vector, andis the embedding

dimension. Usually, the mean-squared-error fornthef objective function is used in the optimizatitimt is,

E [(ytﬂ —P(Xy; 9))2|xt], with parameters estimated as follows [43]:

8 = argmingep (¥ — Y(X¢-1;0)) 6§1

The recursive strategy fon-step-ahead forecasting can be computed as
P %) = ([T D), ., P P(x,]) (17)

wherem > 0, 1 is the functionp but with the estimated parameter vedan place of the parameter vector,

andp is the estimated embedding dimension.

The form of Eq. 17 is general, afidcan be approximated using a linear or a nonlineaaiel. Neural networks
represent highly flexible models capable of appr@ating complicated nonlinear functions, providedtttheir
structure contains a sufficient number of neuronthé hidden layer [44]. When a sigmoid activafienction is

used, the output of an NN consistingnafieurons in the hidden layer can be expressedss [4

v(u) = Tpoy e (18)

o(Pr(u=ci)) 4

Substituting this into Eq. 17 yields the followifmymula for computindh-step-ahead forecasts using a sigmoid

NN:

b (x,) = 30 Ak n .\ f - )(m_p) | 9
11[} Xt — k=1 m ( k=1 e(bk(xt_ck))+1) ) rey ( k=1 e(bk(xt_ck))+1 ( )

It should be noted that the proposed model combsisteseveral NNs, with their number depending anldvel

of the WT decomposition. Accordingly, the correspence between the estimated embedding dimemsimin



the process model and embedding dimension of thecviiponent models was evidently lost. To addreiss th
the regressor vector of each model was obtainedguai search algorithm. Assuming that the presemce o
absence of a given regressor can be expressedhisany logic, the use of a binary GA appears t@lsaitable

solution for this problem [46].
3.3.1 Binary genetic algorithm

A binary GA can be considered a special case dafitager (or mixed-integer) GA, where the possildéugs for
an individual are restricted to 0 and 1. This impdmtation uses Laplace crossover and power mutatgsther
with a tournament function for the selection ofiinduals [47]. Initially, a population of individusis randomly
generated; this population forms an initial poolpafssible solutions (Fig. 7). If none of the defireopping
criteria is satisfied, a mating pool is generatsihg the tournament selection function. The geriafmrmation
contained in the individuals in the mating poolti®n recombined as follows: Lef = (a},ad}, ...,a}) and
a® = (a?,d3, ...,a2) denote the parents, and Iét= (b}, b3, ..,bl) andb = (b2, b3, ...,b2) be their children

generated using the random numhgysp; € [0,1] and the Laplace distribution (LD) [47]:

a — B log(e,),P; < 0.5;

(20)

g {Of + B log(¢y), ; > 0.5,

wherey; is a random number following the LB, is the location parameter, afd> 0 is the scaling parameter.
The scaling parameter should be an integer in #8se of a binary GA implementation. The children ten

generated according to
bl = a} +vyilaj —af| b} = af +ylal — af| (21)

To improve the exploration capability of the alglom, new genetic information should be introducsihg a
mutation operator, which is based on the poweridigion [47]. Let§ denote a random number following the
power distribution,§; a uniform random number between 0 and 1, mnithe mutation index (integer in this

case). Then,

5= (@)™, :{d—S(d—al), w <Y __a-d!

a+éa—a), o=y " at-a (22)

wherea is the mutated solutiom, is the parent solutiony is a uniform random number between 0 and 1,&nd

anda" are the lower and the upper bound, respectivélyheodecision variables.



After the crossover and mutation operations aréop®@ed, it is important to ensure that the soludiene integer
numbers; this is easily carried out as followgh# solution is not already an integer, it is sptad to the closest
(higher or lower) integer with a probability of 0.Eonstraint handling is performed by using the gitgn
function defined in [47], where infeasible soluodepend on the amount of constraint violation dsib on

individuals in the population. The algorithm is suarized in the flowchart shown in Fig. 7.

Power
mutation

e ng Laplace teger Evaluate Jacing old m
By population) 3 Crossover strictions ity function ulation |
Tournament
selection

Fig. 7. Flowchart of binary GA with Laplace crossoand power mutation.

3.3.2 Methodology for identification and use of thgproposed model

As using the GA-optimized regWANN model requiregesal methods, a step-by-step methodology forstsis
now introduced. It comprises model derivation (iifezation) and application to week-ahead gas comsion

forecasting.
Identification

It is assumed that in this part, sufficient datatfte development of the forecasting model arelaig. Even
though it is difficult to set a definite number firte necessary number of samples, we used more8b@n
samples. Each sample corresponds to the total dadyconsumption in a building. Only heating seasane
considered, and both the start and the end ofahsosis can be determined based on the specifidtiomsdor
any building. In addition to the daily gas consuimptdata, the recorded average outdoor temperéburthe
given days should be available so that the temperaegression model can be identified. The perfmee of
the regWANN model after identification should beaksated using an independent test dataset. Thébgtsfep

procedure for the identification of the GA-optimizeegWANN model is as follows (Fig. 8 top):

1. Prepare the training dataset containing the daily @onsumption in a given building for the peridd o

interest. It is assumed that only heating seaseneansidered.



Determine the best linear fit @, = f(v*), wherek = 1,...,N is the number of days in the entire
datasetQ}, is the total gas consumption on théh day, and* is the average outdoor temperature on
the k-th day (Fig. 11).

Calculate the gas consumption forecasts usingrikarl regression modé@,{‘dr) from the previous step
and obtain the residual time ser(@;,) by subtracting)f,, from the recorded gas consumptigf.

Perform wavelet decomposition Bf, to the desired level of resolution.

Select the structure, training algorithm, and hppeameters of each NN model intended for residual
wavelet component forecasting.

The NNs from the previous step are used as NAR tpdéere the lags in the regressor vector should
be determined. Select the parameters for the biGawywhere the position in each chromosome vector
corresponds to the presence or absence of a gigan the regressor vector (Fig. 10).

The fitness function is defined so that a giveroemetric (e.g., NRMSE) is minimized. To reduce
model complexity, include a term for the size akgressor vector (Eq. 24). The error metric shaald

evaluated on a test dataset.

Forecasting

In the forecasting part, the historical data of dadly gas consumption are required for each NARI@ho

The size of the required past data depends oragfsefdresent in the optimized regressor vectorsl€T al.

As the models obtained from the identification pase the wavelet decomposition of the temperature

regression residuals, the historical data necedsarjorecasting are the past time series of trsdrmls

Rfd_”, wherep = 1,...,P, andP is the maximum lag in any optimized regressor secthe step-by-step

forecasting procedure using the GA-optimized regVi¥aNodel is as follows (Fig. 8 bottom):

1.

3.

Calculate the week-ahead gas consumption poiatést(R/;) using the linear regression model from
step 2 of the identification procedure and the wale&ad temperature forecast for a given location.
Calculate past gas consumption forecasts usinglilear regression mode(l@ft{rp) and either the
recorded(v~?) or forecasted?*~? ) daily average temperatures, and obtain the resiiinal series

(R,?) by subtracting)y,? from the recorded gas consumpti@fj .

Perform the wavelet decompositionid?d_p to the resolution level selected in the identifima part.



Use the set of GA-optimized NAR models from theniifecation part to obtain the week-ahead

approximation and detail forecastg (andd;, wherel = 1,...,L, andL is the wavelet decomposition

level) based on the};” as input to the NAR models.

CorrectR/, using the value of] + Y-, d7.

We present the implementation of this methodology the buildings in question in the following

subsection.

Identification

original
time series for

residuals

identification

—>

temperature
regression

Forecasting

7-days
ahead
temperature
forecast

historical

data of
temperature
regression

residuals

e

velet
form

set of NN
approximation models for
and detail wavelet components opt
components forecasting
wavelet N NN models . | GA initialization
transform = structure ”| and optimization
selection

set of GA-
imized NAR
models

——>

regression model forecast

approximation f dval N
and detail oru.ldsl«. values o
components wavelet components

A 4

ion model
correction|

regWANN model
forecast

residual
forecast

Fig. 8. Scheme of improved GA-optimized regWANN rabd

3.3.2.1 Implementation of the proposed methodologpr week-ahead forecasts

By combining the methods described above, the Giwoped regWANN model was used for week-ahead gas

consumption forecasting. The structure of this nhasleshown in Fig. 9, specifically, the combinatioh the

model preparation steps as well as the six NAR hsdde forecasting the wavelet components. The tatpire

regression step was performed using the modelsabieT2, and only the residuals were decomposedoinéo

approximation component (A5) and five detail comgatis (D1-D5) using the DWT. The inputs to the NAR

models were regressor vectors containing a speuificber of lags used to forecast a given waveletpoment.



The number of lags in a given regressor vector dedsrmined using the binary GA, as shown schenilgtica

Fig. 10.
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Fig. 9. Scheme of improved GA-optimized regWANN rabd

Week-ahead forecasting using the GA-optimized refMAnodel is shown separately in Fig. 10. This stree
corresponds to each of the NAR models shown in &igvhere the number of inputs is equal to the remalf
nonlinear regressors (represented by 1s in theisoluector) determined using the binary GA. Thedelauses a
recursive strategy (Eq. 17) to forechsteps ahead (= 7 for week-ahead forecasts), regarded as fekdifahe
forecasted output(k + h). To train the sigmoid NNs in the NAR models, a bamation of four iterative search
methods was used: subspace Gauss—Newton leasedgsearch, the adaptive version of this method, the
Levenberg—Marquardt algorithm, and steepest desleast squares search. The selection of a panticula
algorithm was based on the direction that redubedestimation cost first [45]. The number of negraneach

NAR model was set to 10.
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Fig. 10. Seven-day-ahead forecasting using theaas#dN-based NAR model.

To compare the forecasting performance of the gimedels, two error criteria were selected: the nedzsolute
error (MAE) and the NRMSE expressed in percentitofThe MAE criterion was deemed suitable becatise i
provides a rapid assessment of the mean forecastiogexpressed in the units of the variable tdrigst (in our
case, cubic meters), whereas NRMSE is an erroruneagpically used in the identification processt@ress
the goodness of fit (100% implies that the modefqmtly fits the data). The formulas for these &t are as

follows:

[EN_ /() -9(K))?
NRMSE = 1-

1
MAE = < ¥i_1ly (k) — 9 (k)]
! Jz’,!Zl(y(k)—ﬁzﬁﬂy(k))

x 100% (23)

wherey(k) is the actual value at theth time instantp (k) is the forecasted value at tkéh time instant, andil

is the number of samples.

To apply the GA algorithm successfully, it was ressgy to define an appropriate fithess functionthsd
individual solutions could be compared. In the wigfin of the fitness function, two factors werens@ered:
forecasting error and model complexity. As modeffgrenance on unseen data is particularly importam,
NRMSE (Eg. 24) on the test dataset was includethénfitness function. In addition, to favor lessmex

models among models with similar forecasting penfamce, the regressor vector size was also condidtetae

fitness function, which was defined as
K
F——(KEXNRMSE‘l'Ker) (24)

whereK_ is the error weight constant (set to 015)js the regressor size (RS) weight constant (sét3p andK
is the normalizing constant (set to 300). The sdc@mm in Eq. 24 corresponds to the number of 1thén

regressor vectar.

The parameter values used in the GA for regressctev optimization are summarized in Table 1.

Number of Number of Number of
- S Number of | Number of
neurons in | Number of | individuals tournament clite GA runs
NAR generations in P L for one
. individuals | individuals
models population case
10 30 20 4 2 10

Table 1. Settings used for GA optimization of regar vector in regWANN models.

4 Results and discussion



4.1 Temperature regression model

Initially, temperature regression was performedtfeg gas consumption time-series to obtain resiwatich
were themselves modeled using different approadres.regression part of the reg(S)ARMA model ad agl
of the GA-optimized regWANN model was based on thktionship between the daily average outdoor
temperature and the daily gas consumption in thengbuildings. This relationship was derived ortdy the
extracted data corresponding to the four heatimg@es shown in Fig. 11. Visual inspection of thgssphs
indicates that there is a strongest correlationveen temperature and daily gas consumption in ttel tin
Tatranské Zruby, whereas the weakest correlatiabserved in the health care building it@ee. Using the
results in Table 2, this correlation was confirnbgtthe value of, which was almost 15% higher for Tatranské
Zruby (0.7382) than for Sevce (0.6319) and Krompachy (0.6646) (the latten &xhibited roughly similar
correlation). The magenta lines in Fig. 11 showlbst fits using a linear model for the data frdhrhaating
seasons. The uncertainty associated with these Ismmoda be evaluated using the calculated 95% paeame
bounds, which have the lowest relative width fag Tatranské Zruby model. The gas consumption prdarfil
Tatranské Zruby differs from those in both Krompaemd Séovce owing to the heating system, which was
never fully switched off. This is in contrast wiktompachy and S®vce, where for a relatively large number of
days, the total daily gas consumption was zeroréssmted by the data points lying on the x-axig)e T
difference can be attributed to both the purpost@tuilding in Tatranské Zruby (a hotel is expecto have a

certain number of guests throughout the entire)yaad to its northernmost geographical location.
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Fig. 11. Best linear fits and 95% prediction bounfigas consumption-outdoor temperature relatignsbed as the temperature regression

model



4.2 Performance of ARMA/SARMA models

As the residuals after temperature regression wer@lly correlated, it was useful to analyze the@F and
PACF to infer suitable forecasting models. The A&t PACF plots are shown in Fig. 12 for the default
number of lags (20), which is considered sufficifemtseveral types of time series [35]. The pldtdath types
indicate similar correlations for the Krompachy é&®lovce buildings, with strong weekly seasonality aaded

by high values at lags 7 and 14. This implies thesible suitability of SAR(I)MA models with a seasbperiod

of 7 for modeling the residuals in both cases.dntast, the ACF and PACF for Tatranské Zruby doctearly
indicate a strongly seasonal character, and thpesb&the plots points to the AR(I)MA model (PACFogs
rapidly after the first lag, but the correlatiortssaveral subsequent lags appear to be sufficisiglyificant to
consider only the AR model). The stationarity oé tfesidual time series was tested using the augmhent
Dickey—Fuller test for the presence of a unit raeith the number of lags determined using the pdace
described in [37], andk calculated using Eq. 8 for the merged datasetldbur years. As the number of
samples in the datasets was the same (853)alculated using Eq. 8 was 20 for each buildinge &bsolute
values of the test statistic were larger than A #llithree cases (Table 2); therefore, this valug,,, was used to
obtain the results of the ADF test. As shown intdige, the null hypothesis was rejected at th& 8ignificance
level, indicating sufficient evidence for favoritige alternative hypothesis (i.e., that of the abseof a unit
root). Consequently, ARMA was selected for modelihg residuals of the Tatranské Zruby time sees]

SARMA for both Krompachy and Sevce.

| Tatranské Zruby \ Krompachy Secovce . Tatranské Zruby Krompachy Secovce
T T T T T

0.8 1 0.8
08 1 0.8 |- 1 08| A 0.8 |

0.6 0.6

o
2N

0.6 0.6

o
2N

0.4 4 04

I
=

0.4 B 0.4

Sample Autocorrelation

Sample Partial Autocorrelation
)
=

=

o

o

o
T
f—

0.2 1 1 0.2

-I'IYT ITT'I e l . ‘
I

?
1 02+ 1 -0.2 1

1

-0.2 : -0.2 : -0.2 : -0.2 : -0.4 ' -0.4
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Fit T. Zruby Krompachy Smvce ADF test TZ K S
p.=-19.38 p1=-23.96 p1=-6.589 g
Parameters and (-20.16, -18.61) | (~25.11, —22.82) | (~6.927, —6.251) p-value 0.001 0.001 0.001
95% parameter - ~ —
bounds p.=507.6 p.= 412 p.=120.9 .
SSE 3.77 x 16 8.257 x 16 8.007 x 16 critical value -1.9414 -1.9414 -1.9414
R 0.7382 0.6646 0.6319 significanc| 0.05 0.04 0.0b
Adj.R 0.7379 0.6642 0.6314 lags 20 20 20
RMSE 66.55 98.5 30.67 HO reject true true Trug

Table 2. Fit results for temperature regressionetsodnd unit root test results using the augmetekey—Fuller method.

The models considered for forecasting were evatubésed on their parsimony expressed through tlieatd
BIC criteria as well as their ability to pass thhiteness test for their residuals. The models shiowFable 3
were selected from a group of models with variotders of autoregressive and moving-average terms. F
Krompachy and Sevce, the models with structure SARMA(1,0,0)x(1)@Had the lowest AIC and BIC values,
and passed the whiteness test for the residuglsridd of seven days was selected based on thgseénaf ACF
and PACF shown in Fig. 12. Considerably lower varéaand values of the information criteria for 8&ovce
model can be associated with relatively lower ageraalues of gas consumption. Lower-order modeigHe
Tatranské Zruby dataset were unable to pass theness test, and its final order (ARMA(4,0,3)) wésained
by successively increasing the orders and evalydtia AIC/BIC values. Further increasing the ordgics not
result in better model parsimony, and thus the finedel to pass the test was selected. Figure @@sshhe
graphic residual analysis of all three models ugirsjograms, as well as the ACF and QQ (quantilentiie)
plots of the residuals. The ACF plots of the realduor all models indicate that they are virtuallycorrelated
at the 0.05 significance level for the first 20daghe QQ plots indicate larger deviations of th&iduals from
the normal distribution at the ends, suggestingsthigability of the t-distribution, which can hardheavy tails.
As observed in the histograms, these deviationsdas=to the presence of outliers, which are clearbre
probable to occur than in the case of the nornstidution. The distribution of the residuals iss#r to normal

in the Tatranské Zruby model, which has the highmsnber of degrees of freedom (approximately 10),
compared to 3.4 and almost 5 in the Krompachy as@\®e models, respectively. The residual outliees ar
related to extreme values in the temperature regnesnodel errors, the number of which was largethie
Se&ovce and Krompachy models. Moreover, the distriuidf residuals in the Krompachy model is slightly

skewed to the right, resulting in the smallest nantf degrees of freedom for the t-distribution.



Place Model Equation AlC BIC Var DoF

(1—1.131L + 1.125L% — 1.000L% + 0.145L%)y, =
TZ ARMA(4,0,3) (- 073711 08831 - 0,645, 9299.0 | 9336.9| 3117.6 9.986

(1—-0.453L)(1 - 0.927L7)y, =

K | SARMA(L,0,0) x(1,0,1 2 06411,

9729.4 | 9748.3| 5212.4 3.366

(1—0390L)(1 — 0.925L7)y, =

s SARMA(1,0,0) x(1,0,) (12 06150)%, 77223 | 77412 4956 4.916

Table 3. Results of identification of forecast misder gas consumption in the reg(S)ARMA approach

The models derived above were used for one-weestehbas consumption forecasts for each building,thed
results are shown in Fig. 14. These axepostseven-day-ahead forecasts during the 50-day pefitide test
data (Fig. 2) with recorded (i.e., not forecasted)peratures. In Fig. 14, a comparison is also rhbatieeen the

forecasts by pure linear regression models (bragnine) and reg(S)ARMA error models (brown/yelltme).
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Fig. 13. Histograms, autocorrelation, and QQ pibtesiduals for (S)ARMA models.

The errors shown in the bottom part of the figuogrespond to the differences between the recoraed a
forecasted consumption values using reg(S)ARMA ri®dehese models allowed reducing the error (MAE) i
one-week-ahead forecasting from 50.73tm 37.65 m for Krompachy, and from 20.74°no 16.97 m for
Se&ovce. Interestingly, in the Tatranské Zruby datasstmpared with pure temperature regression, the
regARMA model failed to increase forecasting accyras the MAE increased from 45.55 tm 48.38 m. In

this case, the linear correlation between gas aoptan and daily average outdoor temperature wasmgest

(r? = 0.74), and thus the random component of the wassdafter regression was more significant thath
other two buildings. This, combined with a lack afvious weekly seasonality, probably resulted irrsgo
seven-day-ahead forecasting performance for thARBYA model than for a simple temperature regression

model.
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Fig. 14. Seven-day-ahead forecast of daily gasuraption using temperature regression model and ARBARMA error models tested on

the 50-day test dataset and recorded temperatures.
In an online scenario, seven-day-ahead forecastapdratures would be required with reg(S)ARMA or Mh
models. As historic data for temperature forecas&se not available for the same periods as for gas
consumption forecasts, it was not possible to perfeiemperature forecasts for the entire test datzedod (50
days). However, seven-day-ahead temperature fdseease recorded from January 21, 2020, which cbeld
used to test the models by analogy with an onlanedasting scenario. In view of the availabilityfofecasted
temperature data, the testing period was set tivane December 1, 2019, to March 10, 2020, contgirfifl
days in total. Of these, 88 days were used asgrpling data for week-ahead forecasts performecdoen
days, starting on March 4, 2020, and ending on N&a@, 2020. The residuals after the temperatureessgn
that were used as data during the given periodshosvn in Fig. 15 (left), where three distinct sewt are
indicated by I, Il, and Ill. The first correspontts a period for which the residuals were obtainedtte
difference between the recorded gas consumptiontt@djas consumption estimated using the linearefaod
from Table 2 based on the recorded temperatunest 8 days). However, it was demonstrated thactsting
performance was improved when the residuals ollafram the forecasted temperatures were used as pre

sampling data.
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Fig. 15. Recorded and forecasted temperaturegsting period from March 4, 2020, until March 1028, (right column) and presampling
residuals used in forecasting models (from Decerip2019, to March 10, 2020) (left column).
Therefore, starting from January 28, 2020, thedtesds obtained as the difference between the redogas
consumption and gas consumption estimated usingvéed-ahead forecasted temperatures were useib(sect
Il and III). Section IIl corresponds to the peritmt which full forecasts (forecasted temperaturérecasted
residuals) were performed. The accuracy of temperdbrecasts using data from the Norwegian Metegical
Institute [48] can be evaluated using Fig. 15 (ighhe mean absolute error for temperature fotedassection
Il was 4.17C (Tatranské Zruby), 3.86 (Krompachy), and 2.58 (Seovce), whereas for sections Il and I, it
was 2.92C, 2.39C, and 1.9%C, respectively. The reduced accuracy of the teaiper forecasts in section Il
was caused by the forecasted sudden temperatupeirdibe middle of this period that did not, in tfacccur.
The ex anteweek-ahead forecasting performance of the reg($)ARnhodels can be seen in Fig. 16. As in Fig.
14, a comparison can be made between simple fasegaimg the temperature regression models ongary,
incorrectly forecasted sudden changes in temperdiarve profound negative effects on the accuracgasf
consumption forecasts. This is evident in the gasamption profiles of Krompachy and8ece, where the
temperature in fact increased in the middle ofisaclil, causing the actual consumption to dropsi@ad of
rising, as forecasted by the models). As a rethdterrors in this part of Section Ill reached appmately 100
m® and 200 rmfor Tatranské Zruby and Krompachy, respectivehd above 50 thfor Setovce. The seven-day

MAESs were: 63.21 th(Tatranské Zruby), 94.90tKrompachy), and 33.70 h¢Setovce).
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Fig. 16. Seven-day-ahead forecast of daily gasuraption using temperature regression model and ARBARMA error models tested on

7-day test dataset and forecasted temperatures.

4.3 Performance of GA-optimized WANN model

The GA algorithm was run 10 times for regressoiimojation of each component so that the averagaltses
could be evaluated. Its parameters were determing@rimentally using a number of algorithm runshwit
different parameter settings and resulting perforcea As indicated in Table 1, the number of indixit$ in the
population was set to 20, with elitism set to twdividuals. Under the given conditions, the effegthumber of
generations for obtaining useful results was neddyilow and was set to 30. The results of 10 mfrthe GA for
each component are shown in Fig. 17, where thagoorrespond to the mean value of the fitnesseseurd the
width of the error bars indicates the range of stamdard deviation around this value. Accordingdo 24, the
fitness function consists of an error part (fituabf the model on test data) and an RS part (theber of 1s in
the optimized regressor vector); the minus sigomsed so that a minimization problem may be fornedlat
Accordingly, the values on the y-axis in Fig. 1@ &itness scores obtained from each GA run, witthd#ness
function component weighted equally. The graduetaase in the fithess values with higher-resolutiavelet
components observed in the graphs in Fig. 17 caexpkined by the lower predictability of these q@mments
(and thus lower error part of the fithess valus)nell as the higher number of regressors in theessor vector
required for forecasting. In addition, the largedtlv of standard deviation ranges for the firsethcomponents
(A5, D5, and D4) can be attributed to the greagastivity of the fithess value to the ratio of tNRMSE value
and the number of regressors in the regressor wéldbe mean and standard deviation values were ambfe

for each building, except for the A5 and D5 compusdor Séovce, where a higher number of small regressor



vectors in the results contributed to the lowend#ts values (-387.36 (A5) and -260.76 (D5) compavittl

—-287.00 (A5) and —206.57 (D5) for Krompachy, an®535 (A5), —228.55 (D5) for Tatranské Zruby).
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Fig. 17. Error bars of GA results for each of thevelet decomposition components obtained from 18 af the algorithm.

To better evaluate the performance of the GA-optitimodels in terms of their forecasting abilitgble 4
summarizes the results using NRMSE, MAE, and theimigator. The NRMSE criterion is given in the
standard model fit form, expressing the deviatiaween the recorded data and the model response in
percentage error. By contrast, the other critedoactly provides the MAE in units of gas consuropti(i.e.,
cubic meters). The RS indicator is the number gfassors in a regressor vector after GA optimirafinteger
number). We note the relatively low standard démmbf model fit (NRMSE criterion) when the size af
regressor vector changes, implying that simpler ef®odith a smaller number of regressors could leéepred
without significantly worsening forecasting perfante. As the standard deviation of the NRMSE daoiter
increased with the level of wavelet decompositibris evident that RS had a dominating effect oa fdrge
width of the standard deviation of fitness in tlmstfthree components in Fig. 17. On average, is¢ four
components (A5, D5, D4, and D3) could, in all casesforecasted seven days ahead with high accutfaey
average value of model fit was under 90% in onlg case (D4 for Krompachy). This is severely reddfoedhe
other two components; however, as shown in FigtHedr effect on the resulting forecasting perfonegcan be
relatively significant (NRMSE mean ranging from 3%% to 57.65% for D2, and from 24.46% to 32.47% for
D1). The only exception is the D1 component forrdiaské Zruby, where the results for seven-day-ahead

forecasting could not be used, and this componeat wonsidered to be effectively unpredictable fos t



forecasting horizon. This is in accordance withvimas results (using (S)ARMA models), where tempaea
regression could better explain the data variatam in the remaining buildings, leaving the randmmponent
in the residuals after temperature regression reigmficant. It is important to note that accorditmgTable 4,
only one regressor was required to obtain highbueate forecasts of the first two wavelet compos€A6 and
D5) in each building except for D5 in Krompachyttwa slightly larger number for the remaining comgits.
As shown in Table 4, the lowest number of regres$mr each component (except for D1 in Tatranskéoiy
was A5(1), D5(1), D4(2), D3(6), and D4(7) for Tatské Zruby, A5(1), D5(2), D4(2), D3(7), D2(10), and

D1(13) for Krompachy, and A5(1), D5(1), D4(4), D3(B2(8), and D1(8) for Sevce.

Location Tatranské Zruby Krompachy Sefovce
Comp.| Value| NRMSE | MAE RS NRMSE | MAE RS NRMSE | MAE RS
[%] [m? [] [%] [m? [] [%] [m? [
Mean | 99.44 0.0611 26 99.66 00678 2.4 99.73 0.0094 22
A5 [Max | 99.47/ | 00747 " 99.67/ | 00716/ % 99.86/ | 0.0107/ o
Min | 99.32 | 00548 99.64 | 00622 99.70 | 0.0048
Sid | 00431 | 00055 | 1.738] 00119 00027 | 0966 | 00485 | 00017 |  1.6865
Mean | 97.82 0.2649 36 98.14 02889 3.7 98.17 0.0738 3.4
D5 [ Max/ | 98.05/ | 0.2964/ - 98.31/ | 03131/ v, 98.30/ | 0.0827/ oL
Min | 9753 | 02393 97.99 | 02610 98.06 | 0.0682
Std | 01488 | 00175 |  1.6465 0.121| 0.0189 142 00780 | 0.0044|  1.7127
Mean | 92.00 11841 63 86.62 1.56460 6.6 94.47 0.2740 71
D4 [ Max/ | 9239/ | 14120/ 87.38/ | 1.6862/ 94.87/ | 0.3069/
Min 90.09 | 1.1258 9/2 8568 | 1.4445 1012 93.87 | 02577 10/4
Sid | 06758 | 00825 |  1.0465 0.537 0.0864 259 0288 8014 21318
Mean | 9258 13113 85 92.94 1.4179 10.4 90.3] 0.4367 88
D3 [ Max/ | 93.18/ | 1.4305/ 93.25/ | 1.4682/ 91.16/ | 04765/
Min | 9195 | 12215 | 126 9260 | 13518 | 27 89.65 | 03964 | 116
Std | 0.3508 | 00679 | 1.9579 0.199| 0.0362 158 03852 | 00210| 16193
Mean | 4820 | 13.7670 14.7 2431 214501 14.6 57.6b 45200 16.3
D2 [ Max | 50.18/ | 14.4400/ 2641/ | 22.3851/ 59.01 | 4.7724]
Min | 4605 | 127722 | 97 4141 | 205205 | 1910 5576 | 4.2493 218
Sid | 1.2664 | 04408 | 38312 1.38 0.563( 3.20 11048 0.13953.4335
Mean | -6.38 | 27.4850 23.9 24.46|  23.664b 223 32.47 7.97b3 19.7
DI [ Max | 212/ | 28.8193/ 28.20/ | 25.0003/ 3512/ | 83311/
Min | -11.95 | 261235 | S9/15 2037 | 221430 | 3218 29.73 | 7.7386 26/8
Std | 41841 | 08264 | 54047 271 0.9928 6.5 1.7584 0190756774

Table 4. Results of 10 runs of GA for regressoimojzation of each wavelet decomposition component.

Based on these results, the final tests of the @ilwized regWANN model were carried out using thedels
with the smallest number of regressors for eachpomomant and the best NRMSE values on the test dag.
number of days differed for each dataset, but is #valuation, the longer test datasets (Krompaaihg
Setovce) were shortened to match the size of Tatradskiy, so that they could be directly comparedus/tall
datasets contained 76 days in total: from Octoh&018, to December 15, 2018. The performance lettsl
models on the week-ahead forecasting of temperaageession residuals can be assessed using Fig.h&8
blue lines indicate the residuals of the test dditained after performing temperature regressianguthe
models from Table 2. Each column shows the suocgessldition of next-level detail forecasts, confinmtheir

importance in improving the final forecasting aamy. As mentioned previously, the D1 componenttifar



Tatranské Zruby series could not be reasonablycésted for a given forecasting horizon, and thus th
component was not used in the final model. Theltesid the temperature regression residual for@mastsing
the full models for Krompachy and &@s/ce shown in Fig. 18 are also confirmed by the ehditl values for the

test data, which were 42.74% and 51.29%, respégtieempared with 19.67% for Tatranské Zruby.
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Fig. 18. Seven-day-ahead forecasting performan@ebptimized regWANN models on regression residwéth the final reconstruction
using all WT components (except for D1 for Tatrangkuby residuals).
To test the performance of the GA-optimized regWANisdel, the same 50-day dataset as in the cadeeof t
reg(S)ARMA models was used. The results of thisdaes shown in Fig. 19, where seven-day-ahead dstieg
is again compared with the forecasts obtained ugisgnple regression model from Table 2. The reg\WAN
model enabled a reduction of the MAE during theda§-test data period to 37.44 (@ompared with 48.38 in
in the reg(S)ARMA approach) in Tatranské Zrubyttisaa 22.6% reduction. For the buildings in Kraoby
and Séovce, these values were reduced to 30.88and 7.30 m (compared with 37.65 frand 16.97
respectively, for reg(S)ARMA), that is, a reduction 17.7% and 57%, respectively. Even though Kracthga
exhibited the smallest reduction, its NRMSE for &teday period remained better than that of Tak&Zsuby
(71.0% compared with 61.7%). Likewise, as showrhia lower part of Fig. 19, the ranges of the maximu
errors for any given day were significantly reduceith only one of the errors exceeding +/- 10dfar both

Tatranské Zruby and Krompachy, and only three adioget+/- 20 ni for Seovce.
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Fig. 19. Seven-day-ahead forecast of daily gasuroption using temperature regression model and WANDNr models tested on 50-day

test dataset and recorded temperatures.

To test theex anteforecasting performance of regWANN models for geseday forecasting horizon, the same

pre-sampling dataset as that shown in Fig. 15 sad.ulhe results of week-ahead forecasting usigd/ ANN

models are shown in Fig. 20. It should be noted tha curves for actual consumption (blue line) and

temperature regression (brown line) are the sanie Big). 16. A striking difference is the improvéatecasting

accuracy of the regWANN models, including theirlizZpito compensate for the incorrectly forecastedden

drop in temperature. By observing the error baplysan Fig. 20, it is evident that the maximum dbtoerrors

were reduced significantly to a maximum of appraadely 100 m in the case of Krompachy, and a maximum

of approximately 50 and 40%in the case of Tatranské Zruby andi@ee, respectively. The mean absolute

errors for the entire period (Section Ill) wereueed to the following values: 30%¢iratranské Zruby), 69.35m

(Krompachy), and 19.01 h{Setovce), that is, a reduction by 52.5%, 27%, and %3 @spectively.
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test dataset and forecasted temperatures.

4.4 Summary of Results

The final results obtained for week-ahead forengstif daily gas consumption can be evaluated antpaced
using both Table 5 and Fig. 21. This summary isdei# into ex post and ex ante forecasting scenarios
corresponding to the previously introduced 50-dayfost) and 7-day (ex ante) datasets. The 50esdhylataset
started on October 23, 2018, and ended on Decetrdhe2018, whereas the seven-day test datasetdstamte
March 4, 2020, and ended on March 10, 2020. Itnigoirtant to recall that in the ex post forecassngnario,
recorded (rather than forecasted) temperatures usa@, thus representing an ideal case from ttepeetive of
temperature regression. In addition to the absalalees of MAE and NRMSE for each scenario, Tabé&ws

the relative improvement of forecasting accuracyemvithe regWANN model was used. In three cases, this
indicator was not used: The NRMSE values for (S)ARModels in the ex ante scenario were negativergwi
to the significant errors under these conditioms) eould not be used. Furthermore, we did not hisarndicator

for minimum error comparison because low valuesnafimum error could, in general, be achieved b les
accurate forecasting models at certain points ds B contrast, the maximum error was more reléyas it
indicated the worst point forecast under the gigenditions. In terms of MAE, the use of regWANN retsl
resulted in improvements from 17.7% to 57%, whiam e considered significant. Even though the MAE
values indicate the differences between actual faretasted values in meaningful units (cubic métette
NRMSE values represent the closeness of the efotieeasted period to the recorded. Therefore, tRMNE

values in the ex ante forecasting scenario arenipeoably lower than in ex post forecasts becauseiors in



temperature forecasts had profound effects onddglting forecasting accuracy. In this regard vidlee of 38%
in ex ante forecasts for &a/ce should be considered satisfactory. In additignusing regWANN models, it
was possible to reduce the maximum forecastingr daoeach of the buildings in the ex ante scendno
approximately 50%. This significant difference waémarily due to the aforementioned incorrectlyefoasted

sudden drop in the outdoor temperature, which etsively successfully compensated for by the redgiA

models.

It is also interesting to see the structure (inpatghe final regWANN models after using the GAtiogzation
of the regressor vector. As mentioned previouslg,@1 component of Tatranské Zruby was not usedusecof
its low predictability; hence, no regressors amwsh Even though the optimality of the obtaineduioh cannot
be ensured when algorithms such as GA are usediethdts shown in Table 5 represent the best balanc

between the total number of regressors and errireitest data.

Model Building MAE NRMSE MAE NEMSE g'li)xr e’\frlgr ('e\ff(l; e'\frlgr
ex pOSt ex pOSt ex ante ex ante ex pOSt ex pOSt ex ante ex ante
T. Zruby 48.38m | 52.07% | 63.21m 157.00mM | 2.21m | 118.38M | 6.27ni
(S)ARMA Krompachy| 37.65m | 62.22% | 94.90 h 177.63m | 0.17m | 222.37m | 1457 m
Setovce 16.97m | 53.23% | 33.70 th 56.68 m 0.83 i 76.34 m 5.34 i
T. Zruby 3744 | 61.71% | 30.00Mm| 9.96% | 104.27m | 0.01n | 57.54m | 12.03nm
WANN Krompachy| 30.98f | 71.01% | 69.35m | 13.57% | 130.05m| 0.18m | 114.31m | 19.93 i
Setovce 7.30 m 78.59 % 19.01th | 37.96% | 26.10m | 0.38m 41.19 M 0.60 nt
T. Zruby 22.6% 9.64 % 52.5 % 33.6 % 51.4 %
Improvement | Krompachy 17.7 % 8.79 % 27 % 26.8 % 48.6 %
Seovce 57 % 25.36 % 43.6 % 54.0 % 46.0 %
regWANN
regressors A5 D5 D4 D3 D2 D1
y(k-8), y(k-21), y?(k'ls)r y(kk-lzg)’
Tat.Zruby y(k-5) y(k-20) y(k-26), y(k-38) | y(k-25, yk-a1), | Y19, Y(k-29),
V-2, ys3 | Y9 W0,
' y(k-63)
(k-9), y(k-13) VEEE%) ﬁﬁiﬁ
Y(K-9), Y(K- ’ Y(K- ’ = )
SRy | W23 y(c29, | y(29), yk-29),
Krompachy y(k-18) y(k-9), y(k-12) y(k-28), y(k-44) ' " y(k-37), y(k-39), | Y(k-33), y(k-37),
Y(k-38), y(k-49), ) ) ) )
y(k-54), y(k-59 y(k-51), y(k-63), | y(k-48), y(k-52),
' y(k-66), y(k-69 | y(k-56), y(k-68),
y(k-73
(16,020, | Wieagwiesy, | b ion, | vicioyka?
X Y(K- » Y(K- ’ Y(K- ’ = ’ Y(K- ’ = ’ Y(K- ’ - )
Sefovee yk-19 y-19 y(k-30,y(k-34 | y(k-39,y(k49, | y(k-29,y(k-36), | y(k-24), (k-39
Y(k-53), y(k-57) | y(k-62), y(k-66 | y(k-41), y(k-47)

Table 5. Summary of the results obtained for wdsdad gas consumption forecasting using reg(S)ARKkAragWANN models and
regressors in the final regWANN models.
The performance of the reg(S)ARMA and regWANN medel week-ahead gas consumption forecasting can
be evaluated using Fig. 21, which shows the absalatly forecasting errors for both test datase@sday and
7-day). The values above the x-axis representrioesefor regWANN models, whereas the values betlosvx-
axis were obtained using the reg(S)ARMA models.faalitate the comparison, the red color indicage®ors

with larger magnitude, whereas the green colorcatgis smaller errors. A direct comparison of théy deeek-



ahead forecasting performance of the models cosftira lower average error for the regWANN modelva#
as the lower maximum errors in both forecastinghadges and for each building. The total number afér
daily errors was 38 (Tatranské Zruby), 27 (Krompachnd 39 (S&ovce) for ex post forecasts, and 5 (Tatranské
Zruby), 3 (Krompachy), and 5 (&vce) for ex ante forecasts. For both models, thken values of forecasting
errors were clearly due to sudden changes in weathieditions, which were not reflected in the weath
forecasts (e.g., the situation around the end obla@r 2018). This was most pronounced for Krompaulhere
the maximum error values were the highest for lmtidel types and in both forecasting scenariosdttition,
in this case, the differences in the model foreoggterformance was less significant (similar nurshaf lower
absolute daily errors and less remarkable improvemelowever, the best performance of the regWANbdU el
and the most striking improvement otbe reg(S)ARMA model could be observed fok@ee. As shown
in Figs. 13 and 18, the modeling of errors aftgression had a profound effect on the forecasticgracy
for this building (the difference in forecastedued between the simple temperature regression raodel
the model with modeled residuals)aturally, the accuracy of weather forecasts pysmportant role in the
resulting forecasting performance of both typemofiels. This was particularly visible in the NRM8&lues of

regWANN models for ex post and ex ante forecasit, thhe former being several times higher.

ex post ex ante

WANN

[ lower
(SARMA _100 - MM higher

10 20 30 40 50 1 2 3 4 5 6 7

Tatranské Zruby

(SIARMA

WANN

Krompachy

(S)ARMA (S)ARM

absolute value of error [m3]
absolute value of error [m3]

1 2 3 4 5 6 7

Secovee

(S)ARMA

(S)ARMA

o b

0 10 20 30 40 50 1 3 4 5 6 7
day index day index

Fig. 21. Comparison of absolute values of erronwedk-ahead daily forecastsdr postandex anteforecasting scenarios.

The significance of the obtained results with relge@r real-world conditions can be related to effecenergy
management in various types of buildings. Thisatffe expected to be observed not only in termerafrgy

costs but also in heat production efficiency cdnt&pecifically, the forecasting model developedehés

intended to be used for the following purposes fmegctical scenario:



1. With changing conditions that affect the gas markie¢ dynamic purchasing of gas offers greater
flexibility for gas consumers. It is expected thia¢ dynamically changing maximum (as well as the
minimum) daily gas consumption will be contractetder dynamic purchasing for each day of the
week also for small and medium-sized gas consuimersar future. In such a scenario, the accuracy of
gas consumption forecasting will be of crucial imtpace and even small improvements of its value
can have significant benefits. Even though the daséng horizon may differ depending on actual
conditions and requirements, it is reasonable suras that the performance improves for shorter
horizons. On the other hand, in the setting ofydgds consumption in buildings, the importance of
temperature in its forecasting is paramount andefbee the week-ahead horizon can be considered an
acceptable maximum for reliable temperature forscabhis applies despite the fact that the GA-
optimized regWANN model is shown to be capablearhpensating for the inaccuracies in temperature
forecasts.

2. In addition, the model is planned to be used féiciehcy control of heat sources in different typds
buildings. In this case, it is expected that thesime forecasting horizon may be shorter and the
operation of a given heat source is evaluated utiagresults of daily gas consumption forecasting.
Should the discrepancy between the forecasted andhlavalue exceed the defined threshold, the

operation of a heat source may be subject to fuitivestigation.

5 Conclusion

In this paper, a comparative study of week-aheaetasting of daily gas consumption in three diffietgpes of
buildings was presented using two types of modedsdemonstrate the more general usability of tlmedasting
models, three buildings with different purposesd(aras consumption profiles) were selected: a hatel,
elementary school, and a healthcare building. Aly d@s consumption is strongly correlated with therage
outdoor temperature, the tested models used tetopereegression with different modeling of the akyi
correlated residuals (ARMA/SARMA modeling vs. GAtimpized WANN modeling). In addition, both models
were tested in two forecasting scenaries:post(where recorded temperatures were used)exndnte(where
week-ahead forecasted temperatures were used) Bagbe results, the following conclusions cardtsenn: |.
Regression-based forecasting with separate mod&inghe time series of the residuals is preferableéhe
forecasting of the original daily gas consumptionet series. In both cases, the residual modeliggifssantly

reduced the forecasting error compared with a gngmnperature regression. Il. The temporal chaiaaten



of a given gas consumption profile may have a eatite effect on forecasting accuracy. lll. The afsthe GA-
optimized regWANN approach for daily gas-consumptiorecasting may improve forecasting accuracyneve

under conditions of more significant temperatureéasting errors.

It was demonstrated that the WT could be useddlatis components with different cycle periods, whare
present in the original time series, and this impeoforecasting accuracy. As more flexible modedsenused, it
was important to include an algorithm to search dowsatisfactory (not necessarily optimal) selectafn
regressors in the model. Moreover, the resultilgfMANN is naturally more complex than reg(S)ARMA
models. However, we do not expect this to be aneise most cases where sufficient (but not proivisly

large) computational power is large.

There are several aspects that could be addressiedure research regarding the possible use VAN
models to forecast daily gas consumption in amengicenario. As regWANN is a temperature-regressased
model, it would be useful to further examine thesgibilities for improving the accuracy of averagaily
temperature forecasts. Also, to achieve even bptesimony of the models, a more rigorous apprdactne
selection of wavelet decomposition levels couldrbsearched. This can be combined with the testing o

different search algorithms for finding further impements in forecasting accuracy.
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Temperature regression using linear model offers reasonable gas consumption estimate
Complex seasonality of gas consumption is handled effectively with db wavelets

Binary GA is found instrumental in selecting near optimal regressors for NAR models

Use of GA-optimized regWANN model compensates for temperature forecast inaccuracies
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