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Abstract 

Forecasting energy consumption in buildings is crucial for achieving effective energy management as 

well as reducing environmental impacts. With the availability of large amounts of relevant data 

through smart metering, gas consumption forecasting is becoming an integral part of smart building 

design so that these requirements are met. In this study, we investigate week-ahead forecasting of 

daily gas consumption in three types of buildings characterized by different gas consumption profiles 

during a five-year period. As gas consumption in buildings is highly correlated with the average 

outdoor temperature, regression models with additional residual modeling are used for forecasting. 

However, conventional regression models with autoregressive moving averages (ARMA) errors 

(regARMA) perform poorly when the temperature forecasts are inaccurate. To address this, a new 

forecasting model termed genetic-algorithm-optimized regression wavelet neural network (GA-

optimized regWANN) is proposed. It uses the wavelet decomposition of the residuals of temperature 

regression time-series, which are modeled by multiple nonlinear autoregressive (NAR) models based 

on sigmoid neural networks. The appropriate delays in the regression vectors of the NAR models are 

selected using a binary GA. Compared with regARMA and seasonal regARMA, the GA-optimized 

regWANN model achieved in the three buildings a reduction of 22.6%, 17.7%, and 57% in the mean 

absolute error (MAE) values in ex post forecasting with recorded temperatures, and a 52.5%, 27%, and 

43.6% reduction in the MAE values in ex ante forecasting with week-ahead forecasted temperatures, 

even under conditions of relatively significant errors in the forecasted temperature.   

Keywords: wavelet transform, neural networks, ARMA models, forecasting accuracy, temperature regression 
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1 Introduction 

In general, the prediction of energy use is currently highly relevant with regard to improving the energy 

performance in buildings as well as reducing the potential environmental impact. Even though short forecasting 

horizons may be relevant in certain applications areas (e.g., electrical energy), the total daily energy consumption 

(including, for example, gas) can also be important for effective energy management. The conditions of a 

particular application usually determine the suitability of a forecasting model. Various approaches have been 

successfully used for energy-use prediction in different types of buildings [1]. Although a universally accepted 

classification may not be available, three approaches are distinguished in this study: prediction using 

engineering, statistical, and artificial intelligence (AI) methods. As pointed out in [1], engineering methods use 

standard calculations based on known physical laws (thermodynamics and energy behavior), thus necessitating a 

large number of physical variables and parameters. In contrast, the other approaches are data-based, and the 

identified prediction models have no relation to the underlying physical laws (except for the possible use of, for 

example, meteorological variables as predictors). A similar but slightly more refined classification can be found 

in [2], where data-driven and large-scale building-energy-based approaches (LSBE) are distinguished. The 

former are further classified into approaches based on neural networks (NNs), clustering, statistical methods and 

machine learning, and support vector machines (SVMs), whereas the latter into black-, gray-, and white-box 

model approaches. A more focused review of energy models can be found in [3], where the emphasis is on 

energy demand forecasting specifically through data-based approaches that fall under the aforementioned 

statistical and AI categories. It should be noted that despite the distinctive characteristics of time series for 

different types of energy (e.g., thermal, electrical, or wind), the general characteristics of the methods used for 

time-series forecasting in these areas are similar and can be used as a reference from one field to another. The 

authors of [4], compared three machine learning approaches (feedforward NNs, regression trees, and SVMs) to 

forecast the thermal load in several residential and nonresidential buildings. The results demonstrated that the 

SVM approach was superior to the other two in terms of the normalized root mean square (NRMSE) value. 

Neural networks were also used in [5]. Specifically, they were trained to forecast daily energy consumption in 

buildings based on data classification and a direct multistep approach. A simple type of feedforward NN was 

used to forecast the energy load in an iterative manner based on the load during the previous five days. However, 

[5] is specifically concerned with energy forecasts in institutional buildings, which have distinctive energy 

profiles compared with other types of buildings. Taspinar et al. [6] used NNs for short-term forecasting of 

natural gas consumption; several meteorological variables (moisture, atmospheric pressure, wind speed, and 
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ambient temperature) were added to improve accuracy. The analyzed time series exhibited a strong seasonality 

of seven lags, and thus the SARIMAX (seasonal autoregressive moving average) model with exogenous input 

was used as a reference. It was demonstrated that the performance of SARIMAX was highly satisfactory and, in 

fact, superior to that of NN models. In [7], an NN model based on a multiobjective genetic algorithm (GA) was 

used for energy consumption prediction in a bioclimatic building. Here the authors used MOGA to design RBF 

models for 4-steps ahead forecasting the electric power consumption in selected buildings. Their model used 

much lower number of samples then the models to which authors compared the performance (2592 vs. 318340). 

However, even this number of samples may be high for daily samples-based forecasting of energy consumption.  

Jovanovic et al. [8] proposed an ensemble of three different architectures (FFNN, RBF, and ANFIS) for the 

prediction of heating energy consumption. The outputs of these models were combined by simple and weighted 

averaging, and by calculating the median. Several meteorological variables (outside mean daily temperature, 

heating consumption of the previous day, day of the week, maximum daily temperature, relative humidity, total 

solar radiation, and month of the year) were considered. However, it appears that only a short forecasting 

horizon was used, and the effect of seasonality was ignored.  

Regardless of model architecture, forecasting accuracy may be improved by using advanced signal processing 

techniques, which may either extract useful features from the predicted time series or perform decompositions to 

decrease forecasting errors. A signal processing method is the wavelet transform (WT), which is widely used in 

time series analysis because of its locality not only in the frequency domain but also in the time domain [9]. 

Rana and Koprinska [10] used this approach in the form of a wavelet NN, where the entropy cost function was 

used to select the best wavelet basis for data decomposition, a mutual information criterion for feature selection, 

and the NN itself for forecasting. The combination of wavelet decomposition with autoregressive (integrated) 

moving averages (AR(I)MA) models was proposed in [11]. This led to an improvement in forecasting accuracy 

for short-term forecasts of PM10 concentration. Further improvements were achieved in [12] by using wavelet 

decomposition and an NN trained by a criss-cross optimization algorithm, which reportedly had a significant 

advantage over typical training algorithms. A WT-based approach was also used in [13], where it was combined 

with three other computational intelligence paradigms (ANFIS, NNs, and GA) to perform one-day-ahead 

natural-gas demand forecasting. In [13], a large number of towns were analyzed, but a comparison with well-

established forecasting models was missing; furthermore, weather conditions were not considered. The ability of 

wavelets to detect non-stationary features of time series was combined with nonlinear Volterra models to provide 

a forecasting framework for nonlinear and non-stationary time series in [14]. This combination was reported to 
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achieve better results than certain benchmark models; however, Volterra models are high complex, and this 

should be considered.  

Recently, time-series forecasting has also been addressed using deep learning approaches [15, 16, 17, 18, 19]. In 

[15], multi-layer Bi-LSTM and LSTM with a GA were combined for hourly forecasts of natural-gas demand, 

where the GA was used for network optimization. No meteorological variables were included in the model, but 

differences between summer and winter seasons were considered. The number of samples used to train the 

proposed model were not reported, but it is conceivable that a large number is required for satisfactory 

performance. Liu et al. [16] used deep learning based techniques specifically for forecasting the energy 

consumption in buildings. In this work authors used less conventional approach for forecasting, where a number 

of deep reinforcement techniques was explored for the performance enhancement in single- and multi-step ahead 

prediction of the energy consumption. It was found out that one of the investigated techniques was not well-

suited to this problem (Asynchronous Advantage Actor-Critic) but Deep Deterministic Policy Gradient and 

Recurrent Deterministic Policy Gradient performed better. This was, however, achieved at the cost of higher 

computational cost typically associated with the deep learning methods. To improve generalizability, a double 

deep extreme learning ensemble system with a self-adaptive ReTSP-Trend pruning technique was proposed in 

[17] and was demonstrated to perform better than state-of-the-art algorithms. Even though NNs with deep 

architecture appear to be highly effective for time-series forecasting, their effectiveness depends heavily on the 

use of large datasets, typically containing thousands of samples. Chitalia et al. [18] tested nine different 

combinations of recurrent NNs and clustering techniques for the short-term forecasting of electrical load in 

different types of commercial buildings. It was demonstrated that the combination of long short-term networks 

and clustering techniques can significantly improve forecasting accuracy compared with other techniques with 

good robustness towards errors in weather forecasts. However, the proposed models are complex and 

computationally intensive. Moreover, the time resolution is 1 h or 15 min, which is sufficient to generate large 

amounts of data in a relatively short time. Therefore, the method would not be suitable for forecasts with daily 

resolution.  

Despite the large number of studies related to the use of AI methods in time-series forecasting, AR(I)MA 

models, either in pure form or hybridized with other models, are widely used for numerous time series 

encountered in practice [20]–[30]. Vaghefi et al. [20] used a generalized form of the Cochrane–Orcutt estimation 

technique, in which a multiple linear regression model was combined with a seasonal ARMA (SARMA) model 

to forecast cooling and electricity load demand in a cooling, heating, and power plant. Seasonal effects were also 
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considered by Akpinar and Yumusak [21], who compared the forecasting performance of two approaches (Holt–

Winters exponential smoothing and ARIMA) for the year-ahead natural gas demand in Sakarya province 

(Turkey). It was demonstrated that the ARIMA model yielded the best results. An interesting approach was 

taken in [22] and [23], where short-term load forecasting was based on the similarity of patterns of seasonal 

cycles using various methods (kernel estimation, nearest neighbor estimation, and clustering). A comparison was 

made with other, more conventional forecasting methods (e.g., ARIMA, exponential smoothing, and NN), and 

the results demonstrated that the proposed method performed highly satisfactorily. In [24], the significant 

complexity of factors related to the energy behavior in buildings was addressed using a feature selection method 

based on support vector regression with two kernel functions (RBF and polynomial). It was demonstrated that 

this method has high prediction accuracy and relatively short computational time. In addition to wavelet analysis, 

Fourier analysis is also a powerful method with high potential for forecasting. Yukseltan et al. [25] used Fourier 

analysis with feedback for hourly electricity demand forecasting. The method was also combined with a 

conventional autoregressive model to slightly improve performance. The time series in that study exhibited 

strong seasonality, but the performance of the method on data with more complex seasonality was not clearly 

evaluated. Owing to the strong correlation of energy consumption with weather conditions, certain 

meteorological variables are occasionally used to achieve lower prediction errors. In addition to this, calendar 

effects can also be a factor that can be taken into account in forecasting energy load in residential buildings. 

Lusis et al. [26] analyzed the effects of calendar effects, forecasting granularity and training sets sizes on the 

forecasting accuracy. However, it was found that coupled with the weekly seasonality and weather data this 

specific factor may not have significant effect on the forecasting performance. As a result, more attention may be 

paid to the measurement of additional meteorological variables (ambient temperature, global radiation, and wind 

speed). These additional meteorological variables (ambient temperature, global radiation, and wind speed) were 

also considered in [27]. This was combined with adaptive linear time-series models, resulting in satisfactory 

forecasting performance of the load for a group of family houses in Denmark. Nevertheless, in many cases the 

range of monitored meteorological variables is limited and the outdoor temperature remains the most easily 

available variable of this type.  

Several observations regarding energy forecasting can be made based on this literature review. Generally, 

electrical energy forecasting appears to be dominant in terms of the number of studies. Even though the methods 

used in the present study are similar, gas consumption in buildings has certain specific features that differentiate 

forecasting. Various techniques are used for forecasting, but statistical and AI-based methods appear to be 
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particularly attractive. It is important to note that ARMA/ARIMA models, which are the most commonly used 

forecasting models, can be advantageously applied to several real-world processes. Therefore, these models 

should serve as a reference for comparison with any AI method. Moreover, the recent trend of using deep 

learning methods in forecasting has brought several benefits, which, however, depend on the availability of large 

amounts of data. When short time intervals are of interest (e.g., hourly data), a sufficient number of samples can 

be obtained in a reasonable time. However, in the case of longer intervals (e.g., daily data), the parsimony of 

deep learning models may be compromised. It can also be observed that the use of wavelet decomposition in 

forecasting is relatively popular. However, the analysis carried out in [31] using the fast Fourier transform for the 

wavelet decomposition components of the gas consumption profiles in various buildings indicated the presence 

of complex seasonality, which should be considered in the development of forecasting models.  

With regard to the purpose of forecasting week-ahead daily gas consumption in different types of buildings, the 

objectives of our work can be summarized as follows: 

1. To develop a reference forecasting model using regARMA/SARMA in rigorous way so that possible 

improvements are compared to the best obtainable performance of a standard model 

2. To propose the model with improved performance, the use of which will be simple and possible for heat 

sources where the possibilities for measuring various meteorological data are limited. 

3. To present the systematic methodology for the identification of this model as well as forecasting of the 

week-ahead consumption in a possible online scenario.  

To meet the objectives above and also address the aforementioned points identified in the knowledge gap a new 

forecasting model for the week-ahead gas consumption in different types of buildings is introduced. In addition 

to the temperature regression part, this model uses the Dabeuchies wavelet decomposition of regression model 

residuals, neural network-based NAR models for modeling the wavelet decomposition components and binary 

genetic algorithm for searching for near-optimal lags in NAR models regressor vectors.  This arguably improves 

the performance of the (S)ARMA model and is relatively simple to implement given the availability of relevant 

data. Even though the inclusion of various meteorological variables may further improve forecasting accuracy 

[8, 26], we used only the average daily outdoor temperature in the proposed model. Therefore, in a real-world 

scenario, only the measurements of gas consumption and temperature, which can be easily obtained, are 

required. The model is intended to be simple to use once the identification has been carried out and to help with 

that a systematic methodology of its identification and use is presented. The data acquisition methods and 
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devices as well as the related data processing were partly based on previous experiments in biomass combustion 

monitoring and control [32], [33], whereas a general description of the approaches used in the monitoring of heat 

production and distribution under conditions similar to those in the present study was given in [34]. To address 

the issue of multiple seasonal cycles in the gas-consumption time series obtained from the monitored buildings 

[31], the wavelet decomposition approach was applied, and these cycles were included in the various detail 

components of the decomposed time series. Nonlinear autoregressive (NAR) models were used to approximate 

the WT components of the underlying process, as these models are easier to train (than (nonlinear) ARMA 

models); however, they usually have more parameters [35]. To determine suitable lags in the regressor vectors of 

the NAR models (this is related to the aforementioned complex seasonality of the gas consumption profiles of 

the examined buildings), a binary GA was applied. This enabled a near-optimal selection of the lags in the 

regressor vector for forecasting the temperature regression residuals.  

The remainder of the paper is organized as follows. Section 2 contains basic information regarding the time 

series describing the total daily gas consumption profiles in each type of building, and the related analysis from 

an identification and/or forecasting perspective. Section 3 describes the relevant methods used for the 

identification of linear regression with (S)ARMA errors (reg(S)ARMA) and the GA-optimized regWANN. 

Section 4 contains the description and discussion of weak-ahead forecasting results obtained using both models 

for each building. Section 4.4 describes the most important observations based on the results and their 

significance. Section 5 presents a broader view of the results by drawing general conclusions and mentioning 

several aspects important for future work.  

2 Data description 

In this study, we are concerned with both residential and non-residential buildings: a healthcare building, an 

elementary school, and military quarters (also used as a hotel). They are located in the eastern/north-eastern part 

of Slovakia (Fig. 1). The basic data used in the experiments consisted of six separate datasets in total, containing 

daily records of the gas consumption (taken at 6.00 am for the previous day) and average outdoor temperature 

measured in the vicinity of the buildings. The total size of these datasets differed because the recording of the 

data became possible in a different period for each building. The raw time series corresponding to the recorded 

gas consumption in the given buildings is shown in Fig. 2, with the Tatranské Zruby dataset starting on 

December 22, 2013, and ending on December 15, 2018 (1820 consecutive days or samples), the Krompachy 

dataset starting on November 29, 2013, and ending on December 24, 2018 (1851 consecutive days or samples), 

and the Sečovce dataset starting on September 20, 2014, and ending on January 30, 2019 (1594 consecutive days 
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or samples). It was assumed that the gas consumption forecasting was useful only during the heating season 

(from October 1 to May 1; indicated by HT in the figure). Accordingly, the corresponding data were extracted 

from each time series.

 

Fig. 1. Buildings for week-ahead forecasting of daily gas consumption (left: hotel in Tatranské Zruby, middle: an elementary school in 

Krompachy, right: healthcare building in Sečovce, source: Google Maps). 

By considering a leap day (February 29, 2015), three separate datasets with 213 samples (years 2014, 2016, and 

2018), and one with 214 samples (year 2015) were obtained for each building. An additional dataset (TD in the 

figure) was formed in each case by extracting the data starting from October 1, 2018, until the end of the given 

(main) dataset to obtain test data not used in the identification process (76 samples for the Tatranské Zruby 

dataset, 86 samples for the Krompachy dataset, and 122 samples for the Sečovce dataset).  

 

Fig. 2. Raw time series characterizing daily gas consumption in each building (HT: heating seasons in four years, TD: test data). 

The extracted time series for the considered periods and the corresponding daily average outdoor temperatures 

are shown in Fig. 4. Moreover, basic data statistics regarding the time series can be examined using the box plots 

in Fig. 3. The actual gas consumption profiles for each building were affected by various factors, such as main 
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purpose and size, geographical location (manifested through different statistics of the outdoor temperature), and 

specific boiler operation conditions. The daily gas consumption in Sečovce was, on average, considerably lower 

(median: 88.57 m3, maximum value: 233 m3) than that in Krompachy (median: 336 m3, maximum value: 

1003.63 m3) and Tatranské Zruby (median: 459.5 m3, maximum value: 891 m3). It is interesting to observe that 

the median values of the yearly gas consumption are almost equal in Krompachy; this is possibly because this 

building has a more stable operation (elementary school) than the other two. It should also be noted that, after the 

extraction of the relevant data, no samples were removed from any time series for identification and/or testing 

because none of the data points indicated as outliers (and calculated as �� − 1.57(�	 − �
)/√�, where q1, q2, q3 

are the 25th, 50th, and 75th percentiles, respectively, and N is the number of samples) were attributed to a failure 

in the measurement process, resulting in clearly incorrect gas consumption values. The largest number of 

statistical outliers was observed in Tatranské Zruby (27 points in total compared with 2 and 0 points for 

Krompachy and Sečovce, respectively). This is most probably related to the sudden changes in outdoor 

temperature (which might have been more severe in this region), but their distribution and number are not simply 

correlated with the outliers in the temperature data. The daily average outdoor temperatures are statistically in 

correspondence with the geographical location of the buildings, with Tatranské Zruby being the coldest location 

(median value 2.69oC, and max/min 17.47oC/−18.36oC), followed by Krompachy (median value 3.38oC, and 

max/min 18.50oC/−15.18oC) and Sečovce (median value 4.83oC, and max/min 23.28oC/−15.09oC).  

 

Fig. 3. Boxplots of daily gas consumption in given buildings and average daily outdoor temperatures at those locations for the heating season 

in years 2014, 2015, 2016, and 2017. 
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Visual inspection of the time series graphs in Fig. 4 indicates not only a significant correlation of the daily gas 

consumption with the outdoor temperature but also a strong seasonality. This is considerably more pronounced 

in the Krompachy and Sečovce datasets than in the Tatranské Zruby dataset, as the gas consumption in these 

buildings is characterized by typical weekly seasonal periods, with weekends being almost visitor-free 

(elementary school and healthcare building). The sudden drop in gas consumption close to the middle of the 

heating season is due to the holidays at that time. This has more pronounced in Krompachy (elementary school), 

as the other buildings continue to operate during these periods. 

 

Fig. 4. Time series of daily gas consumption and average daily outdoor temperatures in given heating seasons.  

3 Methods  

Two types of models are used to forecast the week-ahead gas consumption in the three buildings. As the daily 

gas consumption in any these buildings is strongly correlated with the outdoor temperature, regression models 

are selected, where time-independent regression with temperature is used, and the time-series modeling approach 

is adopted for the residuals. The conventional SARMA model is used a reference with which the performance of 

the proposed model is compared. To improve the forecasting accuracy for week-ahead gas consumption, a GA-

optimized wavelet NN forecasting model is introduced. This model uses a wavelet decomposition of the time-

series residuals into approximation and detail components, each of which is modeled using an NAR model with 

a sigmoid NN. Lag selection in the regressor vectors of the NAR models is performed by using a binary GA so 

that a suitable combination may be obtained. The combination of temperature regression and NAR models with 

appropriate lag selection is then used to forecast the weak-ahead gas consumption in the selected buildings. In 
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the following section, reg(S)ARMA, the WT, and the binary GA are briefly reviewed. Subsequently, the 

methodology for identifying and using the GA-optimized regWANN forecasting model is introduced.  

3.1 reg(S)ARMA forecasting model 

It is readily observable from Fig. 4 that the daily gas consumption in all buildings is strongly correlated with the 

average daily outdoor temperature, suggesting the suitability of regression forecasting models. When the 

residuals are serially correlated after a regression model is applied, it is appropriate to use a regARMA approach, 

that is, a regression model with ARMA-modeled time-series error terms [35]. Thus, the following equation can 

be used to describe a process that depends on k predictor variables denoted by xt1, xt2,…, xtk, and contains a noise 

term in the form of an ARMA(p,q) model: 

                              �� = �
��
 + ����� + ⋯ + ����� + ��                                                 (1) 

where µt is an ARMA process with zero mean value. This has the following basic form [36]: 

                                        �(�)�� = �(�)��                                                                (2) 

where � = 1, … , �yt is the response series, �
, … , �� are the regression coefficients for k predictor variables, εt is 

the innovation series, � �� = ��!  is the differencing operator, �(�) = #1 − �
� − ⋯ − �$�$% is the p-degree 

nonseasonal autoregressive polynomial, and �(�) = #1 + �
� + ⋯ + �&�&% is the q-degree nonseasonal moving 

average polynomial. The ARMA process described in Eq. 2 can also include seasonal and nonseasonal 

integration terms to handle the non-stationarity of the modeled time series, resulting in the SARIMA model for 

�� [36]:  

                               �(�)'(�)(1 − �)((1 − �))�� = �(�)��                                               (3) 

where '(�) = #1 − '
� − ⋯ − '$*�$*% is the ps-degree seasonal autoregressive polynomial, (1 − �)( is the D-

degree nonseasonal integration term, and (1 − �)) is the s-degree seasonal integration term.  

As mentioned previously, if the residuals obtained after the regression in Eq. 1 is applied are expected to exhibit 

correlation, it is reasonable to perform a least-squares fit to obtain �+ and then analyze and model the residuals 

[35]: 

                              �̂� = �� − �+
��
 + �+���� + ⋯ + �+����                                            (4) 

In this equation, the estimates of the parameter vector ββββ for the autocorrelated residuals are  
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                                    -. = #/01.!
/%!
/01.!
2                                                         (5) 

where 1. is the covariance matrix estimate, and 1. is now obtained iteratively from the maximum likelihood 

estimates of the parameters in �̂� by minimizing the log-likelihood objective function ℒ given by [37] 

                           logℒ =  − 7� log(29) − 7� log:� − 
�;< ∑ ���7�>
                                         (6) 

where K is the number of samples in the dataset, and σ is the variance of innovations. A SARIMA model is 

typically defined using a single integer seasonal cycle (defined by the degree ps in Eq. 3), possibly 

complemented by seasonal integration (given by the degree s in the same equation).  

If the Box–Jenkins method is used to identify a forecasting model [35], the time series should be stationary. The 

non-stationarity of a time series can be heuristically inferred by examining the autocorrelation function; 

however, a rigorous treatment requires formal tests, specifically, a test for the presence of a unit root in the 

autoregressive part of the model. In the case of the augmented Dickey–Fuller test used here, this is performed for 

the (autoregressive) model  

�� = ��!
 + �
Δ��!
 + ⋯ + �@Δ��!@ + �� – null against �� = A��!
 + �
Δ��!
 + ⋯ + �@Δ��!@ + ��, A < 1 (7) 

where r is the user-defined number of lags. The following commonly used criterion for determining rmax is 

applied [37]: 

                                     CDEF = G12. HI J
KKLM N                                                                 (8) 

where [.] is the integer part of the number, and N is the number of samples.  

3.2 Wavelet transform 

The WT is one of the most powerful methods in signal processing, and is a highly effective technique for the 

analysis of multiscale systems (MS) [38]. It is based on the use of wavelets, which are specialized functions that 

are localized in both the time and the frequency domain, and allow the separation of slow and fast dynamics of 

MS [39].  

The continuous WT (CWT) is defined as follows [38], [40]: 

           O�(P, Q) = 〈F,ST,*〉VST,*V<< = W �(�)XY,)∗[\!\ (�)]� with XY,) = 
√) X I�!Y) L , P, Q ∈ ℝ  Q ≠ 0                 (9) 
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where X(�) is the “mother wavelet,” which satisfies the zero-average and unity-norm conditions 

                    W X(�)]� = 0 = Xb(c)d>K            ‖X(�)‖� = 1[\!\                                            (10) 

and XY,) is a wavelet generated by scaling and translating the mother wavelet. The first condition in Eq. 10 

implies that wavelets can be regarded as band-pass filters, where scaling moves the center frequency and the 

bandwidth of the wavelet filter. To address its considerable redundancy, the CWT should be evaluated only at 

certain scales, and with translations determined by the length of a wavelet at a given scale. Assuming Q = 2  and 

P = f2  with g, f ∈ h, the discrete WT (DWT) corresponds to the evaluation of the CWT at scales s and 

translations τ [35]: 

                Oi(f, g) = W i(�)XD�j,�j∗ (�)]�[\!\    and  XD�j,�j(�) = 
�j/< X I�!D�j
�j L                         (11) 

Then, by using the definition of the scaling function for the CWT [38], [40] 

                            kAb(c)k� = W kXb(Qc)�k l)) = W kS. (m)<k(m) ]n\d\
                                          (12) 

it is possible to decompose a signal into an approximation component at given scale j0 and detail components (up 

to the finest level of resolution): 

                 �(�) = ∑ �D, oAD, o(�)D + ∑ ∑ ]D, oXD, o(�) = 'po + ∑ q po >
D r o                    (13) 

where s�D, ot are the approximation coefficients at a given scale, and s]D, ot, g = 1, … , gK, are the detail 

coefficients at this level and all finer scales. Thus, the signal can be reconstructed by summing the approximation 

component at a given scale and all the detail components up to this scale.  

 

Fig. 5. Wavelet decomposition of original time series to level 5 (left), and scaling and wavelet function for db10 wavelets (right).  

Jo
urn

al 
Pre-

pro
of



 

 

In this study, we used Daubechies wavelets of db10 type, with scaling and wavelet functions shown in the right 

part of Fig. 5. The maximum level of decomposition is given by the number of samples in the given data, which 

in our case (929 samples for heating seasons) corresponded to a value of 10. Determining the optimal level of 

decomposition remains an open question in time-series forecasting. We experimentally demonstrated that a level 

of 5 achieved a reasonable balance between decomposition complexity and improvement over the reg(S)ARMA 

approach. As shown in the left part of Fig. 5, the original signal can be reconstructed by summing the highest-

level approximation component (A5) and all details up to this level (D1 + D2 + D3 + D4 + D5). Each detail 

signal at the j-th level allows the observation of cyclic components with periods between 2j−1 and 2j [41]; thus, 

details D5 and d4 contain components with periods between 16 and 32 days, and 8 and 16 days, respectively, 

which can be recognized visually. Likewise, the remaining details contain cyclic components with periods 

between 4 and 8 days, 2 and 4 days, and 1 and 2 days (Fig. 6).  

 

Fig. 6. Approximation and detail components of entire time series characterizing daily gas consumption (929 days).  

3.3 Forecasting using neural networks with genetic-algorithm-optimized regressors 

Generally, two basic strategies are used for multistep-ahead forecasting: direct and recursive [42]. The former is 

computationally more demanding, and in general results in quite different models for each forecasting horizon 

[43]. In contrast, the latter uses one model for different forecasting horizons and is based on minimizing the error 

for one-step-ahead forecasts. Owing to its compactness and lower computational complexity, the latter appears 

to be more widely used in typical forecasting frameworks.  
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If, for simplicity, we assume that there are P samples of the univariate process u�
, … , �vw from, possibly, a NAR 

process, then this can be expressed as [43] 

        �� = x(y�!
) + ��   and  y� = z�� , … , ��!D[
{′                                       (14) 

where �� is an iid process with zero mean and :� variance. In fact, for one-step-ahead forecasting, we estimate 

the model 

                        �� = X(y�!
; ~) + ��  and  y� = z�� , … , ��!�[
{′                                      (15) 

where X is a function for the estimated model, ~ is the model parameter vector, and n is the embedding 

dimension. Usually, the mean-squared-error form of the objective function is used in the optimization, that is, 

� �#��[
 − X(y�; ~)%�|y��, with parameters estimated as follows [43]: 

                              ~. = arg min~∈� ∑ #�� − X(y�!
; ~)%��                                                  (16) 

The recursive strategy for m-step-ahead forecasting can be computed as 

                Xb(D)(y�) = XbI�Xb(D!
)(y�), … , Xb(D!$)(y�)�0L                                  (17) 

where f > 0, Xb is the function X but with the estimated parameter vector ~. in place of the parameter vector, 

and p is the estimated embedding dimension.  

The form of Eq. 17 is general, and Xb can be approximated using a linear or a nonlinear model. Neural networks 

represent highly flexible models capable of approximating complicated nonlinear functions, provided that their 

structure contains a sufficient number of neurons in the hidden layer [44]. When a sigmoid activation function is 

used, the output of an NN consisting of n neurons in the hidden layer can be expressed as [45] 

                                   �(�) = ∑ E�
�I��#����%L[
��>
                                                          (18) 

Substituting this into Eq. 17 yields the following formula for computing h-step-ahead forecasts using a sigmoid 

NN: 

    Xb(D)(y�) = ∑ E�
�I��#y����%L[
��>
 �G�∑ E�

�I��#y����%L[
��>
 �(D!
) , … , �∑ E�
�I��#y����%L[
��>
 �(D!$)N0�          (19) 

It should be noted that the proposed model consisted of several NNs, with their number depending on the level 

of the WT decomposition. Accordingly, the correspondence between the estimated embedding dimension p of 
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the process model and embedding dimension of the WT-component models was evidently lost. To address this, 

the regressor vector of each model was obtained using a search algorithm. Assuming that the presence or 

absence of a given regressor can be expressed using binary logic, the use of a binary GA appears to be a suitable 

solution for this problem [46].  

3.3.1 Binary genetic algorithm 

A binary GA can be considered a special case of an integer (or mixed-integer) GA, where the possible values for 

an individual are restricted to 0 and 1. This implementation uses Laplace crossover and power mutation together 

with a tournament function for the selection of individuals [47]. Initially, a population of individuals is randomly 

generated; this population forms an initial pool of possible solutions (Fig. 7). If none of the defined stopping 

criteria is satisfied, a mating pool is generated using the tournament selection function. The genetic information 

contained in the individuals in the mating pool is then recombined as follows: Let �
 = (�

, ��
, … , ��
 ) and 

�
 = (�
�, ���, … , ���) denote the parents, and let �
 = (�

, ��
, … , ��
) and �
 = (�
�, ���, … , ���) be their children 

generated using the random numbers x� , X� ∈ z0,1{ and the Laplace distribution (LD) [47]: 

                                  �� = �� − � log(x�), X� ≤ 0.5; � + � log(x�), X� > 0.5,                                                     (20) 

where �� is a random number following the LD, � is the location parameter, and � > 0 is the scaling parameter. 

The scaling parameter should be an integer in the case of a binary GA implementation. The children are then 

generated according to 

                           ��
 = ��
 + ��|��
 − ���|       ��� = ��� + ��|��
 − ���|                                 (21) 

To improve the exploration capability of the algorithm, new genetic information should be introduced using a 

mutation operator, which is based on the power distribution [47]. Let   denote a random number following the 

power distribution,  
 a uniform random number between 0 and 1, and m the mutation index (integer in this 

case). Then,  

                     = ( 
)D,     � = ��¡ −  (�¡ − �¢), c < X�¡ +  (�£ − �¡), c ≥ X,        c = E!E¥
E�!E                              (22) 

where a is the mutated solution, �¡ is the parent solution, X is a uniform random number between 0 and 1, and �¢ 
and �£ are the lower and the upper bound, respectively, of the decision variables.  
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After the crossover and mutation operations are performed, it is important to ensure that the solutions are integer 

numbers; this is easily carried out as follows. If the solution is not already an integer, it is set equal to the closest 

(higher or lower) integer with a probability of 0.5. Constraint handling is performed by using the penalty 

function defined in [47], where infeasible solutions depend on the amount of constraint violation but also on 

individuals in the population. The algorithm is summarized in the flowchart shown in Fig. 7.  

 

Fig. 7. Flowchart of binary GA with Laplace crossover and power mutation. 

3.3.2 Methodology for identification and use of the proposed model 

As using the GA-optimized regWANN model requires several methods, a step-by-step methodology for its use is 

now introduced. It comprises model derivation (identification) and application to week-ahead gas consumption 

forecasting.  

Identification 

It is assumed that in this part, sufficient data for the development of the forecasting model are available. Even 

though it is difficult to set a definite number for the necessary number of samples, we used more than 800 

samples. Each sample corresponds to the total daily gas consumption in a building. Only heating seasons are 

considered, and both the start and the end of the seasons can be determined based on the specific conditions for 

any building. In addition to the daily gas consumption data, the recorded average outdoor temperature for the 

given days should be available so that the temperature regression model can be identified. The performance of 

the regWANN model after identification should be evaluated using an independent test dataset. The step-by-step 

procedure for the identification of the GA-optimized regWANN model is as follows (Fig. 8 top): 

1. Prepare the training dataset containing the daily gas consumption in a given building for the period of 

interest. It is assumed that only heating seasons are considered. 
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2. Determine the best linear fit of ¦�l� = i(§�), where ̈ =  1, … , � is the number of days in the entire 

dataset, ¦�l�  is the total gas consumption on the k-th day, and §� is the average outdoor temperature on 

the k-th day (Fig. 11). 

3. Calculate the gas consumption forecasts using the linear regression model #¦b�l@� % from the previous step 

and obtain the residual time series #©�l� % by subtracting ¦b�l@�  from the recorded gas consumption ¦�l� . 

4. Perform wavelet decomposition of ©�l�  to the desired level of resolution.  

5. Select the structure, training algorithm, and hyperparameters of each NN model intended for residual 

wavelet component forecasting.  

6. The NNs from the previous step are used as NAR models, where the lags in the regressor vector should 

be determined. Select the parameters for the binary GA, where the position in each chromosome vector 

corresponds to the presence or absence of a given lag in the regressor vector (Fig. 10).  

7. The fitness function is defined so that a given error metric (e.g., NRMSE) is minimized. To reduce 

model complexity, include a term for the size of a regressor vector (Eq. 24). The error metric should be 

evaluated on a test dataset.  

Forecasting 

In the forecasting part, the historical data of the daily gas consumption are required for each NAR model. 

The size of the required past data depends on the lags present in the optimized regressor vectors (Table. 5). 

As the models obtained from the identification part use the wavelet decomposition of the temperature 

regression residuals, the historical data necessary for forecasting are the past time series of the residuals 

©�l�!$, where ª =  1, … , «, and « is the maximum lag in any optimized regressor vector. The step-by-step 

forecasting procedure using the GA-optimized regWANN model is as follows (Fig. 8 bottom): 

1.  Calculate the week-ahead gas consumption point forecast (©�l¬ ) using the linear regression model from  

step 2 of the identification procedure and the week-ahead temperature forecast for a given location. 

2. Calculate past gas consumption forecasts using the linear regression model #¦b�l@�!$% and either the 

recorded (§�!$ ) or forecasted (§­�!$ ) daily average temperatures, and obtain the residual time series 

#©�l�!$% by subtracting ¦b�l@�!$ from the recorded gas consumption ¦�l�!$. 

3. Perform the wavelet decomposition of ©�l�!$ to the resolution level selected in the identification part. 
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4. Use the set of GA-optimized NAR models from the identification part to obtain the week-ahead 

approximation and detail forecasts (�®¬ and ]¢¬, where l = 1,…, L, and L is the wavelet decomposition 

level) based on the ©�l�!$ as input to the NAR models. 

5. Correct ©�l¬  using the value of �®¬ + ∑ ]¢¬®¢>
 . 

We present the implementation of this methodology for the buildings in question in the following 

subsection. 

 

Fig. 8. Scheme of improved GA-optimized regWANN model. 

3.3.2.1 Implementation of the proposed methodology for week-ahead forecasts 

 

By combining the methods described above, the GA-optimized regWANN model was used for week-ahead gas 

consumption forecasting. The structure of this model is shown in Fig. 9, specifically, the combination of the 

model preparation steps as well as the six NAR models for forecasting the wavelet components. The temperature 

regression step was performed using the models in Table 2, and only the residuals were decomposed into one 

approximation component (A5) and five detail components (D1−D5) using the DWT. The inputs to the NAR 

models were regressor vectors containing a specific number of lags used to forecast a given wavelet component. 
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The number of lags in a given regressor vector was determined using the binary GA, as shown schematically in 

Fig. 10.  

 

Fig. 9. Scheme of improved GA-optimized regWANN model. 

Week-ahead forecasting using the GA-optimized regWANN model is shown separately in Fig. 10. This structure 

corresponds to each of the NAR models shown in Fig. 9, where the number of inputs is equal to the number of 

nonlinear regressors (represented by 1s in the solution vector) determined using the binary GA. The model uses a 

recursive strategy (Eq. 17) to forecast h steps ahead (h = 7 for week-ahead forecasts), regarded as feedback of the 

forecasted output �­(¨ + ¯). To train the sigmoid NNs in the NAR models, a combination of four iterative search 

methods was used: subspace Gauss–Newton least squared search, the adaptive version of this method, the 

Levenberg–Marquardt algorithm, and steepest descent least squares search. The selection of a particular 

algorithm was based on the direction that reduced the estimation cost first [45]. The number of neurons in each 

NAR model was set to 10.  
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Fig. 10. Seven-day-ahead forecasting using the sigmoid-NN-based NAR model. 

To compare the forecasting performance of the given models, two error criteria were selected: the mean absolute 

error (MAE) and the NRMSE expressed in percent of fit. The MAE criterion was deemed suitable because it 

provides a rapid assessment of the mean forecasting error expressed in the units of the variable of interest (in our 

case, cubic meters), whereas NRMSE is an error measure typically used in the identification process to express 

the goodness of fit (100% implies that the model perfectly fits the data). The formulas for these indices are as 

follows: 

          °'� = 
J ∑ |�(¨) − �­(¨)|J�>
       �©°±� = ²1 − H∑ (³(�)!³­(�))<�́µ¶
H∑ I³(�)! ¶́ ∑ ³(�)�́µ¶ L<�́µ¶

· × 100%              (23) 

where �(¨) is the actual value at the k-th time instant, �­(¨) is the forecasted value at the k-th time instant, and N 

is the number of samples. 

To apply the GA algorithm successfully, it was necessary to define an appropriate fitness function so that 

individual solutions could be compared. In the definition of the fitness function, two factors were considered: 

forecasting error and model complexity. As model performance on unseen data is particularly important, the 

NRMSE (Eq. 24) on the test dataset was included in the fitness function. In addition, to favor less complex 

models among models with similar forecasting performance, the regressor vector size was also considered in the 

fitness function, which was defined as 

                             º = − I�� × �©°±� + �@ × 7|uF∈»|F>
w|L                                                      (24) 

where Ke is the error weight constant (set to 0.5), Kr is the regressor size (RS) weight constant (set to 0.5), and K 

is the normalizing constant (set to 300). The second term in Eq. 24 corresponds to the number of 1s in the 

regressor vector ».  

The parameter values used in the GA for regressor-vector optimization are summarized in Table 1.  

Number of 
neurons in 

NAR 
models 

Number of 
generations 

Number of 
individuals 

in 
population 

Number of 
tournament 
individuals 

Number of 
elite 

individuals 

Number of 
GA runs 
for one 

case 
10 30 20 4 2 10 

Table 1. Settings used for GA optimization of regressor vector in regWANN models. 

 

4 Results and discussion  
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4.1 Temperature regression model  

Initially, temperature regression was performed for the gas consumption time-series to obtain residuals, which 

were themselves modeled using different approaches. The regression part of the reg(S)ARMA model as well as 

of the GA-optimized regWANN model was based on the relationship between the daily average outdoor 

temperature and the daily gas consumption in the given buildings. This relationship was derived only for the 

extracted data corresponding to the four heating seasons shown in Fig. 11. Visual inspection of these graphs 

indicates that there is a strongest correlation between temperature and daily gas consumption in the hotel in 

Tatranské Zruby, whereas the weakest correlation is observed in the health care building in Sečovce. Using the 

results in Table 2, this correlation was confirmed by the value of R2, which was almost 15% higher for Tatranské 

Zruby (0.7382) than for Sečovce (0.6319) and Krompachy (0.6646) (the latter two exhibited roughly similar 

correlation). The magenta lines in Fig. 11 show the best fits using a linear model for the data from all heating 

seasons. The uncertainty associated with these models can be evaluated using the calculated 95% parameter 

bounds, which have the lowest relative width for the Tatranské Zruby model. The gas consumption profile in 

Tatranské Zruby differs from those in both Krompachy and Sečovce owing to the heating system, which was 

never fully switched off. This is in contrast with Krompachy and Sečovce, where for a relatively large number of 

days, the total daily gas consumption was zero (represented by the data points lying on the x-axis). The 

difference can be attributed to both the purpose of the building in Tatranské Zruby (a hotel is expected to have a 

certain number of guests throughout the entire year) and to its northernmost geographical location.  

 

Fig. 11. Best linear fits and 95% prediction bounds of gas consumption-outdoor temperature relationship used as the temperature regression 

model 
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4.2 Performance of ARMA/SARMA models  

As the residuals after temperature regression were serially correlated, it was useful to analyze their ACF and 

PACF to infer suitable forecasting models. The ACF and PACF plots are shown in Fig. 12 for the default 

number of lags (20), which is considered sufficient for several types of time series [35]. The plots of both types 

indicate similar correlations for the Krompachy and Sečovce buildings, with strong weekly seasonality indicated 

by high values at lags 7 and 14. This implies the possible suitability of SAR(I)MA models with a seasonal period 

of 7 for modeling the residuals in both cases. In contrast, the ACF and PACF for Tatranské Zruby do not clearly 

indicate a strongly seasonal character, and the shape of the plots points to the AR(I)MA model (PACF drops 

rapidly after the first lag, but the correlations at several subsequent lags appear to be sufficiently significant to 

consider only the AR model). The stationarity of the residual time series was tested using the augmented 

Dickey–Fuller test for the presence of a unit root, with the number of lags determined using the procedure 

described in [37], and rmax calculated using Eq. 8 for the merged datasets of all four years. As the number of 

samples in the datasets was the same (853), rmax calculated using Eq. 8 was 20 for each building. The absolute 

values of the test statistic were larger than 1.6 in all three cases (Table 2); therefore, this value of rmax was used to 

obtain the results of the ADF test. As shown in the table, the null hypothesis was rejected at the 0.05 significance 

level, indicating sufficient evidence for favoring the alternative hypothesis (i.e., that of the absence of a unit 

root). Consequently, ARMA was selected for modeling the residuals of the Tatranské Zruby time series, and 

SARMA for both Krompachy and Sečovce.  

 

Fig. 12. Autocorrelation (left three) and partial autocorrelation (right three) functions of temperature regression model residuals 
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Table 2. Fit results for temperature regression models and unit root test results using the augmented Dickey–Fuller method.   

The models considered for forecasting were evaluated based on their parsimony expressed through the AIC and 

BIC criteria as well as their ability to pass the whiteness test for their residuals. The models shown in Table 3 

were selected from a group of models with various orders of autoregressive and moving-average terms. For 

Krompachy and Sečovce, the models with structure SARMA(1,0,0)×(1,0,1)7 had the lowest AIC and BIC values, 

and passed the whiteness test for the residuals. A period of seven days was selected based on the analysis of ACF 

and PACF shown in Fig. 12. Considerably lower variance and values of the information criteria for the Sečovce 

model can be associated with relatively lower average values of gas consumption. Lower-order models for the 

Tatranské Zruby dataset were unable to pass the whiteness test, and its final order (ARMA(4,0,3)) was obtained 

by successively increasing the orders and evaluating the AIC/BIC values. Further increasing the orders did not 

result in better model parsimony, and thus the first model to pass the test was selected. Figure 13 shows the 

graphic residual analysis of all three models using histograms, as well as the ACF and QQ (quantile–quantile) 

plots of the residuals. The ACF plots of the residuals for all models indicate that they are virtually uncorrelated 

at the 0.05 significance level for the first 20 lags. The QQ plots indicate larger deviations of the residuals from 

the normal distribution at the ends, suggesting the suitability of the t-distribution, which can handle heavy tails. 

As observed in the histograms, these deviations are due to the presence of outliers, which are clearly more 

probable to occur than in the case of the normal distribution. The distribution of the residuals is closer to normal 

in the Tatranské Zruby model, which has the highest number of degrees of freedom (approximately 10), 

compared to 3.4 and almost 5 in the Krompachy and Sečovce models, respectively. The residual outliers are 

related to extreme values in the temperature regression model errors, the number of which was larger in the 

Sečovce and Krompachy models. Moreover, the distribution of residuals in the Krompachy model is slightly 

skewed to the right, resulting in the smallest number of degrees of freedom for the t-distribution.  

Fit T. Zruby Krompachy Sečovce ADF test TZ K S 

Parameters and 
95% parameter 

bounds 

p1 = −19.38  
(−20.16, −18.61) 

p2 = 507.6  
(502.6, 512.5) 

p1 = −23.96  
(−25.11, −22.82) 

p2 = 412  
(404.2, 419.8) 

p1 = −6.589  
(−6.927, −6.251) 

p2 = 120.9  
(118.2, 123.6) 

p-value 0.001 0.001 0.001 

test statistic −3.5077 −5.0739 −3.6561 

SSE 3.77 × 106 8.257 × 106 8.007 × 105 critical value −1.9414 −1.9414 −1.9414 

R2 0.7382 0.6646 0.6319 significance 0.05 0.05 0.05 

Adj.R2 0.7379 0.6642 0.6314 lags 20 20 20 

RMSE 66.55 98.5 30.67 H0 reject true true True 
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Place Model Equation AIC BIC Var DoF 

TZ ARMA(4,0,3) 
(1 − 1.131� + 1.125�� − 1.000�	 + 0.145�¾)�� = = (1 − 0.737� + 0.883�� − 0.645�	)�� 9299.0 9336.9 3117.6 9.986 

K SARMA(1,0,0) ×(1,0,1)7 
(1 − 0.453�)(1 − 0.927�¬)�� = = (1 − 0.641�¬)�� 9729.4 9748.3 5212.4 3.366 

S SARMA(1,0,0) ×(1,0,1)7 
(1 − 0.390�)(1 − 0.925�¬)�� = = (1 − 0.615�¬)�� 7722.3 7741.2 495.6 4.916 

Table 3. Results of identification of forecast models for gas consumption in the reg(S)ARMA approach 

The models derived above were used for one-week-ahead gas consumption forecasts for each building, and the 

results are shown in Fig. 14. These are ex post seven-day-ahead forecasts during the 50-day period of the test 

data (Fig. 2) with recorded (i.e., not forecasted) temperatures. In Fig. 14, a comparison is also made between the 

forecasts by pure linear regression models (brown/red line) and reg(S)ARMA error models (brown/yellow line). 

 
Fig. 13. Histograms, autocorrelation, and QQ plots of residuals for (S)ARMA models. 

The errors shown in the bottom part of the figure correspond to the differences between the recorded and 

forecasted consumption values using reg(S)ARMA models. These models allowed reducing the error (MAE) in 

one-week-ahead forecasting from 50.73 m3 to 37.65 m3 for Krompachy, and from 20.74 m3 to 16.97 m3 for 

Sečovce. Interestingly, in the Tatranské Zruby dataset, compared with pure temperature regression, the 

regARMA model failed to increase forecasting accuracy, as the MAE increased from 45.55 m3 to 48.38 m3. In 

this case, the linear correlation between gas consumption and daily average outdoor temperature was strongest 

(r2 = 0.74), and thus the random component of the residuals after regression was more significant than in the 

other two buildings. This, combined with a lack of obvious weekly seasonality, probably resulted in worse 

seven-day-ahead forecasting performance for the regARMA model than for a simple temperature regression 

model.  
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Fig. 14. Seven-day-ahead forecast of daily gas consumption using temperature regression model and ARMA/SARMA error models tested on 

the 50-day test dataset and recorded temperatures. 

In an online scenario, seven-day-ahead forecasted temperatures would be required with reg(S)ARMA or WANN 

models. As historic data for temperature forecasts were not available for the same periods as for gas 

consumption forecasts, it was not possible to perform temperature forecasts for the entire test dataset period (50 

days). However, seven-day-ahead temperature forecasts were recorded from January 21, 2020, which could be 

used to test the models by analogy with an online forecasting scenario. In view of the availability of forecasted 

temperature data, the testing period was set to be from December 1, 2019, to March 10, 2020, containing 101 

days in total. Of these, 88 days were used as pre-sampling data for week-ahead forecasts performed for seven 

days, starting on March 4, 2020, and ending on March 10, 2020. The residuals after the temperature regression 

that were used as data during the given period are shown in Fig. 15 (left), where three distinct sections are 

indicated by I, II, and III. The first corresponds to a period for which the residuals were obtained as the 

difference between the recorded gas consumption and the gas consumption estimated using the linear models 

from Table 2 based on the recorded temperatures (first 58 days). However, it was demonstrated that forecasting 

performance was improved when the residuals obtained from the forecasted temperatures were used as pre-

sampling data.  
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Fig. 15. Recorded and forecasted temperatures for testing period from March 4, 2020, until March 10, 2020, (right column) and presampling 

residuals used in forecasting models (from December 1, 2019, to March 10, 2020) (left column). 

Therefore, starting from January 28, 2020, the residuals obtained as the difference between the recorded gas 

consumption and gas consumption estimated using the week-ahead forecasted temperatures were used (sections 

II and III). Section III corresponds to the period for which full forecasts (forecasted temperature + forecasted 

residuals) were performed. The accuracy of temperature forecasts using data from the Norwegian Meteorological 

Institute [48] can be evaluated using Fig. 15 (right). The mean absolute error for temperature forecasts in section 

III was 4.17oC (Tatranské Zruby), 3.86oC (Krompachy), and 2.58oC (Sečovce), whereas for sections II and III, it 

was 2.92oC, 2.39oC, and 1.93oC, respectively. The reduced accuracy of the temperature forecasts in section III 

was caused by the forecasted sudden temperature drop in the middle of this period that did not, in fact, occur. 

The ex ante week-ahead forecasting performance of the reg(S)ARMA models can be seen in Fig. 16. As in Fig. 

14, a comparison can be made between simple forecasts using the temperature regression models only. Clearly, 

incorrectly forecasted sudden changes in temperature have profound negative effects on the accuracy of gas 

consumption forecasts. This is evident in the gas consumption profiles of Krompachy and Sečovce, where the 

temperature in fact increased in the middle of section III, causing the actual consumption to drop (instead of 

rising, as forecasted by the models). As a result, the errors in this part of Section III reached approximately 100 

m3 and 200 m3 for Tatranské Zruby and Krompachy, respectively, and above 50 m3 for Sečovce. The seven-day 

MAEs were: 63.21 m3 (Tatranské Zruby), 94.90 m3 (Krompachy), and 33.70 m3 (Sečovce).  
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Fig. 16. Seven-day-ahead forecast of daily gas consumption using temperature regression model and ARMA/SARMA error models tested on 

7-day test dataset and forecasted temperatures. 

4.3 Performance of GA-optimized WANN model  

The GA algorithm was run 10 times for regressor optimization of each component so that the average results 

could be evaluated. Its parameters were determined experimentally using a number of algorithm runs with 

different parameter settings and resulting performance. As indicated in Table 1, the number of individuals in the 

population was set to 20, with elitism set to two individuals. Under the given conditions, the effective number of 

generations for obtaining useful results was relatively low and was set to 30. The results of 10 runs of the GA for 

each component are shown in Fig. 17, where the points correspond to the mean value of the fitness score, and the 

width of the error bars indicates the range of one standard deviation around this value. According to Eq. 24, the 

fitness function consists of an error part (fit value of the model on test data) and an RS part (the number of 1s in 

the optimized regressor vector); the minus sign is used so that a minimization problem may be formulated. 

Accordingly, the values on the y-axis in Fig. 17 are fitness scores obtained from each GA run, with each fitness 

function component weighted equally. The gradual increase in the fitness values with higher-resolution wavelet 

components observed in the graphs in Fig. 17 can be explained by the lower predictability of these components 

(and thus lower error part of the fitness value), as well as the higher number of regressors in the regressor vector 

required for forecasting. In addition, the larger width of standard deviation ranges for the first three components 

(A5, D5, and D4) can be attributed to the greater sensitivity of the fitness value to the ratio of the NRMSE value 

and the number of regressors in the regressor vector. The mean and standard deviation values were comparable 

for each building, except for the A5 and D5 components for Sečovce, where a higher number of small regressor 
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vectors in the results contributed to the lower fitness values (−387.36 (A5) and −260.76 (D5) compared with 

−287.00 (A5) and −206.57 (D5) for Krompachy, and −295.55 (A5), −228.55 (D5) for Tatranské Zruby).  

 

Fig. 17. Error bars of GA results for each of the wavelet decomposition components obtained from 10 runs of the algorithm. 

To better evaluate the performance of the GA-optimized models in terms of their forecasting ability, Table 4  

summarizes the results using NRMSE, MAE, and the RS indicator. The NRMSE criterion is given in the 

standard model fit form, expressing the deviation between the recorded data and the model response in 

percentage error. By contrast, the other criterion directly provides the MAE in units of gas consumption (i.e., 

cubic meters). The RS indicator is the number of regressors in a regressor vector after GA optimization (integer 

number). We note the relatively low standard deviation of model fit (NRMSE criterion) when the size of a 

regressor vector changes, implying that simpler models with a smaller number of regressors could be preferred 

without significantly worsening forecasting performance. As the standard deviation of the NRMSE criterion 

increased with the level of wavelet decomposition, it is evident that RS had a dominating effect on the large 

width of the standard deviation of fitness in the first three components in Fig. 17. On average, the first four 

components (A5, D5, D4, and D3) could, in all cases, be forecasted seven days ahead with high accuracy: the 

average value of model fit was under 90% in only one case (D4 for Krompachy). This is severely reduced for the 

other two components; however, as shown in Fig. 18, their effect on the resulting forecasting performance can be 

relatively significant (NRMSE mean ranging from 44.31% to 57.65% for D2, and from 24.46% to 32.47% for 

D1). The only exception is the D1 component for Tatranské Zruby, where the results for seven-day-ahead 

forecasting could not be used, and this component was considered to be effectively unpredictable for this 
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forecasting horizon. This is in accordance with previous results (using (S)ARMA models), where temperature 

regression could better explain the data variation than in the remaining buildings, leaving the random component 

in the residuals after temperature regression more significant. It is important to note that according to Table 4, 

only one regressor was required to obtain highly accurate forecasts of the first two wavelet components (A5 and 

D5) in each building except for D5 in Krompachy, with a slightly larger number for the remaining components. 

As shown in Table 4, the lowest number of regressors for each component (except for D1 in Tatranské Zruby) 

was A5(1), D5(1), D4(2), D3(6), and D4(7) for Tatranské Zruby, A5(1), D5(2), D4(2), D3(7), D2(10), and 

D1(13) for Krompachy, and A5(1), D5(1), D4(4), D3(6), D2(8), and D1(8) for Sečovce.  

Location Tatranské Zruby Krompachy Sečovce 

Comp. Value NRMSE 
[%] 

MAE 
[m3] 

RS 
[-] 

NRMSE 
[%] 

MAE 
[m3] 

RS 
[-] 

NRMSE 
[%] 

MAE 
[m3] 

RS 
[-] 

A5 
Mean 99.44 0.0611 2.6 99.66 0.0675 2.4 99.73 0.0094 2.2 
Max/ 
Min 

99.47/ 
99.32 

0.0747/ 
0.0548 

4/1 
99.67/ 
99.64 

0.0716/ 
0.0622 

4/1 
99.86/ 
99.70 

0.0107/ 
0.0048 

6/1 

Std 0.0431 0.0055 1.1738 0.0119 0.0027 0.966 0.0485 0.0017 1.6865 

D5 
Mean 97.82 0.2649 3.6 98.14 0.2889 3.7 98.17 0.0738 3.4 
Max/ 
Min 

98.05/ 
97.53 

0.2964/ 
0.2393 

7/1 
98.31/ 
97.99 

0.3131/ 
0.2610 

6/2 
98.30/ 
98.06 

0.0827/ 
0.0682 

6/1 

Std 0.1488 0.0175 1.6465 0.121 0.0189 1.42 0.0780 0.0044 1.7127 

D4 
Mean 92.00 1.1841 6.3 86.62 1.5646 6.6 94.45 0.2740 7.1 
Max/ 
Min 

92.39/ 
90.09 

1.4120/ 
1.1258 

9/2 
87.38/ 
85.68 

1.6862/ 
1.4445 

10/2 
94.87/ 
93.87 

0.3069/ 
0.2577 

10/4 

Std 0.6758 0.0825 1.9465 0.537 0.0866 2.59 0.2818 0.0148 2.1318 

D3 
Mean 92.58 1.3113 8.5 92.94 1.4179 10.4 90.31 0.4367 8.8 
Max/ 
Min 

93.18/ 
91.95 

1.4305/ 
1.2215 

12/6 
93.25/ 
92.60 

1.4682/ 
1.3518 

12/7 
91.16/ 
89.65 

0.4765/ 
0.3964 

11/6 

Std 0.3508 0.0679 1.9579 0.199 0.0362 1.58 0.3852 0.0210 1.6193 

D2 
Mean 48.20 13.7670 14.7 44.31 21.4591 14.6 57.65 4.5229 16.3 
Max/ 
Min 

50.18/ 
46.05 

14.4400/ 
12.7722 

19/7 
46.41/ 
41.41 

22.3851/ 
20.5205 

19/10 
59.91/ 
55.76 

4.7724/ 
4.2493 

21/8 

Std 1.2664 0.4408 3.8312 1.38 0.5630 3.20 1.1948 0.1395 3.4335 

D1 
Mean -6.38 27.4850 23.9 24.46 23.6646 22.3 32.47 7.9793 19.7 
Max/ 
Min 

2.12/ 
-11.95 

28.8193/ 
26.1235 

33/15 
28.20/ 
20.37 

25.0093/ 
22.1430 

35/13 
35.12/ 
29.73 

8.3311/ 
7.7386 

26/8 

Std 4.1841 0.8264 5.4047 2.71 0.9928 6.52 1.7584 0.1907 5.6774 
  Table 4. Results of 10 runs of GA for regressor optimization of each wavelet decomposition component.  

Based on these results, the final tests of the GA-optimized regWANN model were carried out using the models 

with the smallest number of regressors for each component and the best NRMSE values on the test data. The 

number of days differed for each dataset, but in this evaluation, the longer test datasets (Krompachy and 

Sečovce) were shortened to match the size of Tatranské Zruby, so that they could be directly compared. Thus, all 

datasets contained 76 days in total: from October 1, 2018, to December 15, 2018. The performance of selected 

models on the week-ahead forecasting of temperature regression residuals can be assessed using Fig. 18. The 

blue lines indicate the residuals of the test data obtained after performing temperature regression using the 

models from Table 2. Each column shows the successive addition of next-level detail forecasts, confirming their 

importance in improving the final forecasting accuracy. As mentioned previously, the D1 component for the 
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Tatranské Zruby series could not be reasonably forecasted for a given forecasting horizon, and thus this 

component was not used in the final model. The results of the temperature regression residual forecasting using 

the full models for Krompachy and Sečovce shown in Fig. 18 are also confirmed by the model fit values for the 

test data, which were 42.74% and 51.29%, respectively, compared with 19.67% for Tatranské Zruby.  

 

Fig. 18. Seven-day-ahead forecasting performance of GA-optimized regWANN models on regression residuals with the final reconstruction 

using all WT components (except for D1 for Tatranské Zruby residuals). 

To test the performance of the GA-optimized regWANN model, the same 50-day dataset as in the case of the 

reg(S)ARMA models was used. The results of this test are shown in Fig. 19, where seven-day-ahead forecasting 

is again compared with the forecasts obtained using a simple regression model from Table 2. The regWANN 

model enabled a reduction of the MAE during the 50-day test data period to 37.44 m3 (compared with 48.38 m3 

in the reg(S)ARMA approach) in Tatranské Zruby, that is, a 22.6% reduction. For the buildings in Krompachy 

and Sečovce, these values were reduced to 30.98 m3 and 7.30 m3 (compared with 37.65 m3 and 16.97 m3, 

respectively, for reg(S)ARMA), that is, a reduction by 17.7% and 57%, respectively. Even though Krompachy 

exhibited the smallest reduction, its NRMSE for the 50-day period remained better than that of Tatranské Zruby 

(71.0% compared with 61.7%). Likewise, as shown in the lower part of Fig. 19, the ranges of the maximum 

errors for any given day were significantly reduced, with only one of the errors exceeding +/− 100 m3 for both 

Tatranské Zruby and Krompachy, and only three exceeding +/− 20 m3 for Sečovce.   
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Fig. 19. Seven-day-ahead forecast of daily gas consumption using temperature regression model and WANN error models tested on 50-day 

test dataset and recorded temperatures. 

To test the ex ante forecasting performance of regWANN models for a seven-day forecasting horizon, the same 

pre-sampling dataset as that shown in Fig. 15 was used. The results of week-ahead forecasting using regWANN 

models are shown in Fig. 20. It should be noted that the curves for actual consumption (blue line) and 

temperature regression (brown line) are the same as in Fig. 16. A striking difference is the improved forecasting 

accuracy of the regWANN models, including their ability to compensate for the incorrectly forecasted sudden 

drop in temperature. By observing the error bar graphs in Fig. 20, it is evident that the maximum absolute errors 

were reduced significantly to a maximum of approximately 100 m3 in the case of Krompachy, and a maximum 

of approximately 50 and 40 m3 in the case of Tatranské Zruby and Sečovce, respectively. The mean absolute 

errors for the entire period (Section III) were reduced to the following values: 30 m3 (Tatranské Zruby), 69.35 m3 

(Krompachy), and 19.01 m3 (Sečovce), that is, a reduction by 52.5%, 27%, and 43.6%, respectively.  
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Fig. 20. Seven-day-ahead forecast of daily gas consumption using temperature regression model and WANN error models tested on 7-day 

test dataset and forecasted temperatures. 

4.4 Summary of Results  

The final results obtained for week-ahead forecasting of daily gas consumption can be evaluated and compared 

using both Table 5 and Fig. 21. This summary is divided into ex post and ex ante forecasting scenarios, 

corresponding to the previously introduced 50-day (ex post) and 7-day (ex ante) datasets. The 50-day test dataset 

started on October 23, 2018, and ended on December 11, 2018, whereas the seven-day test dataset started on 

March 4, 2020, and ended on March 10, 2020. It is important to recall that in the ex post forecasting scenario, 

recorded (rather than forecasted) temperatures were used, thus representing an ideal case from the perspective of 

temperature regression. In addition to the absolute values of MAE and NRMSE for each scenario, Table 5 shows 

the relative improvement of forecasting accuracy when the regWANN model was used. In three cases, this 

indicator was not used: The NRMSE values for (S)ARMA models in the ex ante scenario were negative (owing 

to the significant errors under these conditions) and could not be used. Furthermore, we did not use this indicator 

for minimum error comparison because low values of minimum error could, in general, be achieved by less 

accurate forecasting models at certain points as well. By contrast, the maximum error was more relevant, as it 

indicated the worst point forecast under the given conditions. In terms of MAE, the use of regWANN models 

resulted in improvements from 17.7% to 57%, which can be considered significant. Even though the MAE 

values indicate the differences between actual and forecasted values in meaningful units (cubic meters), the 

NRMSE values represent the closeness of the entire forecasted period to the recorded. Therefore, the NRMSE 

values in the ex ante forecasting scenario are incomparably lower than in ex post forecasts because the errors in 
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temperature forecasts had profound effects on the resulting forecasting accuracy. In this regard, the value of 38% 

in ex ante forecasts for Sečovce should be considered satisfactory. In addition, by using regWANN models, it 

was possible to reduce the maximum forecasting error for each of the buildings in the ex ante scenario by 

approximately 50%. This significant difference was primarily due to the aforementioned incorrectly forecasted 

sudden drop in the outdoor temperature, which was relatively successfully compensated for by the regWANN 

models.   

It is also interesting to see the structure (inputs) of the final regWANN models after using the GA optimization 

of the regressor vector. As mentioned previously, the D1 component of Tatranské Zruby was not used because of 

its low predictability; hence, no regressors are shown. Even though the optimality of the obtained solution cannot 

be ensured when algorithms such as GA are used, the results shown in Table 5 represent the best balance 

between the total number of regressors and error in the test data.  

Model Building 
MAE  
ex post 

NRMSE 
ex post 

MAE 
ex ante 

NRMSE 
ex ante 

Max 
error 
ex post 

Min 
error 
ex post 

Max 
error 

ex ante 

Min 
error 

ex ante 

(S)ARMA 
T. Zruby 48.38 m3 52.07 % 63.21 m3  157.00m3 2.21 m3 118.38m3 6.27 m3 

Krompachy 37.65 m3 62.22 % 94.90 m3  177.63m3 0.17 m3 222.37m3 14.57 m3 
Sečovce 16.97 m3 53.23 % 33.70 m3  56.68 m3 0.83 m3 76.34 m3 5.34 m3 

WANN 
T. Zruby 37.44 m3 61.71 % 30.00 m3 9.96 % 104.27m3 0.01 m3 57.54 m3 12.03 m3 

Krompachy 30.98 m3 71.01 % 69.35 m3 13.57 % 130.05m3 0.18 m3 114.31m3 19.93 m3 
Sečovce 7.30 m3 78.59 % 19.01 m3 37.96 % 26.10 m3 0.38 m3 41.19 m3 0.60 m3 

Improvement 
T. Zruby 22.6% 9.64 % 52.5 %  33.6 %  51.4 %  

Krompachy 17.7 % 8.79 % 27 %  26.8 %  48.6 %  
Sečovce 57 % 25.36 % 43.6 %  54.0 %  46.0 %  

regWANN 
regressors A5 D5 D4 D3 D2 D1 

Tat.Zruby y(k-5) y(k-20) y(k-26), y(k-38) 
y(k-8), y(k-21), 
y(k-25), y(k-41), 
y(k-42), y(k-53) 

y(k-8), y(k-13), 
y(k-19), y(k-25), 
y(k-43), y(k-56), 

y(k-63) 

 

Krompachy y(k-18) y(k-9), y(k-12) y(k-28), y(k-44) 

y(k-5), y(k-7), 
y(k-10), y(k-35), 
y(k-38), y(k-45), 
y(k-54), y(k-59) 

y(k-9), y(k-13), 
y(k-23), y(k-25), 
y(k-37), y(k-39), 
y(k-51), y(k-63), 
y(k-66), y(k-69) 

y(k-13), y(k-21), 
y(k-22), y(k-24), 
y(k-25), y(k-28), 
y(k-33), y(k-37), 
y(k-48), y(k-51), 
y(k-56), y(k-68), 

y(k-73) 

Sečovce y(k-14) y(k-19)  
y(k-16), y(k-21), 
y(k-30), y(k-34) 

y(k-13), y(k-45), 
y(k-46), y(k-52), 
y(k-38), y(k-45), 
y(k-53), y(k-57) 

y(k-1), y(k-3), 
y(k-11), y(k-24), 
y(k-28), y(k-36), 
y(k-62), y(k-66) 

y(k-3), y(k-4), 
y(k-18), y(k-22), 
y(k-24), y(k-33), 
y(k-41), y(k-47) 

   Table 5. Summary of the results obtained for week-ahead gas consumption forecasting using reg(S)ARMA and regWANN models and 

regressors in the final regWANN models.  

The performance of the reg(S)ARMA and regWANN models for week-ahead gas consumption forecasting can 

be evaluated using Fig. 21, which shows the absolute daily forecasting errors for both test datasets (50-day and 

7-day). The values above the x-axis represent the errors for regWANN models, whereas the values below the x-

axis were obtained using the reg(S)ARMA models. To facilitate the comparison, the red color indicates errors 

with larger magnitude, whereas the green color indicates smaller errors. A direct comparison of the daily week-
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ahead forecasting performance of the models confirms the lower average error for the regWANN model as well 

as the lower maximum errors in both forecasting scenarios and for each building. The total number of lower 

daily errors was 38 (Tatranské Zruby), 27 (Krompachy), and 39 (Sečovce) for ex post forecasts, and 5 (Tatranské 

Zruby), 3 (Krompachy), and 5 (Sečovce) for ex ante forecasts. For both models, the higher values of forecasting 

errors were clearly due to sudden changes in weather conditions, which were not reflected in the weather 

forecasts (e.g., the situation around the end of October 2018). This was most pronounced for Krompachy, where 

the maximum error values were the highest for both model types and in both forecasting scenarios. In addition, 

in this case, the differences in the model forecasting performance was less significant (similar numbers of lower 

absolute daily errors and less remarkable improvement). However, the best performance of the regWANN model 

and the most striking improvement over the reg(S)ARMA model could be observed for Sečovce. As shown 

in Figs. 13 and 18, the modeling of errors after regression had a profound effect on the forecasting accuracy 

for this building (the difference in forecasted values between the simple temperature regression model and 

the model with modeled residuals). Naturally, the accuracy of weather forecasts plays an important role in the 

resulting forecasting performance of both types of models. This was particularly visible in the NRMSE values of 

regWANN models for ex post and ex ante forecasts, with the former being several times higher.  

 
Fig. 21. Comparison of absolute values of errors of week-ahead daily forecasts in ex post and ex ante forecasting scenarios.  

The significance of the obtained results with regard to real-world conditions can be related to effective energy 

management in various types of buildings. This effect is expected to be observed not only in terms of energy 

costs but also in heat production efficiency control. Specifically, the forecasting model developed here is 

intended to be used for the following purposes in a practical scenario:    
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1. With changing conditions that affect the gas market, the dynamic purchasing of gas offers greater 

flexibility for gas consumers. It is expected that the dynamically changing maximum (as well as the 

minimum) daily gas consumption will be contracted under dynamic purchasing for each day of the 

week also for small and medium-sized gas consumers in near future. In such a scenario, the accuracy of 

gas consumption forecasting will be of crucial importance and even small improvements of its value 

can have significant benefits. Even though the forecasting horizon may differ depending on actual 

conditions and requirements, it is reasonable to assume that the performance improves for shorter 

horizons. On the other hand, in the setting of daily gas consumption in buildings, the importance of 

temperature in its forecasting is paramount and therefore the week-ahead horizon can be considered an 

acceptable maximum for reliable temperature forecasts. This applies despite the fact that the GA-

optimized regWANN model is shown to be capable of compensating for the inaccuracies in temperature 

forecasts.  

2. In addition, the model is planned to be used for efficiency control of heat sources in different types of 

buildings. In this case, it is expected that the possible forecasting horizon may be shorter and the 

operation of a given heat source is evaluated using the results of daily gas consumption forecasting. 

Should the discrepancy between the forecasted and actual value exceed the defined threshold, the 

operation of a heat source may be subject to further investigation.  

 

5 Conclusion  

In this paper, a comparative study of week-ahead forecasting of daily gas consumption in three different types of 

buildings was presented using two types of models. To demonstrate the more general usability of the forecasting 

models, three buildings with different purposes (and gas consumption profiles) were selected: a hotel, an 

elementary school, and a healthcare building. As daily gas consumption is strongly correlated with the average 

outdoor temperature, the tested models used temperature regression with different modeling of the serially 

correlated residuals (ARMA/SARMA modeling vs. GA-optimized WANN modeling). In addition, both models 

were tested in two forecasting scenarios: ex post (where recorded temperatures were used) and ex ante (where 

week-ahead forecasted temperatures were used). Based on the results, the following conclusions can be drawn: I. 

Regression-based forecasting with separate modeling for the time series of the residuals is preferable to the 

forecasting of the original daily gas consumption time series. In both cases, the residual modeling significantly 

reduced the forecasting error compared with a simple temperature regression. II. The temporal characterization 
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of a given gas consumption profile may have a noticeable effect on forecasting accuracy. III. The use of the GA-

optimized regWANN approach for daily gas-consumption forecasting may improve forecasting accuracy, even 

under conditions of more significant temperature forecasting errors.  

It was demonstrated that the WT could be used to isolate components with different cycle periods, which are 

present in the original time series, and this improves forecasting accuracy. As more flexible models were used, it 

was important to include an algorithm to search for a satisfactory (not necessarily optimal) selection of 

regressors in the model. Moreover, the resulting regWANN is naturally more complex than reg(S)ARMA 

models. However, we do not expect this to be an issue in most cases where sufficient (but not prohibitively 

large) computational power is large.  

There are several aspects that could be addressed in future research regarding the possible use of regWANN 

models to forecast daily gas consumption in an online scenario. As regWANN is a temperature-regression-based 

model, it would be useful to further examine the possibilities for improving the accuracy of average daily 

temperature forecasts. Also, to achieve even better parsimony of the models, a more rigorous approach to the 

selection of wavelet decomposition levels could be researched. This can be combined with the testing of 

different search algorithms for finding further improvements in forecasting accuracy. 
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- Temperature regression using linear model offers reasonable gas consumption estimate 

- Complex seasonality of gas consumption is handled effectively with db wavelets 

- Binary GA is found instrumental in selecting near optimal regressors for NAR models  

- Use of GA-optimized regWANN model compensates for temperature forecast inaccuracies 
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