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ABSTRACT The paper is focused on robust Proportional-Integral (PI) control of interval plants with gain
and phase margin specifications and on the application of this approach to a Continuous Stirred Tank Reactor
(CSTR). More specifically, the work aims at the determination of PI controller parameter regions, for which
not only robust stability but also some level of robust performance of the closed-loop control system is
guaranteed, and this robust performance is represented by the required gain and phase margin that has to
be ensured for all potential members of the interval family of controlled plants, even for the worst case.
The applied technique is based on the combination of the previously published generalization of stability
boundary locus method (for specified gain and phase margin under the assumption of fixed-parameter
plants) with the sixteen plant theorem. This extension enables the direct application of the method to design
the robustly performing PI controllers for interval plants. The effectiveness of the improved method is
demonstrated on a CSTR, modeled as the interval plant, for which the robust stability and robust performance
regions are obtained.

INDEX TERMS Robust control, PI controllers, continuous stirred tank reactor, robust stability, robust

performance, gain margin, phase margin, interval plant.

I. INTRODUCTION

The controlled plants that are burden with nonlinear, high-
order, or other complex behavior, imprecise knowledge of
their physical properties, or changeability of parameters are
commonly modeled in a simplified way as the linear time-
invariant (LTI) systems with interval uncertainty, in short,
as the interval plants. It means the plants are described by
the linear differential equations or corresponding transfer
functions with coefficients that can vary (“slowly” in
time) within given bounds (intervals), where the coefficients
change independently on each other. The principal advantage
of this approach is that all the mentioned aspects are supposed
to be covered by the interval plant family and that the popular
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techniques of linear robust control can be utilized for analysis
and synthesis of the relevant control systems.

According to an unpublished Honeywell survey from
2000, 97% of control systems in the chemicals, refining,
and pulp and paper industries utilize a Proportional-Integral-
Derivative (PID) algorithm [1]. The control community
expects that the rate of PID controllers and their special cases
(such as PI and PD) in industrial control applications exceeds
90% even nowadays [2]. Thus, it is still worth researching
on the tuning of PI(D) controllers, especially for systems
under uncertainty. Obviously, the application of robustly
stabilizing or robustly performing PI(D) controllers for
interval plants, or more generally, for systems with parametric
uncertainty, represents an attractive research field [3], [4],
because these relatively simple LTI models with uncer-
tainty may cover a wide spectrum of real-world controlled
systems.
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Great attention has been paid to the development of
the methods for obtaining sets of parameters of (nomi-
nally) stabilizing PI(D) controllers for various plants. For
example, D-decomposition method, which was revisited
in [5], the parameter space approach [6], the singular
frequency method [7], the Hermite-Biehler approach [4],
or stability boundary locus-based method [8], [9] belong
among the most popular techniques. However, there are
many other alternative methods available in the literature.
Several of them will be mentioned in the following sentences.
The computation of all stabilizing PI(D) controllers by
using the Kronecker summation method was presented
in [10]. A Nyquist plot-based technique for calculation of
KP-stable regions was developed in [11] (for time delay
and PI controller parameters) and [12] (for PID controller
parameters). A Lyapunov equation-based stability mapping
approach can be found in [13], [14]. A combined approach
to determine robustly stabilizing parameter spaces was
proposed in [15]. Naturally, a range of results is focused
on the stabilization of time-delay plants. In addition to
some of the abovementioned works that are also applicable
to time-delay systems, it is worth mentioning [16], [17].
Moreover, PI(D) controller design based on generalized
stability boundary locus for various types of time-delay plants
was introduced in [18], [19], [20]. Furthermore, there are
also overview papers available, such as [21], which compared
the parameter space approach and the Hermite-Biehler
theorem-based approach.

Many of the abovementioned methods may be extended
in order to be applicable for some kind of systems with
parametric uncertainty, frequently for the case of interval
plants. Thus, the robust stability is requested instead of
the (nominal) stability. A typical tool that is employed
in this regard is the sixteen plant theorem [22], [23].
This extreme point-based result allows the determination
of robustly stabilizing controllers through the simultaneous
stabilization of sixteen Kharitonov plants. However, it is valid
only for the first-order controllers (such as PI controllers).
If the PID controller is used, some more general non-extremal
results have to be applied, such as Kharitonov segments (see,
e.g., [24]), which are known from the generalized Kharitonov
theorem [25] and similar thirty-two edge theorem [23], [25].

Despite the fact that robust stability is the fundamental
requirement, a certain level of performance is usually
also demanded in practical control applications. If the
performance needs to be ensured even for the worst case
from the family of controlled plants, one speaks about
robust performance. The classical measures of control system
performance are, among others, well-known gain margin and
phase margin. Their utilization in the robust performance
context was studied, e.g., in [26]-[30]. Stabilization of a
fixed-parameter plant for specified gain and phase margins
through the stability boundary locus method was presented
in [9], [31]. Some other approaches to mapping the perfor-
mance requirements into the parameter space can be found
in [32]-[34].
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Chemical reactors can be seen as the center of all chemical
process industries [35]. Their control represents a nontrivial
task since they usually suffer from complicated behavior
and possible safety problems. The classical idealized types
of reactors include batch reactor, Continuous Stirred Tank
Reactor (CSTR), and plug flow reactor. A CSTR contains
a vessel surrounded by a jacket for heating or cooling, an
agitator for (perfect) mixing inside the vessel, feed lines
that enter, and a liquid product stream that exits the vessel.
A composition and a temperature of the product stream are
the same as the contents of the liquid throughout the vessel.
For more details, see [36].

Control of CSTRs is the essential and deeply studied
discipline, and robust control techniques provide the promis-
ing results in this regard. For example, the application
of robust static output feedback control to a CSTR was
presented in [37]. The same CSTR, described by a model
with interval uncertainty, was robustly stabilized by means
of PI controller either via stability boundary locus method
in [38] or via Kronecker summation method in [39]. Possible
approaches to designing robust PID controllers for CSTRs
can be found, e.g., in [40], [41]. Furthermore, the paper [42]
provides a comparison of three robust control methods for
use in CSTR control. An example of an alternative approach,
represented by the linear matrix inequalities-based robust
model predictive control, was addressed in [43].

This paper deals with robust control of interval plants using
PI controllers with gain and phase margin specifications.
Thus, it focuses on finding the regions of PI controller
parameters, where not only closed-loop robust stability
but also some level of closed-loop robust performance,
represented by the required gain and phase margin, is ensured
for all potential members from the interval family of
controlled plants. In fact, this work intends to extend the
interesting results published previously in the papers [9], [31],
where the generalization of stability boundary locus method
for specified gain and phase margins is introduced and further
discussed, but where the presented applications are limited
to the controlled plants with fixed parameters. The current
article combines the mentioned technique with the sixteen
plant theorem, which allows its direct utilization for the
interval plants. The application of the improved method is
demonstrated on a CSTR, which is described by the linearized
mathematical model with interval uncertainty, i.e., the robust
performance region of PI controller parameters for given
gain and phase margin specifications is obtained. Note that
the same interval plant model was robustly stabilized by
PI controllers using various methods in [38], [39], but the
present paper addresses not only robust stability but also
robust performance problem.

The article is structured as follows. The existing stability
boundary locus method for the robust stabilization of interval
plants through PI controllers is reminded in Section 2.
Then, Section 3 adopts the generalization of this stabilization
approach, which allows the additional gain and phase margin
specifications, and extends the idea for interval plants.
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The extensive Section 4 applies the modified method to a
CSTR. Namely, the mathematical model is presented, and the
relevant robust stability and robust performance regions are
determined in this Section. The final Section 5 brings some
concluding remarks.

Il. ROBUST STABILIZATION OF INTERVAL PLANTS VIA PI
CONTROLLERS

Assume the fundamental closed-loop control system with an
interval plant, which is shown in Fig. 1.

w(?) e(?) u() yo

C(s) G(s,a,b)

FIGURE 1. Feedback control loop with an interval plant.

In accordance with the conventions, the signals w(?), e(t),
u(t) and y(¢) from Fig. 1 represent the reference signal, control
(tracking) error, control (actuating) signal and controlled
(output) signal, respectively. The block C(s) symbolizes an
ordinary PI controller in the form:

I Ps+1
ClH=P+-= ey
s s
and the block G(s, a, b) is a strictly proper interval plant:
B(s, b)
G(s,b,a) = 2
(s,b,0) = & 6.0 2
with the numerator and denominator polynomials:
m
B(s,b) = Y _[b;.bf]s 3)
i=0
n—1 '
A(s,a) = 5" + Z [ai_, a?‘] st )
i=0

9

where superscripts “—"" and “4” denote the lower and
upper bounds of the relevant parameters, respectively, and
where m < n.

The robust stabilization of interval plant (2) by means
of PI controller (1) can be solved using simple but
elegant extreme-based result known as the sixteen plant
theorem [22], [23]. According to this principle, a first-order
controller (in most practical cases PI controller (1)) robustly
stabilizes the interval plant (2) if and only if this controller
stabilizes each of the sixteen Kharitonov plants. Note that the
Kharitonov plants:

k,le{l,2,3,4} &)

can be easily assembled by taking the Kharitonov polyno-
mials of the numerator (B; to B4) and denominator (A
to A4) polynomials. All combinations (four polynomials
in the numerator, and four in the denominator) lead to
the mentioned sixteen Kharitonov plants. Remind that the
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Kharitonov polynomials for the numerator polynomial (3) are
constructed as follows [44]:

Bi(s) =by + b s+bys* +bis’ +--
By(s) = bl +bfs+bys* +bys’ + -
By(s) = bf + b s+by s+ b+
By(s) = by +bfs+bys>+b3s7 + - (©6)

and, naturally, the scheme is analogous for the denominator
polynomial (4) as well.

Thus, the problem of robust stabilization of an interval
plant may be transformed into the task of simultaneous
stabilization of sixteen (or less in special cases) ‘“‘ordinary”
plants with fixed parameters. Now, the attention will be
turned to this partial stabilization.

A relatively simple but effective graphical approach for
the determination of the stabilizing PI controller based on
obtaining the stability boundary locus [8], [9] will be utilized.

Consider a fixed-parameter plant given by a standard
transfer function (e.g., consider one of the Kharitonov plants,
but the subscripts £ and [ will be omitted for simplicity
in the following equations), in which the numerator and
denominator polynomials are decomposed into their even and
odd parts, and the complex variable s is substituted by jw:
_ Be(—0?) + joBo(—w?)

Ap(—0?) + joAo(—w?)

The subscripts “E” and “O” symbolize even and odd parts
of the numerator or denominator polynomials, respectively.

In further steps, the closed-loop characteristic polynomial
of the feedback system with controller (1) and the decom-
posed plant (7) is calculated, and its real and imaginary parts
are equaled to zero (for more details see [8], [9]). This results
in the equations for the proportional and integral parameters:

Xs5(w)X4(w) — Xo(w)X2(w)

G(jw) (N

PO = X @)X — Xa@X3(@)
() = Xo()X1(w) — X5(w)X3(w) ®)
X (0)Xs(w) — Xo(@)X3(w)
where

Xi(0) = —0’Bo(—?)
Xo(0) = Bp(—0?)
X3(w) = 0Bp(—w?)
X4(@) = wBo(—w?)
X5(w) = 0*Ao(—w?)
Xo(0) = —wAg(—0?) 9)

The contemporaneous solution of the parametric relations (8)
for an appropriate set of frequencies w defines the stability
boundary locus in the P-I plane. The resulting parametric
curve and the line / = 0 divide the P-I plane into the
regions of stability or instability. The stable areas can be
ascertained simply by choosing a test point within each
region. Remind that the final stability region need not be a
convex set. Although the technique is quite fast and effective,
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proper frequency gridding may represent an important
issue. Nevertheless, the range of inspected frequencies can
be reduced by means of the Nyquist plot-based method
from [45], which is utilized in [8], [9], according to which
the change of stability to instability and vice versa may occur
only at frequencies that fulfill:

Im[G(jw)] =0 (10)

To sum up, the sixteen stability regions obtained via the
above-described procedure, one for each of the sixteen
Kharitonov plants (5), need to be plotted in the P-I plane,
and their mutual intersection defines the final robust stability
region, that is the region of parameters of PI controllers (1)
that robustly stabilize the interval plant (2).

Ill. ADDITIONAL GAIN AND PHASE MARGIN
SPECIFICATIONS

Stabilization of a plant model with fixed parameters for spec-
ified gain and phase margins has been presented in [9], [31].
The technique uses the feedback control loop that is enriched
by a virtual gain-phase margin tester Me=7? [26], [27], [30].
Such a feedback loop with an interval plant is shown in Fig. 2.

w(t) o e@) u(e) ROIR

Me?’ |-+ C(s)

G(s,a,b)

FIGURE 2. Feedback control loop with an interval plant and gain-phase
margin tester.

First, assume a controlled plant in the form of standard
transfer function with fixed parameters, i.e., assume that
G(s, a, b) in Fig. 2 is replaced by G(s) and consequently
rewritten to (7). Following the analogous procedure as
outlined in Section 2, the stability boundary locus (or
rather performance boundary locus in this case) for PI
controllers (1) can be computed by solving the parametric
equations (8) simultaneously, but now a set of relations (9)
is modified to [9]:

Xi() =M (a)BE(—a)z) sin6 — w2Bo(—w?) cos 9)
Xo(w) = M (BE(—a)2)COSG + wBo(—?) sine)

X3(w) = M <wBE(—w2)cos9 + 0 Bo(—w?) sin 9)
Xu(w) = M <w30(—w2)cos9 — Bp(—w?)sin 9)

Xs5(w) = 0 Ao(—?)

Xs(@) = —wAp(-o?) (11)

The performance boundary locus for a selected gain margin
M can be obtained by equaling 6 to zero in (11), whereas
assuming that M = O results in the performance boundary
locus for a chosen phase margin 6. The intersection of two
relevant performance regions (the first one for guaranteed
minimum gain margin, and the second one for guaranteed

VOLUME 8, 2020

minimum phase margin) leads to the region that ensures the
given minimum gain margin and phase margin at the same
time.

The papers [9] and [31] used this approach for the
“stabilization” of a fixed-parameter plant. Nevertheless, this
work extends the idea and applies the technique to an interval
plant. It was proved that the sixteen plant theorem is valid
not “only” for the robust stability, but the performance
specifications (such as gain margin and phase margin) are
also satisfied [46], [4], [23]. For example, it was shown that
the worst-case Hy, norm is related to one of the sixteen
Kharitonov plants [47], [48], [23]. Moreover, it was presented
that the outer boundary of the Nyquist envelope of a strictly
proper stable interval plant is covered by the Nyquist plots
of the sixteen Kharitonov plants [49], [50]. All in all,
the worst-case gain margin and phase margin of the feedback
control system with a first-order controller (typically PI
controller (1)) and a strictly proper interval plant (2) can be
determined on the basis of gain margins and phase margins of
the related sixteen Kharitonov plants. A combination of this
fact with the stability boundary locus-based method [9] will
be applied to designing a robust PI controller for a CSTR in
the following Section 4.

IV. APPLICATION TO A CONTINUOUS STIRRED TANK
REACTOR

A. MATHEMATICAL MODEL OF A CONTINUOUS STIRRED
TANK REACTOR

Propylene glycol is an organic compound that is industrially
produced by the hydrolysis of propylene oxide with an excess
of water [51]. This hydrolysis in a CSTR has been selected as
a controlled process [37], [52], [38], [39]. The corresponding
chemical reaction is described by the equation:

C3HgO + H,O — C3HgO» (12)

Not only the reactants (propylene glycol and water) but also
methanol is fed in a CSTR, in order to increase the propylene
oxide solubility in water. The surplus water assures higher
selectiveness to propylene glycol and removes consecutive
reactions of propylene glycol with propylene oxide. The
reaction has first-order kinetics with regard to propylene
oxide as a crucial component. The dependence of the reaction
rate constant on the temperature can be expressed by the
Arrhenius law:

k = ke K7 (13)

where k is the reaction rate constant, ko, represents the
pre-exponential factor, £ stands for the activation energy,
R means the universal gas constant, and 7, signifies the
temperature of the reaction mixture [37], [52], [38], [39].
Suppose that a CSTR is ideally mixed, reacting volume
is constant, and the volumetric flow rate of the inlet stream
equals to the volumetric flow rate of the outlet stream. Then,
the mass balance for any species of the system is given as:
dc,

Vi— = ¢qr (cno — ) + Vyvur,

=1,2,3 14
o n (14)
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where V, represents the reacting volume, ¢, stands for the
molar concentration of the nth component, c,9 means the
feed molar concentration of the nth component, g, signifies
the volumetric flow rate of the reaction mixture, v, is
the stoichiometric coefficient of the nth component, and
r = kccyHgo determines the molar ratio of the chemical
reaction [37], [52], [38], [39].

Moreover, it is supposed that the particular heat capacities,
densities, and volumetric flow rates are independent of
temperature or mixture composition. Furthermore, the mix-
ing volume and the heat of mixing are assumed to be
neglected. Thus, the simplified enthalpy balances of the
reaction mixture and the cooling medium are, respec-
tively [53], [37], [38], [39]:

dT,

Vr,OGCr? = qrPrCpr (Tro—T,) —UA(T, — T¢)
+Vr (—AH)r (15)
dI (T.o—T.) + UA(T, —T.) (16)
chccpcw = {4cPcCpc L0 — Lc r— ¢

where T stands for the temperature, o means the density, ¢,
represents the specific heat capacity, A,.H? is the reaction
enthalpy, U signifies the overall heat transfer coefficient, and
A stands for the heat exchange area. Moreover, the subscript
symbols have the following meaning: O represents the feed, ¢
is the cooling medium, and r means the reaction mixture.

The values of steady-state inputs and constant parameters
can be found in [37], [38] (see Table 1 in these papers).
Besides, there are three physical parameters, namely reaction
enthalpy, pre-exponential factor, and overall heat transfer
coefficient, that may vary within the intervals. Their min-
imum, maximum, and mean values are presented again in
works [37], [38] (see Table 2 in them).

The linearized single-input single-output model of the
CSTR, with the reaction mixture flow rate g, [m3min_1]
as the control input (the other inputs are constant) and the
reaction mixture temperature 7, [K] as the controlled output,
was introduced in [38] and studied in [39] as well. The model
is given by the fourth-order transfer function:

bas® + bys + by

G(s, b, a) =
( ) st 4+ a383 + ars? +ais + ag

a7

whose parameters are supposed to vary within the following
bounds:

by € [—-0.0291, —0.0245]
by € [—0.0199, —0.0127]

by € [—0.0005740, —0.0003549]

as € [0.5801, 0.9030]

ay € [0.1002, 0.2299]

a; € [0.0062, 0.0142]

ao € [0.0001094, 0.0002412] (18)

To summarize, the utilized mathematical model of a con-
trolled process in the CSTR is given by the family of plants
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with interval uncertainty (17), (18), i.e., by the interval plant
for short.

B. ROBUST STABILITY

First, one of the Kharitonov plants (5) of the interval
plant (17) with the uncertain coefficients (18) will be chosen,
and the region of stabilizing PI controllers will be calculated

and plotted.
Consider, e.g., the Kharitonov plant G4 2(s):
Gy 2(5)
_ By(s) by s> +bfs+by

CAxs) sttapstaysttals+al
—0.02455% — 0.0127s — 0.000574

T +0.5801s3 + 0.1002s2 4 0.0142s + 0.0002412
19)

The even and odd parts of the polynomials in numerator or
denominator of the transfer function in the form (7) are as
follows:

Be(—w?) = 0.02450% — 0.000574

Bo(—w?) = —0.0127

Ap(—»?) = * — 0.10020% + 0.0002412
Ao(—w?) = —0.5801w> + 0.0142 (20)

Substituting (20) into (9) and (8) leads to the parametric
equations for the proportional and integral gain of the
PI controller. Their simultaneous solution for a range of
nonnegative frequencies w results in the stability boundary
locus. The attained curve together with / = O line splits
the P-I plane into the stability and instability regions that are
depicted in the P-I plane in Fig. 3.

0.1

01+

0.2} Stability Region

0.4+
Instability Region
0.5+

0.6+

FIGURE 3. Stability region for the Kharitonov plant (19).

In order to obtain the robust stability region for the original
interval plant (17), (18), the previous procedure has to be
repeated, and the partial stability regions need to be calculated
for all remaining fifteen Kharitonov plants. Fig. 4 shows the
resulting set of sixteen stability regions.
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"40 35 30 25 20 -15 -10 -5 0 5
P

0.02

-0.02f
-0.04f
L0.06] Robust Stability Region
-0.08f

0.1t
-0.12}
-0.14F
-0.16

-0.181

-0.2 -

FIGURE 5. Robust stability region for the interval plant (17), (18).

The zoomed version of Fig. 4 can be seen in Fig. 5. It offers
acloser look at the intersection of the sixteen stability regions
that defines the robust stability region.

So, all PI controllers (1) with the parameters P and I lying
inside the robust stability region shown in Fig. 5 guarantee
that the interval plant (17), describing the CSTR, is stabilized
by the feedback loop (Fig. 1) for all possible parameters (18).

C. ROBUST PERFORMANCE

In the next step, the aim is to find a set of PI controllers that are
not only robustly stabilizing, but that also ensure the required
level of robust performance, expressed by the minimum gain
margin and phase margin for the worst-case member of the
interval plant family.

For the initial demonstration, assume the same Kharitonov
plant G4 »(s) with the transfer function (19) as in the previous
sub-section 4.2. Thus, the even and odd parts of the numerator
and denominator of (7) are again in the form (20). Then,
the parts (20) are used in the modified set of auxiliary
variables (11), where M and 6 are the chosen gain margin
and phase margin, respectively, and subsequently, (11) is put
into the parametric equations (8).
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0.05
0 4
Performance Region
-0.05¢ E
01+ 4
-0.15} ,
0. . . . . . .
-%.5 2 -15 -1 -0.5 0 0.5 1

P

FIGURE 6. Performance region for M > 2 (~ 6 dB) and ¢ > 30° for the
Kharitonov plant (19).

Assume the gain margin M = 2(~ 6dB) and phase margin
0 = 30°.

First, both cases will be examined separately. The perfor-
mance boundary locus for M = 2 is drawn in Fig. 6 by
the red curve. The left-hand side area from this red curve
represents the region in which the gain margin is guaranteed
to be greater than 2. Moreover, the performance boundary
locus for 6 = 30° is depicted in Fig. 6 by using the blue
curve. The interior of the blue shape (with the upper limit
given by the line I = 0) defines the region with the phase
margin greater than 30°.

The intersection of the red gain margin region and the blue
phase margin region from Fig. 6 delimits the region in which
the minimum gain margin 2 and minimum phase margin 30°
are guaranteed at the same time. By way of illustration,
Fig. 6 contains the stability region from Fig. 3 as well (black
curve).

FIGURE 7. Gain margin regions (red curves), phase margin regions (blue
curves), and stability regions (black curves) for all sixteen Kharitonov
plants of (17).

The location of the robust performance region for the
original interval plant (17) with the uncertain coefficients (18)
demands the repetition of this procedure for the remaining
fifteen Kharitonov plants. The Fig. 7 depicts the set of sixteen
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gain margin regions (red curves), phase margin regions (blue
curves), and stability regions (black curves — for the complete
idea).

The intersection of all thirty-two gain and phase margin
regions leads to the final robust performance region, which is
zoomed in Fig. 8.

0.005

.0.005 Robust Performance

~ -0.01}

-0.015

-0.021

-0.025 —
-1.5 -1 -0.5 0 0.5 1

FIGURE 8. Robust performance region for the interval plant (17), (18).

Thus, all PI controllers (1) with the parameters P
and I located inside the robust performance region from
Fig. 8 ensure not only robust stabilization of a CSTR
modeled by the interval plant (17), (18), but furthermore,
it guarantees the minimum gain margin 2 and the minimum
phase margin 30° even for the worst-case member of the
interval plant family.

V. CONCLUSION

This paper was aimed at the computation of robustly
performing PI controllers with prescribed gain and phase
margin specifications for interval plants. The roots of the
presented method lie in the existing principle, known as
the stability boundary locus method, which was extended in
order to generate robust performance regions of PI controller
parameters for interval plants. Subsequently, this approach
was applied to a mathematical model of a CSTR with
interval uncertainty. In the examples, this model was not
only robustly stabilized but also robust performance region
with the minimum gain margin 2 and the minimum phase
margin 30° for all members of the interval plant family was
found.

Note that the proposed method does not provide one
specific optimal PI controller, but it gives the whole set
of the robustly performing PI controllers that fulfill given
specifications (if such controllers exist), and so the final
choice depends on other user preferences. The method itself
does not suffer from conservatism, and the obtained robust
performance regions are valid exactly for the interval plants,
but a conservatism may be presented due to potentially
circumspect modeling of a real-world controlled system (such
as nonlinearly behaving CSTR) by an LTI system with
interval uncertainty.
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Potential future research may be oriented to further
progress in the area of robust performance of the feedback
control loops with interval plants and PID controllers.

REFERENCES

[1] L. Desborough and R. Miller, “Increasing customer value of
industrial control performance monitoring-Honeywell’s experience,”
in Proc. 6th Int. Conf. Chem. Process Control, vol. 326, 2002,
pp. 169-189.

[2] What is the Percentage of the PID Algorithm Applications in
Industry. Accessed: Feb. 13, 2020. [Online]. Available: https://www.
researchgate.net/post/What_is_the_percentage_of_the_PID_algorithm
_applications_in_industry

[3] S. P. Bhattacharyya, “Robust control under parametric uncertainty: An
overview and recent results,” Annu. Rev. Control, vol. 44, pp. 45-77,2017.

[4] S. P. Bhattacharyya, A. Datta, L. H. Keel, Linear Control Theory:
Structure, Robustness, and Optimization. Boca Raton, FL, USA: CRC
Press, 2009.

[5] E. N. Gryazina and B. T. Polyak, “Stability regions in the parameter

space: D-decomposition revisited,” Automatica, vol. 42, no. 1, pp. 13-26,

Jan. 2006.

J. Ackermann, Robust Control: The Parameter Space Approach. London,

U.K.: Springer-Verlag, 2002.

[7]1 N. Bajcinca, “Design of robust PID controllers using decoupling at

singular frequencies,” Automatica, vol. 42, no. 11, pp. 1943-1949,

Nov. 2006.

N. Tan and I. Kaya, “Computation of stabilizing PI controllers for interval

systems,” in Proc. 11th Medit. Conf. Control Automat., Rhodes, Greece,

2003, pp. 1-8.

[91 N. Tan, I. Kaya, C. Yeroglu, and D. P. Atherton, “Computation
of stabilizing PI and PID controllers using the stability boundary
locus,” Energy Convers. Manage., vol. 47, nos. 18-19, pp. 3045-3058,
Nov. 2006.

[10] J. Fang, D. Zheng, and Z. Ren, “Computation of stabilizing PI and PID
controllers by using kronecker summation method,” Energy Convers.
Manage., vol. 50, no. 7, pp. 1821-1827, Jul. 2009.

[11] E. Almodaresi and M. Bozorg, “KP-stable regions in the space of time
delay and PI controller coefficients,” Int. J. Control, vol. 88, no. 3,
pp. 653-662, Mar. 2015.

[12] E. Almodaresi and M. Bozorg, “KP-stable regions in the space of PID
controller coefficients,” IET Control Theory Appl., vol. 11, no. 10, 2017,
pp. 1642-1647.

[13] I. Mutlu, F. Schroédel, N. Bajcinca, D. Abel, and M. T. Soylemez,
“Lyapunov equation based stability mapping approach: A MIMO
case study,” [FAC-PapersOnLine, vol. 49, no. 9, pp.130-135,
2016.

[14] 1. Mutlu, F. Schrédel, D. Mihailescu-Stoica, K. Alaa, and M. T. S6ylemez,
“A case study on determining stability boundaries of parameter uncertain
systems,” in Proc. 26th Medit. Conf. Control Autom. (MED), Zadar,
Croatia, Jun. 2018, pp. 1-6.

[15] K. Alaa, I. Mutlu, F. Schrédel, D. Mihailescu-Stoica, and
R. VoBwinkel, “A combined approach to determine robustly stabilizing
parameter spaces,” in Proc. 27th Medit. Conf. Control Autom. (MED),
AKkko, Israel, Jul. 2019, pp. 106-111.

[16] N. Hohenbichler, “All stabilizing PID controllers for time delay systems,”
Automatica, vol. 45, no. 11, pp. 2678-2684, Nov. 2009.

[17] N. Bajcinca, “Computation of stable regions in PID parameter space
for time delay systems,” in Proc. 5th IFAC Workshop Time-Delay Syst.,
Leuven, Belgium, 2004.

[18] I. Kaya and S. Ati¢, “PI controller design based on generalized
stability boundary locus,” in Proc. 20th Int. Conf. Syst. Theory,
Control ~ Comput. (ICSTCC), Sinaia, Romania, Oct. 2016,
pp. 24-28.

[19] S. Ati¢ and I. Kaya, “PID controller design based on generalized stability
boundary locus to control unstable processes with dead time,” in Proc.
26th Medit. Conf. Control Autom. (MED), Zadar, Croatia, Jun. 2018,
pp. 1-6.

[20] S. Ati¢, E. Cokmez, F. Peker, and 1. Kaya, “PID controller design for
controlling integrating processes with dead time using generalized stability
boundary locus,” IFAC-PapersOnLine, vol. 51, no. 4, pp.924-929,
2018.

[6

—

[8

—

VOLUME 8, 2020



R. Matusu et al.: Robust PI Control of Interval Plants With Gain and Phase Margin Specifications: Application to a CSTR

IEEE Access

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

F. Schrodel, S. K. Manickavasagam, and D. Abel, “A comparative
overview of different approaches for calculating the set of all stabiliz-
ing PID controller parameters,” IFAC-PapersOnLine, vol. 48, no. 14,
pp. 43-49, 2015.

B. R. Barmish, C. V. Hollot, F. J. Kraus, and R. Tempo, “Extreme
point results for robust stabilization of interval plants with first-order
compensators,” IEEE Trans. Autom. Control, vol. 37, no. 6, pp. 707-714,
Jun. 1992.

B. R. Barmish, New Tools for Robustness of Linear Systems. New York,
NY, USA: Macmillan, 1994.

R. Matusti and R. Prokop, “Computation of robustly stabilizing PID
controllers for interval systems,” SpringerPlus, vol. 5, no. 1, p.702,
Dec. 2016, doi: 10.1186/s40064-016-2341-z.

H. Chapellat and S. P. Bhattacharyya, “A generalization of Kharitonov’s
theorem; robust stability of interval plants,” IEEE Trans. Autom. Control,
vol. 34, no. 3, pp. 306-311, Mar. 1989.

Y. J. Huang and Y.-J. Wang, “Robust PID tuning strategy for uncertain
plants based on the kharitonov theorem,” ISA Trans., vol. 39, no. 4,
pp. 419-431, Sep. 2000.

Y.-J. Wang, “Graphical computation of gain and phase margin
specifications-oriented robust PID controllers for uncertain systems
with time-varying delay,” J. Process Control, vol. 21, no. 4, pp. 475-488,
Apr. 2011.

X.-W. Zhao and J.-Y. Ren, “Computation of PID stabilizing region with
stabilized margins,” Opt. Precis. Eng., vol. 21, no. 12, pp. 3214-3222,
2013.

Y.-J. Wang, S.-C. Wu, Y.-J. Hong, C.-Z. Gao, and J.-T. Lin, “Com-
putation of all robust PID controllers for two-input and two-output
time delay control systems with gain margin and phase margin spec-
ifications,” in Proc. 32nd Chin. Control Conf., Xi’an, China, 2013,
pp. 5614-5619.

Y.-J. Wang, “Determination of all feasible robust PID controllers for
open-loop unstable plus time delay processes with gain margin and
phase margin specifications,” ISA Trans., vol. 53, no. 2, pp. 628-646,
Mar. 2014.

C. Yeroglu and N. Tan, “Design of robust PI controller for vehicle
suspension system,” J. Electr. Eng. Technol., vol. 3, no. 1, pp. 135-142,
Mar. 2008.

T. Biinte, “Mapping of nyquist/popov theta-stability margins into
parameter space,” [FAC-PapersOnLine, vol. 33, no. 14, pp. 519-524,
2000.

D. Odenthal and P. Blue, ‘“Mapping of frequency response performance
specifications into parameter space,” IFAC-PapersOnLine, vol. 33, no. 14,
pp. 531-536, 2000.

L. Pyta, R. VoB3winkel, F. Schrodel, N. Bajcinca, and D. Abel, ‘“‘Parameter
space approach for performance mapping using Lyapunov stability,” in
Proc. 26th Medit. Conf. Control Autom. (MED), Zadar, Croatia, Jun. 2018,
pp. 1-9.

I. D. G. Chaves, J. R. G. Lépez, J. L. G. Zapata, A. L. Robayo, and
G. R. Nifio, “Chemical Reactors,” in Process Analysis and Simu-
lation in Chemical Engineering. Cham, Switzerland: Springer, 2016,
pp. 195-240.

W. L. Luyben, Chemical Reactor Design and Control. Hoboken, NJ, USA:
Wiley, 2007.

M. BakoSovd, D. Puna, P. Dostil, and J. Zavackd, “Robust stabilization
of a chemical reactor,” Chem. Papers, vol. 63, no. 5, pp.527-536,
Jan. 2009.

J. Zavacka, M. BakoSovd, and K. Vanekovd, “Design of robust PI
controllers for control of an exothermic chemical reactor,” in Proc. 14th
WSEAS Int. Conf. Syst., Corfu, Greece, 2010, pp. 1-8.

R. Matusu, J. Zdavackd, R. Prokop, and M. BakoSovd, “The kronecker
summation method for robust stabilization applied to a chemical reactor,”
J. Control Sci. Eng., vol. 2011, pp. 1-7, 2011.

S. S. Kumar and C. Shreesha, “Design of robust PID controller for a CSTR
plant with interval parametric uncertainty using kharitonov theorem,” in
Proc. Int. Conf. Comput. Power, Energy Inf. Commuincation (ICCPEIC),
Chennai, India, Apr. 2016, pp. 430-433.

S. U. Doiphode, A. B. Divekar, N. N. Ghadigaonkar, and A. N. Gangurde,
“Design of robust PID controller for level control of CSTR with safety
interlocks,” in Proc. 2nd Int. Conf. Intell. Comput. Control Syst. (ICICCS),
Madurai, India Jun. 2018, pp. 841-845.

VOLUME 8, 2020

(42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

(51]

(52]

(53]

A. Vasi¢kaninovd, M. BakoSovd, L’. Cirka, and M. Kaliz, “Compar-
ison of robust control techniques for use in continuous stirred tank
reactor control,” IFAC-PapersOnLine, vol. 48, no. 14, pp.284-289,
2015.

J. Oravec, M. BakoSovd, and L. Hanulovd, “Experimental investigation
of robust MPC design with integral action for a continuous stirred tank
reactor,” in Proc. IEEE Conf. Decision Control (CDC), Miami Beach, FL,
USA, Dec. 2018, pp. 2611-2616.

V. L. Kharitonov, “Asymptotic stability of an equilibrium position of
a family of systems of linear differential equations,” Differentsial’nye
Uravneniya, vol. 14, pp. 2086-2088, Oct. 1978.

M. T. Séylemez, N. Munro, and H. Baki, “Fast calculation of sta-
bilizing PID controllers,” Automatica, vol. 39, no. 1, pp. 121-126,
Jan. 2003.

F. Asadi, Robust Control of DC-DC Converters: The Kharitonov’s
Theorem Approach with MATLAB Codes. Washington, DC, USA: Morgan
& Claypool, 2018.

T. Mori and S. Barnett, “On stability tests for some classes of dynamical
systems with perturbed coefficients,” IMA J. Math. Control Inf., vol. 5,
no. 2, pp. 117-123, 1988.

H. Chapellat, M. A. Dahleh, and S. P. Bhattacharyya, “Robust stability
under structured and unstructured perturbations,” IEEE Trans. Autom.
Control, vol. 35, no. 10, pp. 1100-1108, May 1990.

C. V. Hollot and R. Tempo, “On the nyquist envelope of an interval
plant family,” IEEE Trans. Autom. Control, vol. 39, no. 2, pp. 391-396,
Oct. 1994.

N. Tan and D. P. Atherton, “A user friendly toolbox for the analysis of
interval systems,” in Proc. 3rd IFAC Symp. Robust Control Des., Prague,
Czech Republic, 2000, pp. 1-8.

S. M. Lépez-Zamora, I. Dobrosz-Gémez, and M. A. Goémez-
Garcfa, “Stability criteria and critical runway conditions of
propylene glycol manufacture in a continuous stirred tank reactor,”
Ingenieria e Investigacion, vol. 35, no. 2, pp.56-60, Aug. 2015,
doi: 10.15446/ing.investig.v35n2.46258.

A. Molndr, J. Markos, and L. Jelemensky, “Accurancy of mathematical
model with regard to safety analysis of chemical reactors,” Chem. Papers,
vol. 56, no. 6, 2002, pp. 357-361.

J. Ingham, I. J. Dunn, E. Heinzle, J. E. Pfenosil, J. B. Snape, Chemical
Engineering Dynamics: An Introduction to Modelling and Computer
Simulation. Hoboken, NJ, USA: Wiley, 2007.

RADEK MATUSU was born in Zlin, Czech
Republic, in 1978. He received the M.S. degree
in automation and control technology in consumer
goods industry from the Faculty of Technology,
Tomas Bata University (TBU) in Zlin, in 2002, and
the Ph.D. degree in technical cybernetics from the
Faculty of Applied Informatics (FAI), TBU in Zlin,
in 2007.

He was appointed as an Associate Professor of
machine and process control at FAI, TBU in Zlin,

in 2018. He has been holding various research or pedagogical positions with
the TBU in Zlin, since 2004, where he is currently a Researcher and a Project
Manager. He has authored or coauthored more than 50 scientific journal
articles and over 110 conference contributions. His research interests include
analysis and synthesis of robust control systems, fractional-order systems,
and algebraic methods in control design.

Prof. Matust serves as an Academic Editor for the Journal of Control
Science and Engineering, and he was a Guest Editor of Mathematic
Problems Engineering. He has also served as a Reviewer for over
40 scientific journals including but not limited to Automatica, the IEEE
TrRANSACTIONS ON AutomaTic ConTrOL, and the IEEE Control Systems
Magazine.

145379


http://dx.doi.org/10.1186/s40064-016-2341-z
http://dx.doi.org/10.15446/ing.investig.v35n2.46258

IEEE Access

R. Matusu et al.: Robust PI Control of Interval Plants With Gain and Phase Margin Specifications: Application to a CSTR

145380

BILAL SENOL (Member, IEEE) received the B.S.
and M.S. degrees in electrical and electronics engi-
neering, and the Ph.D. degree in computer engi-
neering from Inonii University, Malatya, Turkey,
in 2009, 2011, and 2015, respectively.

He is currently working as an Associate Profes-
sor with the Department of Computer Engineering,
In6nii University. His research interests include
fractional-order analysis and controller design.
He also works related to computer-aided design
and user-friendly interfaces for system analysis.

LIBOR PEKAR was born in Zlin, Czech Republic,
in 1979. He received the B.S. degree in automation
and informatics, and the M.S. degree in automation
and control engineering in consumption industries
and the Ph.D. degree in technical cybernetics from
Tomas Bata University in Zlin, Czech Republic,
in 2002, 2005, and 2013, respectively.

From 2006 to 2013, he worked at the university
as a junior lecturer. He became a senior lecturer

s there, in 2013, and was appointed as an Associate

Professor, in 2018. He is an Associate Professor with the Faculty of Applied
Informatics, Tomas Bata University in Zlin. He has authored six book
chapters, more than 45 journal articles, and 70 conference papers. His
research interests include analysis, modeling, identification, and control of
time-delay systems, algebraic control methods, autotuning, and optimization
techniques. He served as the Lead Guest Editor for the special issues of
Advances in Mechanical Engineering journal and Mathematics journal.

Prof. Pekaf received the Laureate of the ASR Seminary Instrumentation
and Control, in 2007 and 2009, and the Rectors’ Award for the Best Ph.D.
Thesis from the Faculty of Applied Informatics, Tomas Bata University in
Zlin, in 2013. He has been an Editor of Mathematical Problems in Engineer-
ing, since 2018. He has served as a Reviewer for contributions to many highly
regarded journals such as Applied Mathematics and Computation, ESAIM:
Control, Optimisation, and Calculus of Variations, the IEEE TRANSACTIONS
oN AutoMaTiC CoNTROL, the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
the International Journal of Control, the International Journal of Robust and
Nonlinear Control, Systems and Control Letters, Swarm and Evolutionary
Computation, and many others.

VOLUME 8, 2020



	INTRODUCTION
	ROBUST STABILIZATION OF INTERVAL PLANTS VIA PI CONTROLLERS
	ADDITIONAL GAIN AND PHASE MARGIN SPECIFICATIONS
	APPLICATION TO A CONTINUOUS STIRRED TANK REACTOR
	MATHEMATICAL MODEL OF A CONTINUOUS STIRRED TANK REACTOR
	ROBUST STABILITY
	ROBUST PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	RADEK MATUŠU
	BILAL SENOL
	LIBOR PEKAR


