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ABSTRACT: High pressure crystallization and resulting polymorphic composition of long 

chain branched polypropylene (LCB-PP) was studied and compared with common linear 

isotactic polypropylene (PP). Commercially available LCB-PP and PP with similar melt flow 

indexes were crystallized under several high pressures (20, 40, 80, 120 and 160 MPa) at 

constant cooling rate 5 °C min-1. Structure of crystallized samples was evaluated via wide 

angle X-ray scattering, differential scanning calorimetry and scanning electron microscopy. It 

was shown that under low pressure LCB-PP crystallizes at higher crystallization temperature 

than PP due to its higher nucleating density. The opposite situation is observed at high 

pressures (120 and 160 MPa): crystallization temperature of PP exceeds that of LCB-PP as a 

negative effect of branching is pronounced. Polymorphic analysis proved that LCB-PP tends 

to crystallize into orthorhombic -form. This crystalline form becomes to be dominant at 40 

MPa and LCB-PP samples crystallized at 120 and 160 MPa contains solely -form. On the 

other hand, no pure -form sample was prepared from PP in this study, although positive 

effect of pressure on its formation is observed. Thermodynamic stability of LCB-PP 

crystalline structure is systematically lower compared to PP. With pronounced crystallization 

pressure, the melting peak broadens and finally splits indicating presence of dominant amount 

of -form in LCB-PP. In comparison with PP, crystallites in LCB-PP structure are 

considerably smaller due to lower crystal growth rate and higher nucleating density.  

 

KEYWORDS: crystallization under high pressure, long chain branched polypropylene, 
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1. Introduction 

Isotactic polypropylene is one of the most widely used commercial polymers due to its 

beneficial behaviour such as high melting point, low density, good chemical resistance, 

advantageous mechanical properties and, finally, low cost. 

Nevertheless, isotactic polypropylene prepared using Ziegler-Natta or metallocene catalysts 

usually possesses a linear chain structure and a narrow molecular weight distribution. This 

leads to a number of problems in melt processing. Isotactic polypropylene manifests low 

elongational viscosity, low melt strength, and almost no strain hardening behaviour in the 

melt state, which makes it difficult to process with predominant elongational flow, such as 

thermoforming, blow moulding, foaming and extrusion coating. As a result, linear isotactic 

polypropylene (PP) has been excluded from some end-use applications. Thus, the preparation 

and research of high melt strength polypropylene is very important industrially [1, 2]. 

The introduction of long chain branches onto the polypropylene backbone is one of the most 

effective methods for increasing its melt strength. The industry uses two main methods for 

preparing long chain branched polypropylene (LCB-PP). The first is electron beam irradiation 

of PP in solid state [3, 4] and the second is post-reactor chemical modification of PP using 

peroxides in melt state [5, 6]. LCB-PP prepared by these methods has complex branch 

structures and a wide molecular weight distribution. Besides them several other preparation 

techniques have been reported [e.g. 712]. 

Long chain branches incorporated onto PP backbone can improve its melt processing 

properties, including melt strength, strain hardening and shear thinning, which leads to the 

broadening of end-uses and processing methods of PP [13, 14]. LCB-PP is thought to exhibit 

different helical conformations and crystallites due to the specific chain structure [2]. It has 

been shown that LCB-PP crystallizes generally faster than common PP, which can be 

explained by self-seeding effect of chain branches. Thus, increased nucleation density 

accelerates the overall crystallization rate [1517].  

In terms of polymorphic composition, LCB-PP has a higher tendency to crystallize into 

orthorhombic γ-form alongside α-form [2, 15, 18]. This crystalline form of PP possesses 

different thermomechanical behaviour than monoclinic α-form predominantly occurring in 

melt crystallized PP [1, 2, 19, 20]. Commonly, γ-form polymorph origins in PP by 

crystallization of stereoblock copolymers or random copolymers with small amounts of 

ethylene or butene-1 comonomers [16]. Indeed, an analogy in γ-form formation in random 

copolymers and LCB-PP could be taken into account. The γ-form content strongly increases 
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with chain irregularity [23]; branching points in LCB-PP backbone act as disturbing elements 

that lead to stronger tendency to crystallize into γ-form. 

The γ-form formation is also favoured by crystallization of PP under elevated pressure [24]. 

Several authors reported the effect of heterogeneous nucleation on crystallization of PP under 

high pressure and resulting morphology [21, 22, 25], using both - and -nucleating agents. 

The competition between the effect of nucleating agent and effect of high pressure on 

crystallization of PP was observed. As for LCB-PP the situation may be different due to high 

nucleation density (as in nucleated PP) and increased tendency to crystallize into -form. 

The purpose of the present paper is to describe and explain crystallization behaviour of 

commercial LCB-PP under elevated pressure. Except the process of crystallization, 

morphology and thermal properties of prepared samples is also studied. This work should 

open a new perspective on the crystallization of LCB-PP and at the same time provide 

practical guidelines for optimizing the processing technology. 

 

2. Experimental 

2.1. Material and specimen preparations 

Two commercially available polypropylenes, both supplied by Borealis Company Vienna, 

Austria, were used. The first was a Daploy WB130HMS long chain branched polypropylene 

(LCB-PP) prepared by radical-driven monomer grafting. The second material was a 

HC600TF linear polypropylene homopolymer (PP). Both materials have similar processing 

properties represented by identical value of melt flow rate (230 °C, 2.16 kg, ISO 1133) of 2.8 

g 10 min-1. 

Samples were prepared using a pvT100 high pressure device manufactured by SWO 

Polymertechnik GmbH, Krefeld, Germany. Polymer pellets of mass of approx. 0.7 g were 

inserted into a measurement cylinder and heated to 220 °C at a heating rate 80 °C min-1. The 

cylinder was then closed by the piston which enables to control the crystallization pressure 

and monitor the sample dimension. Subsequent crystallization proceeded during cooling from 

220 to 50 °C at a cooling rate 5 °C min-1 and several constant pressures (20, 40, 80, 120, and 

160 MPa). During the crystallization process, temperature, time and piston position were 

recorded. 

Rectangular specimens of approx. 8x15x2 mm3 for wide angle X-ray scattering (WAXS) were 

taken from the centre of crystallized cylindrical samples using a Leica RM2255 rotary 

microtome supplied by Leica Microsystems. 
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Scanning electron microscopy (SEM) was performed on specimens prepared from centre of 

crystallized samples. Surface of specimens was etched for 60 min in 1% solution of KMnO4 

in H3PO4 (85%). 

The slices (approx. 7 mg) were microtomed from centre of crystallized samples, put into 

aluminium pans and analysed using differential scanning calorimetry (DSC). 

 

2.2. Analysing methods 

Wide angle X-ray scattering analysis was performed with a X’Pert Pro MPD (Multi-Purposed 

Diffractometer) from PANanalytical company. This diffractometer is equipped with CuKα in 

reflection mode and nickel filter of thickness 0.2 mm. Radial scans of intensity vs. diffraction 

angle 2Θ were recorded in the range of 7° to 30° by steps of 0.026°. Crystallinity Xc was 

determined as a ratio of the integral intensities diffracted by a crystalline part (Ic) and total 

integral intensities (I): 

𝑋𝐶 =
𝐼𝐶

𝐼
100   (1) 

Relative content of γ-form (G) in the γ/α crystalline system was calculated according to Pae: 

𝐺 =
𝐻γ

𝐻𝛼3+𝐻γ
100  (2) 

where Hγ is the intensity of (117) γ-reflection and Hα3 is the intensity of (130) α-reflection 

[26]. 

For the purpose of crystallization studies, a Perkin-Elmer Pyris 1 differential scanning 

calorimeter was used. Prepared samples were heated from 50 up to 190 °C at a heating rate 10 

°C min-1. 

In order to study morphology of the crystallized samples, a Vega-II LMU scanning electron 

microscope, Tescan Company USA, was employed. 

 

3. Results and discussion 

Crystallization of PP and LCB-PP was performed in a high-pressure chamber allowing 

simultaneous control of pressure and temperature and recording of specific volume. Five 

constant pressures (20, 40, 80, 120 and 160 MPa) were applied varying from 20 to 160 MPa. 

Curves of Typical sigmoidal crystallization curve of each material obtained by pvT100, i. e. 

dependence of specific volume as a function of on temperature at constant pressure are shown 

in Fig. 1 and Fig. 2. Crystallization temperature was calculated from dilatometric data as a 

curve flex point and its values are summarized in Table 1 and depicted in Fig. 3. 
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The results show that crystallization temperature rises with the pressure for both used 

materials, however, the effect is more pronounced in PP (see Fig. 3): crystallization 

temperature increased for 70 °C (versus 45 °C in LCB-PP) by increasing the crystallization 

pressure from 20 to 160 MPa. As compared to PP, LCB-PP has higher Tc up to crystallization 

pressure 80 MPa. Then, at pressure 120 and 160 MPa, the Tc of PP exceed those of LCB-PP. 

A higher crystallization temperature of LCB-PP at low pressure has been already assigned to 

long chain branches which can have self-seeding effect and thus speed the overall 

crystallization [1]. The reason of faster crystallization could be also ascribed to gel content 

which arises from the radical-driven synthesis process using peroxides. During these 

reactions, besides long chain branches formation, also chain scission and crosslinking can 

occur. Even local crosslinking (gel) could lower melt entropy and serve as nuclei during 

crystallization. On the other hand, long chain branches act as defects in the polymer chains 

and decrease the crystal growth rate. This phenomenon can be observed at high crystallization 

pressure (120 and 160 MPa) manifesting itself by slower crystallization of LCB-PP than that 

of PP. 

To observe a polymorphic composition of crystallized samples, wide angle X-ray scattering 

was employed. The corresponding WAXS patterns are shown in Fig. 4 and Fig. 5. It is 

evident that the high pressure crystallized materials consist of α- and γ-forms, while β-form is 

not manifested. Actually, to achieve a considerable amount of β-form usually an introduction 

of β-nucleating agents is needed [2730]. Typical reflections for α-form of iPP are observed 

at 2Θ=14.2°, 17° and 18.8° corresponding to (110), (040) and (130). However, diffraction 

curve for γ-form is quite similar and most of the reflections for both phases are located at the 

same positions. The only difference can be found in 2 range of 1821°, where two well-

separated diffraction peaks of (130) plane of α-form and (117) plane of γ-form (2Θ=20.5°) 

can be found [31]. As can be seen in Fig. 4 and Fig. 5, (117) reflection of γ-form becomes 

distinct with increasing pressure. From diffraction patterns crystallinity (equation 1) and 

relative content of γ-form (equation 2) were calculated and are shown in Table 2. 

The γ-form content increases with increasing pressure in both used materials. However, the 

relative content of the γ-form is systematically higher in all LCB-PP samples crystallized 

under various pressures, as can be seen in Fig. 6. Moreover, at pressures 120 and 160 MPa, 

only crystalline γ-form was detected. The shape of both curves is similar and individual 

values are only shifted to each other. Thus, it could be expected that even PP can crystallize 

solely into -form, however, at pressures significantly higher than needed in LCB-PP. This 
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observation is in agreement with Mezghani and Philips [32]. On the other hand, the 

crystallization behaviour of LCB-PP and its polymorphic composition is not yet fully 

understood. In general, the crystallization of LCB-PP can be compared with crystallization of 

PP containing comonomer. The disturbance of regular chain leads to promoted formation of -

form [2, 15, 18, 33]. The papers published [e.g. 3437] indicate that the molecular structure of 

branches plays an important role. Very short isotactic sequences (branches) cause 

crystallization to the γ-form, while long regular isotactic sequences (branches) usually 

crystallize only to the α-form. In this work, both effect – pressure and chain disturbance – on 

γ-form formation has been proved. 

Differential scanning calorimetry was employed for measurements of melting curves of 

samples crystallized under high pressure. DSC curves are shown in Fig. 7 and Fig. 8. It can be 

seen that the melting peak broadens with increasing pressure applied during crystallization. 

This observation correlates with the formation of γ-form at high pressures. γ-form of PP has 

lower melting temperature which results in melting onset at lower temperature of samples 

containing both α- and γ-forms. In the case of LCB-PP, the broad peak splits into two 

individual peaks, indicating separate melting of the two crystalline forms. Indeed, this 

material contains systematically higher amount of γ-form (see Fig. 6) as compared PP. 

However, double melting peak can be found even in samples crystallized at 120 and 160 MPa, 

although solely γ-form is detected by WAXS. This phenomenon can be ascribed to 

transformation of metastable γ-form into α-form upon heating. 

Fig. 9 shows the evolution of melting temperature as a function of crystallization pressure. 

Values of melting temperature were taken as a maximum of melting DSC curve (in the case 

of double melting peak, both values are indicated in the graph). In all cases, PP possesses 

higher melting temperature as compared to LCB-PP. Because the melting point is related to 

the thickness of the lamellae [38], it can be suggested that PP contains thicker and more 

perfect lamellae, while LCB-PP is formed by thin crystallites with a number of defects, which 

is in agreement with Auriemma et al. [39]. The decrease of melting temperature with rising 

pressure, observed in both materials, correlates with acceleration in overall crystallization 

rate. 

To observe a higher structural level of the morphology, namely the detailed spherulite 

structure, scanning electron microscopy was employed. Fig. 10 shows the fracture surfaces of 

PP and LCB-PP where distinct differences between the structure of materials crystallized 

under 20, 80 and 160 MPa can be seen. Morphology of PP crystallized at 20 and 80 MPa 

consists of spherulites with distinct boundaries. According to WAXS measurements, PP 
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crystallized at these pressures contains predominantly -form. On the other hand, relatively 

rough fracture surface and indistinguishable spherulite boundaries of PP crystalized at 160 

MPa indicate dominating -form in crystalline portion. Entirely different scenario is 

manifested by LCB-PP  distinctly rough fracture surface does not show spherulitic structure. 

Such structure results from a high nucleating density, enhanced formation of -form and 

reduced grow rate of crystallites in LCB-PP [18]. It has been reported that LCB-PP consists of 

aggregates with incorporated nuclei from which the arrays grow up. The arrays contains 

probably radial (mother) lamellae which seem to be overgrown epitaxially [19]. 

 

Conclusion 

The effect of both the long chain branching and a high pressure on crystallization behaviour 

and structure of PP is studied in this work. Pressure-volume-temperature technique was used 

for a high pressure crystallization (20, 40, 80, 120 and 160 MPa) at constant cooling rate of 5 

°C min-1 of linear and long chain branched polypropylene. The results show that under low 

pressure LCB-PP crystallizes easily than PP due to higher nucleating density arising from 

molecular structure. The opposite situation is observed at high pressures (120 and 160 MPa): 

negative effect of long chain branches on regularity of backbone manifests itself in lower 

crystal growth rate of LCB-PP and overall faster crystallization of PP. 

As for polymorphic composition the results show that prepared samples consist of α- and γ-

forms, while β-form is not present. γ-form content increases with rising pressure in both PP 

and LCB-PP. LCB-PP can easily crystallize into γ-form and reaches 100 % at pressure 120 

and 160 MPa.  

Differential scanning calorimetry shows that the melting peak broadens and even splits in 

LCB-PP with increasing crystallization pressure, which reflects the presence of γ-form. PP 

possesses systematically higher values of melting temperature as compared to LCB-PP. 

Scanning electron microscopy shows that the structure of PP consists of spherulites, however, 

their boundaries can be clearly distinguished only at low crystallization pressure. On the 

contrary, morphology of LCB-PP does not show typical spherulitic structure and the 

crystallites are significantly smaller. 
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Table 1 Crystallization temperatures (Tc) of PP and LCB-PP crystallized at various pressures 
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Pressure /MPa PP Tc /°C LCB-PP Tc/°C 

20 123 136 

40 126 142 

80 137 155 

120 172 165 

160 193 181 

 

 

Table 2 Crystallinity (Xc) and relative content of γ-form (G) of PP and LCB-PP crystallized at 

various pressures 

Pressure/MPa 
PP LCB-PP 

Xc/% G/% Xc/% G/% 

20 54 10 63 30 

40 57 17 57 55 

80 49 46 55 82 

120 47 71 57 100 

160 49 83 58 100 

 

Fig. 1 The dependence of specific volume on temperature of PP crystallized at various 

pressures 
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Fig. 2 The dependence of specific volume on temperature of LCB-PP crystallized at various 

pressures 

 

 

Fig. 3 Crystallization temperatures of PP and LCB-PP crystallized at various pressures 

 

 

Fig. 4 Diffractograms of PP samples crystallized at various pressures 
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Fig. 5 Diffractograms of LCB-PP samples crystallized at various pressures 

 

 

Fig. 6 Crystallinity and relative content of γ-form of PP and LCB-PP crystallized at various 

pressures 

 

Fig. 7 DSC heating curves of PP crystallized at various pressures 
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Fig. 8 DSC heating curves of LCB-PP crystallized at various pressures 

 

 

Fig. 9 The evolution of melting temperature of PP and LCB-PP crystallized at various 

pressures 
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Fig. 10 SEM morphology of PP (up) and LCB-PP (down) samples crystallized at 20, 80 and 

160 MPa 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure Click here to access/download;Figure;Fig1.tif

https://www.editorialmanager.com/jtac/download.aspx?id=570566&guid=306f74e3-7c89-4789-a6b4-4e3d1e17f825&scheme=1
https://www.editorialmanager.com/jtac/download.aspx?id=570566&guid=306f74e3-7c89-4789-a6b4-4e3d1e17f825&scheme=1


Figure Click here to access/download;Figure;Fig2.tif

https://www.editorialmanager.com/jtac/download.aspx?id=570567&guid=ac27e632-e2e8-4978-b82f-9a667a957f92&scheme=1
https://www.editorialmanager.com/jtac/download.aspx?id=570567&guid=ac27e632-e2e8-4978-b82f-9a667a957f92&scheme=1


Figure Click here to access/download;Figure;Fig3.tif

https://www.editorialmanager.com/jtac/download.aspx?id=570568&guid=dded92a4-2279-458a-848d-01fe2460c674&scheme=1
https://www.editorialmanager.com/jtac/download.aspx?id=570568&guid=dded92a4-2279-458a-848d-01fe2460c674&scheme=1


Figure Click here to access/download;Figure;Fig4.tif

https://www.editorialmanager.com/jtac/download.aspx?id=570569&guid=fd7dff32-1401-4c96-a559-4545a6392364&scheme=1
https://www.editorialmanager.com/jtac/download.aspx?id=570569&guid=fd7dff32-1401-4c96-a559-4545a6392364&scheme=1


Figure Click here to access/download;Figure;Fig5.tif

https://www.editorialmanager.com/jtac/download.aspx?id=570570&guid=d0669945-d178-44ec-9d3f-0d12f90f925a&scheme=1
https://www.editorialmanager.com/jtac/download.aspx?id=570570&guid=d0669945-d178-44ec-9d3f-0d12f90f925a&scheme=1


Figure Click here to access/download;Figure;Fig6.tif

https://www.editorialmanager.com/jtac/download.aspx?id=570571&guid=2506cfd8-4802-408f-a08a-db4b0c02957f&scheme=1
https://www.editorialmanager.com/jtac/download.aspx?id=570571&guid=2506cfd8-4802-408f-a08a-db4b0c02957f&scheme=1


Figure Click here to access/download;Figure;Fig7.tif

https://www.editorialmanager.com/jtac/download.aspx?id=570572&guid=0a120195-3a39-452a-a0bb-987da20e368c&scheme=1
https://www.editorialmanager.com/jtac/download.aspx?id=570572&guid=0a120195-3a39-452a-a0bb-987da20e368c&scheme=1


Figure Click here to access/download;Figure;Fig8.tif

https://www.editorialmanager.com/jtac/download.aspx?id=570573&guid=68dbce76-6d69-4b71-a0c8-5a20b1af8259&scheme=1
https://www.editorialmanager.com/jtac/download.aspx?id=570573&guid=68dbce76-6d69-4b71-a0c8-5a20b1af8259&scheme=1


Figure Click here to access/download;Figure;Fig9.tif

https://www.editorialmanager.com/jtac/download.aspx?id=570574&guid=ad7b5211-992f-4db3-9fdb-05412fc7dfc5&scheme=1
https://www.editorialmanager.com/jtac/download.aspx?id=570574&guid=ad7b5211-992f-4db3-9fdb-05412fc7dfc5&scheme=1


Figure Click here to access/download;Figure;Fig10.jpg

https://www.editorialmanager.com/jtac/download.aspx?id=570575&guid=d7bb1f81-1952-49a1-b2d0-0109fb15d988&scheme=1
https://www.editorialmanager.com/jtac/download.aspx?id=570575&guid=d7bb1f81-1952-49a1-b2d0-0109fb15d988&scheme=1

