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Abstract. Mooney-Rivlin is the most frequently used model from all models used for mechanical 
characterization of the hyperelestic materials. Simplicity, applicability in a large range of strains are 
the key reasons for regular use of this model. However, depending on the number of parameters, the 
Mooney model can take several forms. While, nine parameter being the highest order noticed, two 
parameter model is the most commonly found form in the current research domain.  

Since two parameter model used repetitively, we investigated the effect of incremental change in 
two material constant values one at a time, on model curve. As Drucker stability criterion is 
governing the extreme values of material parameters, changes in the model curves are discussed 
related to it.  

Resultant effects on stress-strain curves due to change in parameter values were examined and 
physical effect on the characterization is interpreted accordingly.  

Introduction 
Hyperelastic materials are mechanically characterized using one or the other material model 

selected from forty odd models available to date. As stated by Jadhav et al. [1] the selection 
depends on, application, related variables, and amount of available data.  
Though there are many models, out of all these models, Mooney-Rivlin model is a frequently used 
in hyperelastic material research [2-5]. This is partially due to the simplicity and its applicability in 
a large range of strains [6].  

When it comes to the discussion of this model, depending on the number of parameters, the 
model may take different forms and shapes. This is because, as observed by Kumar et al. [7], the 
general shape of the curve depends on the number of parameters the respective model form has. The 
Mooney- Rivlin model is a phenomenological model and material constants of the model are based 
on observation through physical response [8].  

The stability of a particular model is important to forecast the behaviour of material, and is 
described by Drucker Stability Criterion [7].  This criterion could define limitations of material 
parameters. The criteabove rion could be applied to the Mooney model too. The objective of this 
work is to examine these limitations related to the Mooney two parameter model. Furthermore, 
results of the work could be used to interpret the relationship of parameters to the material physical 
properties.    

Theory 
Hyperelastic materials exhibit large elastic strains under relatively moderate loads. They are 
considered isotropic, incompressible materials.  Stress-strain relationship of these materials shows a 
non-linear elastic characteristic and is generally independent of strain rate. Considering above 
mentioned assumptions, through stretch ratios λ1, λ2, λ3, three strain invariants could be defined as  

Materials Science Forum Submitted: 2019-11-04
ISSN: 1662-9752, Vol. 994, pp 265-271 Revised: 2019-12-16
doi:10.4028/www.scientific.net/MSF.994.265 Accepted: 2019-12-18
© 2020 Trans Tech Publications Ltd, Switzerland Online: 2020-05-27

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans
Tech Publications Ltd, www.scientific.net. (#540705377, University College London UCL, London, United Kingdom-05/07/20,04:21:51)

https://doi.org/10.4028/www.scientific.net/MSF.994.265


2
3

2
2

2
11 λλλ ++=I           (1) 

2
1

2
3

2
3

2
2

2
2

2
12 λλλλλλ ++=I          (2) 

2
3

2
2

2
13 λλλ=I            (3) 

Because of incompressibility, for such materials, the third invariant I3 is identically leads to unity.  
Stress-strain relationship of hyperelastic materials is normally found through strain energy density 
function.  The strain energy density function is usually expressed in terms of strain invariants as 
follows.  
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 Respective second Piola Kirchhoff stress is given as  

( )2,1 II
E
WS
∂
∂

=           (5) 

Mooney-Rivlin Model 
 When this is related to Mooney-Rivlin model, the generic form of it is written in terms of strain 
invariants as follows.   
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 Considering incompressibility, this could be further simplified. 
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 Though, theoretically the model could be defined for N number of terms, maximum number of 
terms found in the research sphere is restricted to nine.  
 Due to the frequent use of two parameter model, we consider it appropriate to examine the model 
with two material constants. However, similar approach could be followed in examining the other 
model forms in further research in this direction. 
 The two parameter Mooney-Rivlin model could be written as indicated in equation 8.  
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 Through this equation, the stress-strain relationships for three deformation modes could be 
obtained. Hence, uniaxial deformation can be written as in equation 9.   
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 Biaxial and Pure shear relationships are given by equations 10 and 11 respectively.  
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 The Drucker stability criterion can be stated as follows.  
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 Referring Mooney-Rivlin two parameter model, relationship between material constants could 
be stated as  

00110 ≥+CC and 001 ≥C          (13) 

Furthermore, C10 and C01 elastic coefficients can be given as  

( )01102 CCG +=           (14) 

Where, G is small-strain shear modulus or modules of rigidity. 

cMRTG /ρ=            (15) 

Furthermore, shear modules could be linked with crosslinking density through equation 15, given 
here. In the equation, R is the universal gas constant, ρ  is the density of material and T is the 
temperature, MC corresponding chain molecular wt. 

Materials and Methods 
 Initial material constant comparisons were done using readily available data. However, set of 
experiments are planned in order to get our own sets of data which could be subsequently used for 
similar comparisons. For the time being, as it is often used for hyperelastic material 
characterization, we also used Treloar data for comparison. Therefore, material used for Treloar 
tests are valid here as well. According to sources [9], unfilled natural rubber (8% Sulphur) had been 
originally used for these tests. 

Results and Discussion 
 Data fitting of two Treloar data sets, uniaxial and biaxial combined in to Mooney-Rivlin two 
parameter model, gives two values 0.1788 and 0.0037 for C10 and C01 respectively. The objective 
of this work was to oscillate the parameters intentionally around these figures and observe the 
resultant effect on model curves. Changes to the parameters were done in both plus and minus 
directions. One parameter was fixed at correct value given above while changes were done to the 
other.  Selected combinations of material constants are given in tabulated form below.  

Table 1. Constant value combinations with fixed C10 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 
C10 0.1788 0.1788 0.1788 0.1788 0.1788 0.1788 
C01 -0.003 -0.002 -0.001 0.001 0.002 0.003 

Table 2. Constant value combinations with fixed C01 

 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 Trial 12 
C10 -0.3 -0.2 -0.1 0.1 0.2 0.3 
C01 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 

 
Resultant graphs for this analysis are given in figure 1 to 6. From them, figures 1 to 3 depict the 
effect due to the variation of material constant C01 with C10 kept constant, while 4-6 give the 
results of variation of C10 with C01 constant.  
 From the first set of graphs (Fig. 1-3), at first glance one can see that, all uniaxial curves are as 
not responding to the change in parameter values. Furthermore, all curves seems somewhat 
deviating from the actual data set with the progression of strains. Considering this result, it is 
possible to mention that small changes to the parameter C01 in both plus and minus directions as 
not considerably affecting the overall results. However, when consider biaxial curves, picture is 
somewhat different. In this case, as it shows, minus values for the material constant C01 are 
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certainly creating an unstable set of curves. Though curves are unstable at the negative side, with 
constant reaching towards plus direction, the curve seems moving to the stability. When material 
constant is increased, at certain point, the graph matches actual data values. This is the point where 
the value of C01 equate the actual value obtained through data fitting. Further increase of material 
constant make the curve moving 

 
 

 
 

 
Fig. 1 - Fig. 3: Model curves related of variation in parameter C01 
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Fig. 4- Fig. 6: Model curves related of variation in parameter C10 

away from actual data set at a rapid rate. Finally, in this set of curves, pure shear curves once again 
remains unmoved by the variation in material constant value. 
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Drucker criteria is a method used to outline the limitations of parameter values. As material 
parameters varied, there is a possibility of exceeding these limits and thereby changing the stability 
of the material. Altogether, if we sum-up the Drucker criteria here, it says that C01 should be 
positive and at the same time, total of two constants should be above zero. Therefore, first condition 
seems more dominant in biaxial deformation mode. In this instance, if we are to stick to the second 
condition of the Drucker criteria, considering the value of C10, second constant C01 should not be 
less than -0.1788.  
 The remaining set of graphs which are given in figure 4 to 6 shows characteristic curves for three 
deformation modes when C10 varied while C01 kept at a constant value. As it can be seen from 
these graphs, all of them are showing unstable characteristics whenever C10 has negative values. 
However, biaxial curves in this group seems somewhat improving with larger strains. In general, all 
three deformation mode curves show similar results and a common picture for the whole range of 
values of C10.  
 When we compare deformation mode curves in this category with actual data, uniaxial and 
biaxial deformations mode curves seems similar and show nearest to the real data when C10 takes a 
value of 0.1. However, in pure shear mode, the value seems 0.2.  

Summary 
 For the two parameter Mooney-Rivlin model, a comparison was done related to variation in 
material constants. Firstly, while keeping C10 second material constant was changed. The results of 
this comparison have shown some mixed curve variations. 
 Second comparison was done by changing the constant C10 relative to the C01. However, curves 
for all three modes in this case, give unstable results whenever the constant takes a negative value. 
Finally, from overall results of comparison, the Drucker criteria could be validated. At the same 
time, it could be highlighted that there are limitations for the material constant variation. Biaxial 
mode of deformation seems predominantly affect if violated these limitations.  
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