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Abstract: This paper intends to tune fractional order proportional derivative controller for the 

performance, stability and robustness of second order plus time delay plant. The tuning method 

is based on the previously proposed “frequency frame” which is a rectangular frame enclosing 

gain and phase margins limited with gain and phase crossover frequencies in the Bode plot. 

Edges of the frame are tuned to achieve desired crossover frequencies and margins. By shaping 

the curves of the Bode plot, improvements are observed in the performance and robustness of the 

second order plus time delay system controlled by a fractional order proportional derivative 

controller. Generalized equations to obtain the parameters of the fractional order proportional 

derivative controller for second order plus time delay plant are given. In contrast to existing 

studies, this method reduces mathematical complexity when providing desired properties. Three 

examples are considered and effectiveness of the frequency frame is shown. 

Keywords – Frequency Frame, phase, gain, crossover frequency, margin, FOPD, SOPTD, Bode. 

1. Introduction 

Fractional order calculus (FOC) had an explicit impact on many processes since the first idea 

came up in the late 17th century [1-3]. A fractional order differential equation can have orders of 

real numbers. Due to its superior performance comparing to the classical case, such motivation 

[4] is implemented on physics [5], electrical circuits [6] and fractances [7], signal processing [8], 

mechatronic systems [9], robotics [10] and neural networks [11-13] etc. This performance is 

achieved by the fine tuning capability brought by non-integer order differentiation thus, better 

system response can be achieved by this new perspective. Lately, number of the researches on 

control theory also had a significant increase [14-17].  

                  



Proportional integral derivative (PID), as being the leading controllers in so many industrial 

processes, are modified in a fractional order way of thinking as P I D
   controllers [18, 19]. 

Besides, well-known proportional integral (PI) and proportional derivative (PD) controllers are 

also reconsidered as P I
  and P D

  respectively. This paper focuses on fractional order 

proportional derivative (FOPD) controllers. The last decades brought a large number of studies 

related to FOPD controllers. For example, Li et al. proposed a FOPD controller tuning algorithm 

in [20] and tuning rules of a FOPD motion controller in [21]. Tuning method of FOPD 

controllers for path tracking of tractors is presented in [22]. General robustness analysis of FOPD 

controllers and time-constant robust analysis of FO[PD] controllers are studied in [23, 24]. 

FOPD controllers also have applications on real-world processes. FOPD and FO[PD] controllers 

are researched on hydraulic servo system in [25] and DC motor control is utilized by a FOPD 

controller in [26]. Achievable performance region computation for a FOPD motion controller is 

studied in [27]. The list of FOPD related studies can be widely extended. 

This paper aims to tune FOPD controllers for time delay plants in the second order (SOPTD) 

considering four frequency properties of magnitude and phase. SOPTD plants are recently used 

on describing a numerous number of industrial processes such as heat exchangers [28]. There 

proposed a considerable amount of studies related to controller tuning for SOPTD plants. For 

instance, tuning of PID controllers for critically damped SOPTD systems is studied in [29]. A 

valuable study on modeling of stable and unstable SOPTD systems can be found in [30]. A 

review on PID tuning rules for SOPTD inverse response processes is presented in [31] and 

similar to the study in this paper, FOPD controller design for second order systems with pure 

time delay is given in [32].  

The method implemented in this paper, namely the frequency frame shows a new perspective 

when comparing to existing studies in the similar direction. Most of the studies which focus on 

tuning controller parameters consider only one frequency specification which is usually the gain 

crossover frequency. For example, Wang et al. studied on non-integer order proportional integral 

(FOPI) tuning for time delay plants in the first order (FOPTD) in [33]. The method in the 

reference is based on tuning the controller by considering two specifications which are the gain 

crossover frequency and the phase margin.  Similarly, Luo and Chen proposed the FO[PD] 

controller for robustness [34]. Likewise, the method tunes the gain crossover frequency for its 

                  



purpose. In spite of above studies, the frequency frame considers both gain and phase crossover 

frequencies to compute the parameters of the FOPD controller.  

Main idea of this paper is to shape the phase curve between gain and phase crossover 

frequencies. A rectangular frame is drawn limited by gain and phase crossover frequencies from 

left and right. Lengths of edges of the frame are tuned to obtain these frequency values towards 

researcher’s desire. As known, flattening the phase curve provides improved robustness to the 

system to resist gain changes. This flattening procedure is used in some existing studies [35-38]. 

However, in these studies, the phase is flattened by setting the phase derivative to zero at a 

desired frequency value. In spite of the existing studies, this paper provides flatness by tuning the 

edges of the frequency frame. Thus, mathematical complexity is significantly reduced. 

The frequency frame was firstly proposed for tuning FOPI controllers for FOPTD plants in [39]. 

Distinctly from the first study, this paper implements the approach on tuning a FOPD controller 

for a time delayed plant of the second order. Main motivation of this study is to improve the 

performance and robustness of the SOPTD plant with a fractional order controller which lacks 

the integral operator. This method aims to tune the controller parameters to satisfy both desired 

gain and phase crossover frequencies as mentioned in the previous paragraphs. Besides, the 

frequency frame approach considerably reduces the mathematical complexity with its different 

perspective. A fractional order controller is preferred in this paper since, satisfying both gain and 

phase crossover frequency values requires two different controllers. The first controller is tuned 

to satisfy desired phase margin at the desired gain crossover frequency. Then, the second one is 

tuned to provide desired gain margin at the desired phase crossover frequency. To combine these 

two controllers, there is the necessity of a common variable which is the fractional order   of 

the controller. Thus, one controller will be obtained satisfying frequency specifications towards 

researcher’s desire at the same time. Another purpose is to deal with the compelling structure of 

the FOPD controller.  

This paper utilizes the frequency frame approach for tuning FOPD controllers for SOPTD plants. 

The method gives generalized equations to compute all unknown parameters of the FOPD 

controller. Four specifications of gain crossover frequency, phase crossover frequency, phase 

margin and gain margin are considered. As known, working with PD or FOPD controllers mostly 

yield the system response to include a considerable steady state error. This comes from the lack 

                  



of the integral operator which reduces this unwanted behavior. The study in this paper aims to 

satisfy both stability and robustness of the plant with a FOPD controller by a new point of view. 

The contribution of this paper to the literature can be summarized as follows. The tuned 

controller is in FOPD type, which does not have the integral operator. This type of controller 

usually shows a response with steady state error. By the frequency frame tuning, the steady state 

error is relatively reduced. Also, by tuning gain and phase crossover frequencies while tuning the 

phase margin separately, the phase curve can be shaped without mathematical outgrowth. As the 

method is frequency domain based, frequency response formulas of a system with fractional 

order are comparatively complicated. Besides, calculating the derivative of the phase of the 

system at a certain frequency is a challenging issue. This paper uses a graphical approach to 

shape the phase of the system to reduce this complexity.  A preliminary study on tuning FOPD 

controller for the FOPTD model with this new approach can be found in [40]. As the conclusion, 

frequency specifications of the system can easily be tuned via the frequency frame method and 

this provides a new point of view on robustness improvement issue without bringing new 

mathematical complexities. Also the method can successfully be used with different types of 

fractional order controllers. 

The following sections of this paper are organized as follows. Section 2 represents FOPD 

controller, SOPTD plant and introduces the frequency frame. Third section gives the systematic 

design procedure of FOPD controller for SOPTD plant. Three illustrative examples are given in 

section 4 to clear the process. Section 5 has the conclusions. 

2. SOPTD Plants, FOPD Controllers and the Frequency Frame 

General representation of a SOPTD plant is given in the following form. 

   1 2

e
1 1

( )
L s

P s
K

T s T s



 
       (1) 

where, K is the gain, 
1

T  and 
2

T  are time constants, L is the time delay. The FOPD controller is 

defined in the following way.  

(0,) 2,  )(
p d

sC s k k


  .       (2) 

Thus, the system is, 

( ) ( ) ( )G s C s P s .        (3) 

                  



The frequency frame is illustrated in Fig. 1. As known, the Bode plot consists of magnitude and 

phase curves. The frequency value when the magnitude curve cuts the 0 d B  line is called as the 

gain crossover frequency and shown as 
g c

  in this paper. Similarly, the frequency value when 

the phase curve cuts the 1 8 0   line is the phase crossover frequency and denoted as 
p c

 . 

Difference of the magnitude plot with 0 d B  line at 
p c

  is the gain margin (GM) and difference of 

the phase plot with 1 8 0   line at 
g c

  is the phase margin (PM). In this paper, controller 

parameters are tuned to ensure gain crossover frequency, phase crossover frequency and phase 

margin simultaneously. It has been widely studied in the last decades that these frequency 

properties have direct or indirect effects on the stability, performance and robustness of the 

controlled system. Tuning of phase and gain margins has been a challenging area of research and 

there can be found numerous studies in the literature. For example, independently selection of 

phase and gain margins based on the IMC structure is studied in [41]. Adjusting GM, PM, 
g c

  

and 
p c

  based on frequency data is presented in [42].  

In spite of the optimization techniques, the frequency frame method calculates the controller 

parameters analytically. One of the advantages of this is the reliability of the calculated 

parameters in that the parameters do not change in each computation. Comparing to 

optimization, analytical calculation of the parameters is relatively challenging. Optimization 

techniques are mostly heuristic and meta-heuristic approaches that approximate the result step by 

step. The frequency frame method finds the exact solution that provides the desired parameters. 

 

Fig. 1. The frequency frame. 
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As seen in Fig. 1, left limit of the frame is named as A and the right limit is named as B. 

Similarly, top and bottom limits of the frame are named as C and D respectively. Lengths of the 

upper and lower edges are determined as 
p c g c

x    . Lengths of the side edges are 

p f g
y y y y    where, 

p
y  is the phase margin and 

g
y  is the gain margin. 

f
y  is the remaining 

line between lower value of GM and upper value of PM. Purpose of the frequency frame is to 

shape the curves inside the frame by changing the lengths of related edges. This will provide us 

to enhance the margin of the system robustness. Tuning of phase and gain margins will be 

possible by straitening the edge y  while fixing the limits A and B. Similarly, expanding the x  

edge while C and D limits are fixed, will give us the possibility to shape the magnitude and 

phase curves.  

As referred in the first section, existing studies mostly consider only the gain crossover 

frequency to tune the controller. However, this method focuses on tuning the controller 

embracing both crossover frequencies. Therefore, the frequency frame method which includes 

both frequencies is developed. Next section presents the tuning procedure of FOPD controller for 

SOPTD plants.  

3. FOPD Controller Design for SOPTD plants via the Frequency Frame 

In this section, frequency properties mentioned in the previous sections are given. Then, the 

theorems to compute the controller are given. Following are the gain and phase specifications 

considered. 

 Phase at 
g c

 , 

( )
g c

Pj MG             (7) 

 Gain at 
g c

 , 

( ) 1
g c

G j            (8) 

 Phase at 
p c

 , 

 ( )
p c

G j             (9) 

 Gain at 
p c

 , 

                  



/ 2 0
( ) 1 0

p c

G M
G j         (10) 

Frequency frame is a frequency domain approach thus, frequency domain notations of both plant 

and the controller have to be found. Frequency domain response of the plant can be found by 

replacing s  to j  in Eq. (1) as, 

   

   

 

( )

1 2

2

1 2

22 2 2 2

1 21 2

e
( ) 1 ( ) 1

a rc ta n
1 1

( )
L jK

T j T j

K T TK
L

K K TT

P

T

j

T



 




 








 

 
   

   

   (11) 

Similarly, frequency response of the controller is, 

     ( ) co s 2 s in 2
pp d dd

C j j k kk kk j
  

             (12) 

Thus, the system is, 

 ( ) ( ) ( )G j C j P j         (13) 

Then, following theorem holds on finding the FOPD parameters based on desired phase margin 

at the desired gain crossover frequency. 

Theorem 1: Considering Eq. (7) and Eq. (8), desired PM at desired 
g c

  can be provided by the 

following FOPD controller.  

 

   

 

2 2 2 2 2 2 2 2

1 2 1 2 1

2 2

1 1

1 1 1 1 c o t 2 ta n

1 ta n 1 ta n

g c g c g c g c

p

T T T T
k

K K

     

 

   
 

 

  (14) 

and 

   

 

2 2 2 2

1 2 1

2

1

1 1 c sc 2 ta n

1 ta n

g c g c

d

c g
T T

k

K


    




 

 



    (15) 

where, 

 1 2

1 2

1 2

a rc ta n
g c

g c

g c

K T T
P M L

K K T T


  



 
    

 
 

    (16) 

Proof: Frequency domain notations of the plant and the controller was given in Eq. (11) and Eq. 

(12) respectively. Therefore, magnitude and phase of the plant and the controller are as follows. 

                  



   

2

2 2 2 2

1 2

( )
1 1

K
P j

T T


 


 
      (17) 

 1 2

2

1 2

( ) a rc tan
K T T

P j L
K K T T


 



 
    

 

     (18) 

     
2 2

( ) co s 2 sin 2
p d d

C j k k k
 

          (19) 

 

 

s in 2
( ) a rc ta n

c o s 2

d

p d

k
C j

k k





 


 

 
   

 
 

     (20) 

From above equations, magnitude and phase of the system are, 

( ) ( ) ( ) ( ) ( )j j jG C P C Pj j           (21) 

( ) ( ) ( ) ( ) ( )j j j j jG C P C P               (22) 

Replacing   with 
g c

  in Eq. (21) with consideration of specification (ii) in Eq. (8) results as, 

     
   

2
2 2

2 2 2 2

1 2

1

c o s 2 s in 2
1 1

( ) ( ) ( )
g c g c g c

p d g c d g c

g c g c

G C Pj j j

K
k k k

T T

 

  

   
 

  
 

 



 (23) 

Similarly, replacing   with 
g c

  in Eq. (22) with consideration of specification (i) in Eq. (7) 

results as, 

 

 

 1 2

2

1 2

s in 2
a rc ta n a rc ta n

c o s 2

( ) ( ) ( )
g c g c g c

d g c g c

g c

p d g c g c

j j j P M

k K T T
L

k k K K T T

G C P





   

  


  

   

   
     

 

   
  






 (24) 

According to the magnitude and phase in Eq. (23) and Eq. (24) 
p

k  and 
d

k  of the controller can 

be found as given in Theorem 1. □ 

Theorem 2: Considering Eq. (9) and Eq. (10), desired GM at desired 
p c

  can be achieved with 

the following controller. 

                  



 

 

   

 

/ 2 0 2 2 2 2 / 2 0 2 2 2 2

1 2 1 2 2

2 2

2 2

1 0 1 1 1 0 1 1 c o t 2 ta n

1 ta n 1 ta n

G M G M

p c p c p c p c

p

T T T T
k

K K

     

 

   
 

 

     (25) 

and 

   

 

/ 2 0 2 2 2 2

1 2 2

2

2

1 0 1 1 c sc 2 ta n

1 ta n

G M

p c p c p c

d

T T
k

K


    




 

 



  (26) 

where, 

 1 2

2 2

1 2

a rc ta n
p c

p c

p c

K T T
L

K K T T


  



 
    

 
 

         (27) 

Proof: Similar to the previous proof, replacing   with 
p c

  in Eq. (21) with consideration of 

specification (iv) in Eq. (10) results as, 

     
   

/ 2 0

2
2 2

2 2 2 2

1 2

1 0

c o

( )

s 2 s in 2
1 1

( ) ( )
G M

p c p c p c

p d p c d p c

p c p c

j j j

K
k k k

T T

G C P

 

  

   
 



  
 





 (28) 

Replacing   with 
p c

  in Eq. (22) with consideration of specification (iii) in Eq. (9) results as, 

 

 

 1 2

2

1 2

s in 2
a rc ta n a rc ta n

c o s 2

( ) ( ) ( )
p c p c p c

d p c p c

p c

p d p c p c

j j j

k K T T
L

k k K K T

P

T

G C





   

  


  

   

   
     

   















     (29) 

Then, common solution of Eq. (28) and Eq. (29) results with the equations given in Theorem 2. 

□ 

Consequently, parameters of two controllers are derived. Controller formulas in the theorems 

may seem relatively complicated. This comes from the frequency response computation of 

 j


  and the time delay term in the plant. Here,   can take an arbitrary real number. The 

controller gets a plain structure when the common fractional order   is found. For this purpose, 

solutions of 
p

k  in Eq. (14) and Eq. (25) as well as solutions of 
d

k  in Eq. (15) and Eq. (26) have 

to be found in the range (0 , 2 )  . Firstly, Eq. (14) and Eq. (25) have to be equalized and 

/ 2 0
1 0

G M
 w.r.t (0 , 2 )   have to be plotted. Similarly, equalization of Eq. (15) and Eq. (26) and 

                  



plotting 
/ 2 0

1 0
G M

 will give the second plot. Intersection of the curves gives  . Then,   can be 

replaced in the related equations of 
p

k  and 
d

k . There can be drawn two different plots due to the 

opposite signs of the equations as found previously. As the fractional order takes its values in the 

interval (0 , 2 )  , the plot in the positive region is acceptable. This procedure is clearly 

explained on three examples in the next section. 

4. Case Study 

This section presents three examples to demonstrate the frequency frame. Stability analysis of 

the systems are realized by plotting the step responses for each controlled system.  

Example 1: Consider the SOPTD plant provided from [43].  

0 .0 1

1

0 .3
( )

( 2 1)( 1)

s
P s e

s s




 
     (30) 

Desired gain and phase crossover frequencies for this example are 1 0 /
g c

r a d s   and 

1 8 0 /
p c

r a d s  . Suppose that 9 0
o

P M  . By replacing the above variables in Eqs. (14) – (25) 

and Eqs. (15) – (26), 
p

k  and 
d

k  can be obtained w.r.t.  . Then by plotting 
/ 2 0

1 0
G M

 in the range 

(0 , 2 )   we can obtain  . Fig. 2 presents the related plot.  

 

Fig. 2. Plot of 
/ 2 0

1 0
G M

 w.r.t (0 , 2 )  . 

Red curve is the plot of 
/ 2 0

1 0
G M

 obtained by equalizing Eq. (14) to Eq. (25) and blue curve is the 

plot of 
/ 2 0

1 0
G M

 obtained by equalizing Eq. (15) to Eq. (26) in the range of (0 , 2 )  . Their 

                  



intersection point shows the common fractional order 1 .1 4 6 9  . Thus, following controller is 

obtained. 

1 .1 4 6 8 6

1
( ) 1 9 0 .6 4 3 4 9 .0 7 6 5 sC s        (31) 

Bode plot of the system 
1 1 1
( ) ( ) ( )G s C s P s  is shown in Fig. 3. 

 

Fig.  3. Bode plot of the system 
1 1 1
( ) ( ) ( )G s C s P s . 

It can be seen in Fig. 3 that the desired crossover frequencies are satisfied. Fig. 4 illustrates the 

closed loop step response of the above system and also step responses of the system with 5 0 %  

iteration of 
p

k . We can conclude from the step response in Fig. 4 that the system is stable within 

obtained controller. 

Systems could be under unexpected load disturbances. We can also test the proposed method on 

the system under disturbances as shown in Fig. 5. Fig. 6 presents the step response of the original 

system with 9 0
o

P M   and step response of the system with 10% load disturbance.  

                  



 

Fig. 4. Step responses of 
1 1 1
( ) ( ) ( )G s C s P s  and 5 0 %  variations of 

p
k . 

 

Fig. 5. SOPTD system under load disturbance 

 

Fig. 6. Step response of the system under load disturbance of 10%. 

According to Fig. 6, the system kept its stability against the load disturbance of 10%. We can 

compare the results obtained in Fig. 3 and Fig. 4 with existing studies. The study in [24] aims to 

P(s)C(s)R(s) Y(s)
-

SOPTDFOPD

 

d

                  



tune FO[PD] controller for motion control system. The plant used in the paper is a FOPTD 

model and the aim is to tune the gain crossover frequency to be 1 .2 / s e c
g c

r a d   and the phase 

margin to be 60P M   . When we check Fig. 3 in the paper, we can say that the given values 

are pretty approximated. In the cited paper, flatness of the curve is provided by equalizing the 

derivative of the phase to zero at 
g c

 . Similarly, stability is shown by giving the step response of 

the system in Fig. 4. With the frequency frame method, not only the gain crossover frequency, 

both 
g c

  and 
p c

  specifications are achieved. In [24], robustness is checked by giving the step 

response of the system with 20%  variations of the time constant T in Fig. 7. With the help of 

the frequency frame method, the system remained stable against 5 0 %  iterations of the 

controller gain 
p

k .  Also it is shown that the system response almost remained the same under 

unexpected load disturbances. Let us consider the study in [20] which aims to tune FOPD 

controller for non-time delayed first order plant. Objective of the design is to satisfy desired gain 

crossover frequency and the phase margin. The interested specifications are set as 

6 0 / s e c
g c

r a d   and 70P M   . Fig 2 in [20] shows that these specifications are successfully 

obtained. However, the phase crossover frequency and the gain margin properties are 

disregarded. Also, the robustness in Fig.  3 is satisfied by setting the phase derivative to zero at 

6 0 / s e c
g c

r a d  . Thus, the frequency frame method brings a different point of view. The 

advantages of the frequency frame can also be investigated by comparing the results in [21-23].   

Proposed equations can be tested with Bode plots of the system with varying PM values. The 

phase margin is varied in the range of (1 0 9 0 )
o o

P M    with increment steps of 1 0
o
. Then we 

obtained 9 different controllers for the SOPTD plant. Bode plots of these 9 systems are given in 

Fig. 7. Also step responses are given in Fig. 8.  

Fig. 8 shows that all systems with changing PM values show stable behaviour. Also the systems 

are robust against gain variations of up to 5 0 % . This proves the effect of the frequency frame. 

Now, another example of a SOPTD plant is considered. 

                  



 

Fig. 7. Bode plots of the system with varying PM values 

 

 

Fig. 8. Step responses of the systems with varying PM values. 

Example 2: The following plant is provided from [44]. 

0 .2

2

1 0 0
( )

( 1)(1 0 0 1)

s
P s e

s s




 
     (32) 

where, the crossover frequencies are desired to be 2 .4 /
g c

r a d s   and 9 .6 /
p c

r a d s  . The 

phase margin for this system is considered to be in the range of  (1 0 9 0 )
o o

P M   . Table 1 

lists the controller parameters found for varying values of the PM with increment step of 1 0
o
.  

Table 1. 
p

k , 
d

k ,   and G M values found for the variations of P M . 

                  



P M  p
k  

d
k    G M  

10° 7.41459 0.584873 1.45691 -17.5734 

20° 7.42089 0.939277 1.37680 -14.1916 

30° 7.15097 1.274590 1.32918 -12.0730 

40° 6.63437 1.577470 1.29542 -10.6383 

50° 5.89552 1.837250 1.26862 -9.66704 

60° 4.96091 2.045370 1.24545 -9.05521 

70° 3.86056 2.195290 1.22390 -8.75061 

80° 2.62791 2.282650 1.20247 -8.73079 

90° 1.29881 2.305470 1.17972 -8.99532 

 

Considering the PM to be 30°, Bode plot of the plant in this case is given in Fig. 9. Similarly, 

step response of the system with 5 0 %  iterations of the gain when 30P M    is illustrated in 

Fig. 10. Also step response of the system under 10% load disturbance is presented in Fig. 11. 

According to Fig. 10 and Fig. 11, stability of the system is successfully achieved. It is observed 

that the step response almost remained the same against the load disturbance. This proved the 

effectiveness of the frequency frame for SOPTD plants controlled with FOPD controllers. 

 

                  



 

Fig. 9. Bode plot of the plant when 30P M    

 

Fig. 10. Step response of the system with 5 0 %  variations in the gain.  

 

Fig. 11. Step response of the system under 10% load disturbance. 

Let us study on an SOPTD plant with high steady state error. 

Example 3: The following plant is provided from [45]. 

1 .6 4

3

0 .5
( )

( 1)(0 .5 1)

s
P s e

s s




 
     (33) 

We consider the gain and phase margins to be 0 .3 /
g c

r a d s   and 0 .9 /
p c

r a d s   and the 

phase margin to be 30P M   . Thus, following controller is obtained.  

1.7 2 0 2 0

3
( ) 4 .7 0 3 1 10 3 9.10 8 7 sC s        (34) 

                  



Bode plot of the system controlled with the controller above is given in Fig. 12.  

 

Fig. 12. Bode plot of the system 
3 3

( ) ( )C s P s . 

Desired 
g c

 , 
p c

  and PM are successfully satisfied. Also, step response of the system is 

presented in Fig. 13. Fig. 13 shows that the system response is stable but it has a steady state 

error as we expect. We can form the plant to include an integrator as 
3

( ) /P s s and compute the 

related controller equations for the new plant. Then we obtain the step response given in Fig. 14. 

It can be seen that the steady state error is considerably reduced. Consequently, the controller 

obtained with the frequency frame method are proved with different examples. 

 

Fig. 13. Step response of the system 
3 3

( ) ( )C s P s . 

                  



 

Fig. 14. Step response of the system including an integrator.  

 

5. Conclusion 

This paper performs the frequency frame approach for performance and robustness of SOPTD 

plants by tuning FOPD controllers. It is observed that the controller obtained with the method 

provided improved stability and robustness for such plants. Varied from existing studies, the 

frequency frame approach considers both gain and phase crossover frequencies when computing 

the controller parameters. With the help of the method, the system remained stable against 50%  

iterations of the controller gain 
p

k .  Also it is shown that the system response almost remained 

the same under unexpected load disturbances.Thus, desired results are satisfactorily obtained and 

mathematical complexity is considerably reduced. The method is verified with three examples. 

 

Declaration of interests 

The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

 

 

  

                  



References 

[1] K.B. Oldham, J. Spanier, Fractional Calculus: Theory and Applications of Differentiation and 

Integration to Arbitrary Order, first ed., Academic Press, New York–London, 1974. 

[2] R.E. Gutiérrez, J.M. Rosário, J.A.T. Machado, Fractional order calculus: basic concepts and 

engineering applications, Math. Probl. in Eng. (2010) 1-19. https://doi.org/10.1155/2010/375858. 

[3] L. Debnath, A brief historical introduction to fractional calculus, Int. J. of Math. Educ. in Sci. 

and Technol. 35 (4) (2004) 487–501. https://doi.org/10.1080/00207390410001686571. 

[4] I. Petras, Stability of fractional-order systems with rational orders: a survey, Fract. Calc. and 

Appl. Anal. 12 (3) (2009) 269-298. 

[5] F.J.V. Parada, J.A.O. Tapia, J.A. Ramirez, Effective medium equations for fractional Fick’s 

law in porous media, Physica A 373 (2007) 339–353. 

https://doi.org/10.1016/j.physa.2006.06.007. 

[6] P. Arena, R. Caponetto, L. Fortuna, D. Porto, Nonlinear non-integer order circuits and 

systems – an introduction, World Scientific, Singapore, 2000. 

[7] B.T. Krishna, K.V.V.S. Reddy, Active and passive realization of fractance device of order ½, 

Act. and Passive Electron. Compon. (2008) 1-5. https://doi.org/10.1155/2008/369421. 

[8] B.M. Vinagre, Y.Q. Chen, I. Petras, Two direct Tustin discretization methods for fractional-

order differentiator / integrator, J. of the Franklin Inst. 340 (5) (2003) 349–362. 

https://doi.org/10.1016/j.jfranklin.2003.08.001. 

[9] M.F. Silva, J.A.T. Machado, A.M. Lopes, Fractional order control of a hexapod robot, 

Nonlinear Dyn. 38 (1-4) (2004) 417–33. https://doi.org/10.1007/s11071-004-3770-8. 

[10] M.F.M. Lima, J.A.T. Machado, M. Crisóstomo, Experimental signal analysis of robot 

impacts in a fractional calculus perspective, J. of Adv. Comp. Intell. and Intell. Inf. 11 (9) (2007) 

1079-1085. 

[11] H. Bao, J.H. Park, J. Cao, Non-fragile state estimation for fractional-order delayed 

memristive BAM neural networks, Neural Netw. 119 (2019) 190–199. 

https://doi.org/10.1016/j.neunet.2019.08.003. 

                  



[12] H. Bao, J. Cao, J. Kurths, A. Alsaedi, B. Ahmad, H∞ state estimation of stochastic 

memristor-based neural networks with time-varying delays, Neural Netw. 99 (2018) 79–91. 

https://doi.org/10.1016/j.neunet.2017.12.014. 

[13] H. Bao, J. Cao, J. Kurths, State estimation of fractional-order delayed memristive neural 

networks, Nonlinear Dyn. 94 (2018) 1215–1225. https://doi.org/10.1007/s11071-018-4419-3. 

[14] B. Senol, A. Ates, B.B. Alagoz, C. Yeroglu, A numerical investigation for robust stability of 

fractional-order uncertain systems, ISA Trans. 53 (2) (2014) 189-198. 

https://doi.org/10.1016/j.isatra.2013.09.004. 

[15] Z. Liao, C. Peng, W. Li, Y. Wang, Robust stability analysis for a class of fractional order 

systems with uncertain parameters, J. of the Franklin Inst. 348 (6) (2011) 1101-1113. 

https://doi.org/10.1016/j.jfranklin.2011.04.012. 

[16] R. Matušů, B. Şenol, L. Pekař, Robust Stability of Fractional-Order Linear Time-Invariant 

Systems: Parametric versus Unstructured Uncertainty Models, Complexity (2018) 1-12. 

https://doi.org/10.1155/2018/8073481. 

[17] A. Ates, C. Yeroglu, B.B. Alagoz, B. Senol, Tuning of fractional order PID with master-

slave stochastic multi-parameter divergence optimization method, Int. Conf. on Fract. Diff. and 

Its Appl., Catania, Italy, 2014. https://doi.org/10.1109/ICFDA.2014.6967388. 

[18] I. Podlubny, Fractional-order systems and PIλDμ-controllers, IEEE Trans. on Autom. Cont. 

44 (1) (1999) 208–214. https://doi.org/10.1109/9.739144. 

[19] S. Tufenkci, B. Senol, B.B. Alagoz, Stabilization of Fractional Order PID Controllers for 

Time-Delay Fractional Order Plants by Using Genetic Algorithm, 2018 Int. Conf. on Artif. Intell. 

and Data Proces., Malatya, Turkey, 2018. 

[20] H. Li, Y.Q. Chen, A fractional order proportional and derivative (FOPD) controller tuning 

algorithm, Chinese Cont. and Decis. Conf., Yantai, China, 2008. 

[21] H. Li, Y. Luo, Y.Q. Chen, A Fractional Order Proportional and Derivative (FOPD) Motion 

Controller: Tuning Rule and Experiments, IEEE Trans. on Cont. Syst. Technol. 18 (2) (2010) 

516-520. https://doi.org/10.1109/TCST.2009.2019120. 

                  



[22] M. Zhang, X. Lin, W. Yin, An improved tuning method of fractional order proportional 

differentiation (FOPD) controller for the path tracking control of tractors, Biosyst. Eng. 116 (4) 

(2013) 478-486. https://doi.org/10.1016/j.biosystemseng.2013.10.001. 

[23] L. Liu, S. Zhang, D. Xue, Y.Q. Chen, General robustness analysis and robust fractional-

order PD controller design for fractional-order plants, IET Cont. Theory & Appl. 12 (12) (2018) 

1730-1736. https://doi.org/10.1049/iet-cta.2017.1145. 

[24] Y. Jin, Y.Q. Chen, D. Xue, Time-constant robust analysis of a fractional order [proportional 

derivative] controller, IET Cont. Theory & Appl. 5 (1) (2011) 164-172. 

https://doi.org/10.1049/iet-cta.2009.0543. 

[25] C. Wang, L. Wang, M. Li, Application research for hydraulic servo system based on 

fractional order proportional derivative and [proportional derivative] controllers, Proc. of the 

33rd Chinese Cont. Conf., Nanjing, China, 2014. 

[26] J. Yang, L. Dong, X. Liao, Fractional order PD controller based on ADRC algorithm for DC 

motor, IEEE Conf. and Expo Transp. Electr. Asia-Pacific., Beijing, China, 2014. 

[27] V. Badri, M.S. Tavazoei, Achievable Performance Region for a Fractional-Order 

Proportional and Derivative Motion Controller, IEEE Trans. on Ind. Electron. 62 (11) (2015) 

7171-7180. https://doi.org/10.1109/TIE.2015.2448691. 

[28] S. Padhee, Controller Design for Temperature Control of Heat Exchanger System: 

Simulation Studies, WSEAS Trans. on Syst. and Cont. 9 (2014) 485-491. 

[29] S. Santosh, M. Chidambaram, Tuning of Proportional Integral Derivative Controllers for 

Critically Damped Second-Order Plus Time Delay Systems, Indian Chem. Eng. 57 (1) (2015) 

32-51. https://doi.org/10.1080/00194506.2014.975760. 

[30] Bajarangbali, S. Majhi, Modeling of stable and unstable second order systems with time 

delay, Annu. IEEE India Conf., Mumbai, India, 2013. 

[31] M. Irshad, A. Ali, A review on PID tuning rules for SOPTD inverse response processes, Int. 

Conf. on Intell. Comp., Instrum. and Cont. Technol., Kannur, India, 2017. 

                  



[32] R.P. Wang, Y.G. Pi, Fractional order proportional and derivative controller design for 

second-order systems with pure time-delay, Int. Conf. on Mechatron. Sci., Electr. Eng. and 

Comp., Jilin, China, 2011. 

[33] C. Wang, Y. Luo, Y.Q. Chen, Fractional order proportional integral (FOPI) and 

[proportional integral] (FO[PI]) controller designs for first order plus time delay (FOPTD) 

systems, Chinese Cont. and Decis. Conf., Guilin, China, 2009. 

[34] Y. Luo, Y.Q. Chen, Fractional-order [proportional derivative] controller for robust motion 

control: Tuning procedure and validatio, American Cont. Conf., St. Louis, USA, 2009. 

[35] C. Wang, Y. Jin, Y.Q. Chen, Auto-tuning of FOPI and FO[PI] controllers with iso-damping 

property, Conf. on Decis. and Cont., Shanghai, China, 2009. 

[36] C.A. Monje, B.M. Vinagre, Y.Q. Chen, V. Feliu, P. Lanusse, J. Sabatier, Proposals for 

fractional PID tuning, IFAC Symp. on Fract. Diff. and its Appl., Bordeaux, France, 2004. 

[37] Y.Q. Chen, K.L. Moore, B.M. Vinagre, I. Podlubny, Robust PID controller autotuning with 

a phase shaper, IFAC Workshop on Fract. Diff. and its Appl., Bordeaux, France, 2004. 

[38] S. Saha, S. Das, R. Ghosh, B. Goswami, R. Balasubramanian, A.K. Chandra, S. Das, A. 

Gupta, Fractional order phase shaper design with Bode’s integral for iso-damped control system, 

ISA Trans. 49 (2) (2010) 196-206. https://doi.org/10.1016/j.isatra.2009.12.001. 

[39] B. Şenol, U. Demiroğlu, Frequency frame approach on loop shaping of first order plus time 

delay systems using fractional order PI controller, ISA Trans. 86 (2019) 192-200. 

https://doi.org/10.1016/j.isatra.2018.10.021. 

[40] B. Şenol, U. Demiroğlu, Fractional Order Proportional Derivative Control for First Order 

Plus Time Delay Plants: Achieving Phase and Gain Specifications Simultaneously, Trans. of the 

Inst. of Meas. and Cont. 41 (5) (2019) 4358-4369. https://doi.org/10.1177/0142331219857397. 

 [41] P.P. Arya, S. Chakrabarty, A Modified IMC Structure to Independently Select Phase 

Margin and Gain Cross-over Frequency Criteria, IFAC-PapersOnLine 50 (1) (2018) 267-272. 

https://doi.org/10.1016/j.ifacol.2018.05.066 

                  



[42] N. Sayyaf, M.S. Tavazoei, Desirably Adjusting Gain Margin, Phase Margin, and 

Corresponding Crossover Frequencies Based on Frequency Data, IEEE Trans. on Ind. Inf. 13 (5) 

(2017) 2311-2321. https://doi.org/10.1109/TII.2017.2681842. 

[43] C. Rajapandiyan, M. Chidambaram, Closed-Loop Identification of Second-Order Plus Time 

Delay (SOPTD) Model of Multivariable Systems by Optimization Method, Ind. & Eng. Chem. 

Res. 51 (28) (2012) 9620-9633. https://doi.org/10.1021/ie203003p. 

[44] Z. Zhao, Z. Liu, J.J. Zhang, IMC-PID tuning method based on sensitivity specification for 

process with time-delay, J. of Cent. South Univ. Technol. 18 (4) (2011) 1153-1160. 

https://doi.org/10.1007/s11771-011-0817-0. 

[45] S. Srivastava, V.S. Pandit, A PI/PID controller for time delay systems with desired closed 

loop time response and guaranteed gain and phase margins, J. of Process Cont. 37 (2016) 70-77. 

https://doi.org/10.1016/j.jprocont.2015.11.001. 

                  


