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Abstract 

Poly(hydroxyalkanoates) are biodegradable and biocompatible polymers suitable for tissue engineering. 

Fused deposition modeling (FDM) belongs to modern rapid prototyping techniques for the fabrication of 

scaffolds. In this work, poly(3-hydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 

(PHBV) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) were tested for FDM. Thermal and 

rheological properties of industrial PHAs were compared with poly(lactic acid) (PLA), which is a 

biodegradable polymer commonly used for FDM. The massive decrease in viscosity and loss of molecular 

weight of PHB and PHBV precluded their use for FDM. On the other hand, the thermal stability of PHBH 

was comparable to that of PLA. PHBH scaffolds prepared by FDM exhibited excellent mechanical 

properties, no cytotoxicity and large proliferation of mouse embryonic fibroblast cells within 96 hours. 

The hydrolytic degradation of PHBH and PLA scaffolds tested in synthetic gastric juice for 52 days 

confirmed a faster degradation of PHBH than PLA. The decrease in molecular weight confirmed the first-

order kinetics with a slightly higher (0.0169 day–1) degradation rate constant for PHBH as compared to 
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the value (0.0107 day–1) obtained for PLA. These results indicate that PHBH could be used to produce 

scaffolds by FDM with application in tissue engineering.  

Keywords: Biodegradation, cytocompatibility, mechanical properties, poly(hydroxyalkanoates), 

poly(lactic acid), 3D printing 

1. Introduction 

Poly(hydroxyalkanoates) (PHA) are biopolymers synthesized in the form of intracellular granules by a 

wide range of microorganisms as carbon and energy storage materials. Recently, PHAs have attracted 

large attention because they meet several criteria as biomaterials and also for their potential use in drug 

delivery and tissue engineering [1, 2]. Tissue engineering is a new interdisciplinary and multidisciplinary 

field that belongs to the area of biomolecular engineering, where, despite great progress, many 

different challenges remain [3]. The basic aims of tissue engineering are the understanding of the 

structure-function relationships in normal and pathological tissues and the development of functional 

replacements and treatment/regeneration of different tissues and organs. Principally, the damaged 

tissues are combined with scaffolds, which act as templates for tissue regeneration [4]. Different 

materials are used for scaffolds production including metals, ceramic biomaterials, polymeric 

biomaterials, bioactive ceramics and glasses, and polymer/ceramic or polymer/glass composites [5-7]. 

Materials for scaffolds production should fulfill some criteria according to their application, such as 

biocompatibility, non-inflammability and often biodegradability. For example, bone regeneration, using 

tissue engineering, often requires scaffolds with high porosity and tunable bioactivity such as good cell 

adhesion, proliferation and differentiation [8-10].  

PHAs are biocompatible and biodegradable thermoplastics with good mechanical properties and tunable 

morphology that can be considered biomaterials suitable for tissue engineering applications [1, 11, 12].  

PHAs are polyesters with a different chemical nature and a wide range of physical properties. This group 

of biopolymers comprises homopolymers composed of short-chain-length monomers (scl-PHA, 2 - 5 

carbon atoms, stiff and brittle behavior), homopolymers composed of medium-chain-length monomers 

(mcl-PHA,  6 carbon atoms, elastomeric behavior), and copolymers or terpolymers containing 

heteromonomers (e.g., 3-hydroxyvalerate, 4-hydroxybutyrate, 3-hydroxyhexanoate). Chemical 

structure, molecular architecture and physical properties of microbial PHAs depend on the 

biotechnological production strategy [11, 13, 14]. Different technologies are used to produce PHA 

scaffolds. Most of those technologies are based on the dissolution of the polymer in toxic solvents such 

as salt leaching (chloroform) [15], thermally induced phase separation (chloroform and 1,4-dioxane) [16-

18], solution casting (chloroform, dichloromethane) [19-21], electrospinning (chloroform, 

dichloromethane, N,N-dimethyl formamide, 1,1,1,3,3,3-hexafluoro-2-propanol) [22-24], gas-in-oil-in-

water double emulsion with CO2 (methylene chloride) [25], and wet 3D spinning (chloroform) [26]. 

Recently, considerable solvent-free techniques have attracted great interest, like thermoforming, 

extrusion, injection molding [27, 28], selective laser sintering [29-32] and fused deposition modeling 

(FDM) [33]. Selective laser sintering (SLS) and FDM belong to 3D printing technologies; these techniques 

can produce 3D objects directly according to the individual digital designs. The principle of FDM is 

polymer extrusion and that of SLS is polymer powder bed fusion. Both methods can process 

thermoplastics and have advantages and disadvantages [34]. PHAs should be processable by both 

methods, but PHAs processing using FDM is a challenge. However, there is the problem that PHAs 

(mainly poly(3-hydroxybutyrate) (PHB)) possess low thermal stability during melt processing and are 
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degraded quickly [35]. The drop in the molecular weight can be so drastic that the final mechanical 

properties often do not fulfill the theoretical expectations. The most important challenges are the 

improvement of PHAs thermal processing window and their practical applications. In order to improve 

the melt stability of PHAs, different strategies are used, including the incorporation of stabilizers, fillers, 

crosslinking additives, and anti-hydrolysis agents or blending with other polymers. However, the 

reduction in molecular weight may still occur and this reduction will depend on the processing 

conditions.  

This study aimed to assess the thermal properties and thermal stability of commercial PHAs and their 

suitability for the processing of scaffolds by fused deposition modeling. FDM belongs to the group of 3D 

printing technologies, which enable the production of complex customized products with applications in 

medicine and pharmacy (implants, scaffolds for tissue engineering, diagnostic platforms, and drug 

delivery systems) [6]. The basis of FDM is the fusion of thermoplastic filaments and the deposition of 

molten material in a particular laydown pattern within a few minutes or hours [36]. The FDM process 

itself is proceeded by the preparation of polymer filaments of a given diameter (usually 1.75 mm) by 

extrusion. Thermoplastic polymer processed by extrusion should have adequate viscosity values and 

thermal stability. Among the conventional thermoplastics used for the production of filaments for FDM, 

the following polymers can be found: acrylonitrile butadiene styrene (ABS), polyethylene terephthalate 

(PET), poly(lactic acid) (PLA), thermoplastic elastomer (TPE), thermoplastic copolyester (TPC) and 

composites made of the polymers mentioned above reinforced with various fillers. Actually, filaments 

based on PLA and PHA blends are commercially available [37-39]. However, the type and concentration 

of the PHA employed in PLA/PHA filaments is unknown. Among the most investigated PHA, mostly 

poly(3-hydroxy butyrate) (PHB) can be found. PHB is a semi-crystalline polyester with a high degree of 

crystallinity, high brittleness and low thermal stability during melt processing [40]. The incorporation of 

PHB to PLA accelerates the crystallization and improves the processability of PLA by polymer processing 

methods such as injection molding and FDM [41]. The blending of PLA with PHB is favorable and results 

in a material with better rheological, barrier and mechanical properties compared to neat PLA or PHB 

[40, 42]. In addition to PHB, other types of PHA are also blended with PLA to improve the impact 

properties of the material, but often the chemical structure of PHA is unknown or cannot be published 

due to the limitations given by the polymer producer [43]. This research focuses on 1) investigation and 

comparison of thermal and rheological properties of different commercial PHAs, 2) evaluation of their 

suitability for FDM and 3) processing of scaffolds by FDM and assessment of their thermal properties, 

mechanical properties, cytotoxicity, and degradation in synthetic gastric juice. Since PLA belongs to the 

commonly used thermoplastic for FDM, the properties of PHA scaffolds were compared with PLA 

scaffolds.  

2. Experimental part 

2.1. Materials 

Poly(lactic acid) (PLA 2003D) with a D-isomer content of 4 %, a density of 1.24 g cm-3was purchased from 

NatureWorks, Minnetonka, MN, USA. Poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBH X131A)  with 

a density of 1.2 g cm-3 was purchased from Kanaeka Corporation, KITA-KU Osaka, Japan. 

Poly(hydroxybutyrate) (PHB Hydal) with a density of 1.1 g cm-3 was provided by Nafigate Corporation, 

Prague, Czechia. Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV, Mirel P1004) with a density of 1.3 g 

cm-3 was purchased from Telles Inc., USA. Table 1 shows molecular weight properties (Mn number–
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average and Mw weight–average), polydispersity (Đ) and melt volume rates of polymers determined in 

this study. These data were determined within this study.   

Filaments with a thickness between 1.6 – 1.75 mm were prepared by extrusion with previously dried 

polymers by FilaFab PRO 350 extruder (FD3D Innovations Limited, UK) at 150 °C (PHBH) and 185 °C (PLA) 

at 20 rpm. The scaffolds were printed with 3D printer Original Prusa I 3MK3S (Prusa Research, Czechia) 

at a nozzle temperature of 205 °C and a printing bed temperature set to 60 °C. For cytotoxicity tests, 

thermal properties and degradation in digestive fluid rectangular scaffolds of 35 21  0.34 mm were 

printed. For tensile testing and dynamic mechanical analysis, dumb-bell shaped specimens were printed. 

2.2. Characterization methods 

2.2.1 Polarized light optical microscopy (PLOM) 

A polarized light optical microscope, Olympus BX51 equipped with an Olympus SC50 digital camera and 

with a Mettler Toledo FP82 hot stage, was employed to determine the crystalline morphology of 

biopolymers. The samples were prepared by solution casting employing chloroform as a solvent, 

obtaining films with a thickness of about 50 m. Those films were sandwiched between two glass slides 

to analyze them by PLOM. Samples were first heated to 190 °C to erase their thermal history and then 

cooled down to 70 °C. The heating and cooling rates employed were 20 °C min-1.  

2.2.2 Differential scanning calorimetry  

DSC experiments were performed using a DSC 8000 (Perkin Elmer) under a nitrogen atmosphere. The 

calibration of DSC was accomplished with high purity indium. Samples of about 10 mg were hermetically 

sealed in aluminum pans. The samples were tested employing non-isothermal and isothermal 

experimental protocols.  

Non-isothermal DSC experiment was carried out heating the sample from 25 °C to 190 °C, cooling from 

190 °C (165 °C in case of PHBH) to -20 °C and heating again from -20°C to 190 °C with heating/cooling 

rates of 20 °C min-1.  

The isothermal crystallization kinetics of PHAs were determined according to the protocol developed by 

Lorenzo et al. in which the minimum isothermal crystallization temperature is first determined by trial 

and error (see more details in Ref. [44]). This temperature represents the starting point to perform the 

isothermal experiments displayed in Table 2. 

2.2.3 Thermal, rheological and mechanical properties  

Thermogravimetric analysis (TGA) was performed by TGA Q50 (TA Instruments, USA) with an airflow of 

60 mL min−1. Approximately 5 mg of the sample was sealed in an aluminum crucible and was heated 

from 25 °C to 500 °C with a heating rate of 10 °C min−1. 

Melt volume rate (MVR) of polymers was determined according to ISO 1133 (190°C, 2.16 kg) using an 

Instron Ceast ISO MF20 melt flow tester. 

The rheological characterization of PLA and PHA samples was performed employing an ARG-2 

rheometer (TA Instruments, USA) with a 25 mm parallel-plate geometry. Frequency sweeps were 

performed in the linear viscoelastic regime from 628.3 to 0.16 rad s-1. In order to analyze the thermal 

degradation of the samples during extrusion, time sweeps were carried out at 1 Hz for 40 minutes at the 

adequate temperature for each sample.  
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Mechanical properties of the extruded filaments and the FDM processed dumb-bell shape specimens 

(with the same structure as scaffolds) were measured on an Instron 3365 (Instron, USA). The gauge 

length was 20 mm and the thickness of the samples was 0.34 mm. The applied strain rate was 1 mm min 
-1. Average values of Young’s modulus (E), tensile stress at maximum (B) and tensile strain at break (B) 

were calculated from stress/strain plots of five specimens.  

Dynamic mechanical analysis (DMA) was carried out in a dynamic oscillatory mode using a DMA Q800 

(TA Instruments, USA). Strips with a width of 4 mm were cut from the dumb-bell shape specimens with a 

gauge length of 7 mm and a thickness of 0.34 mm. Viscoelastic properties such as storage modulus (E’) 

and mechanical loss factor (tan  = loss modulus/storage modulus) were determined at atmospheric air 

by applying dynamic oscillatory measurement using a frequency/strain experimental setup with the 

following conditions: isotherm at -60 °C for 10 min, heating up to 120 °C at a rate of 3 °C min-1 and 

oscillation of 1 Hz. 

2.2.4 Cytocompatibility 

Two experiments have been performed to reveal the cytocompatibility of scaffolds. Firstly, the 

cytotoxicity of extracts from scaffolds was tested to analyze the fundamental biological properties of the 

scaffolds. Subsequently, the proliferation of cells seeded on the scaffolds was determined. The 

cytotoxicity was determined using a mouse embryonic fibroblast cell line (ATCC CRL-1658 NIH/3T3, 

USA). ATCC-formulated Dulbecco's Modified Eagle's Medium (PAA Laboratories GmbH, Austria) 

containing 10% bovine calf serum (BioSera, France) and 100 U mL-1 of Penicillin/Streptomycin (GE 

Healthcare HyClone, United Kingdom) was used as the cultivation medium. The cytotoxicity test was 

performed according to the ISO standard 10992-12. Extraction was performed in chemically inert closed 

containers using aseptic techniques at 37 °C under stirring for 24 h. On day one, sample extracts were 

prepared and cells were seeded to pre-incubate in the microtitration test plates with a concentration of 

1x105 cells per mL. The cells were incubated at 37 °C in 5 % CO2 in humidified air for 24 hours. On the 

second day, the extracts were diluted with culture medium to obtain the following concentrations: 100, 

50, 25, and 10 % of parent extract. All assays were performed in quadruplets. The medium was sucked 

from plates and replaced by individual extracts. The plates with extract were incubated for 24 hours. Cell 

viability was determined by using 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium (MTT cell 

proliferation assay kit, Duchefa Biochemie, Netherlands) assay. The absorbance was measured at 570 

nm and the reference wavelength was fixed on 690 nm. The results are presented as the reduction of 

cell viability in percentage when compared to cells cultivated in medium without the extracts of the 

tested materials. The results of the cell viability were studied from the point of view of statistical 

significance by the analysis of variance employing Origin (version Origin Pro 2018 ). Differences among 

mean values were processed by the Tukey test at a level of significance of p < 0.05. The morphology of 

the cells from the culture plates was observed using an inverted Olympus phase-contrast microscope (IX 

81).  

In the proliferation tests, mouse embryonic fibroblast cell lines (ATCC CRL-1658 NIH/3T3, USA) were 

used. Before testing the proliferation, the polymer scaffolds have been sterilized by exposition to UV 

light for 30 min. Two sets of samples have been prepared: set A with non-treated scaffolds and set B 

with scaffolds coated with 0.1 % solution of gelatine. The samples were cultured in a cell suspension at 

an initial concentration of 1.105 cells mL-1.  After 90 minutes of the cells adhering, the cell suspension 

was sucked and a new culture medium was added. After 96 hours (4 days) of proliferation, the cells 

were fixed and stained with Hoechst 33258 (Molecular Probes, Carlsbad, CA) and ActinRed 555 (Life 
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Technologies, USA). Cells were incubated at 37°C in 5% CO2 in humidified air. As reference cells attached 

to the tissue culture plate was used. The morphology of the cells has been investigated using a confocal 

microscope (Olympus). 

2.2.5 Degradation of scaffolds in model digestive fluid and determination of molecular weight  

The degradation rate of the scaffolds (35  21  0.34 mm) was studied by their  incubation  (duration 52 
days) at 37 °C in synthetic gastric juice prepared according to Atkins and Peacock (pH 1.6, pepsin 0.7 U 
mg-1 ) [45]. The progress of process was monitored by periodic measurement of residual mass weight, 
average molecular weight (Mn and Mw) and the polydispersity of the scaffolds in time.   

2.2.6 Molecular weight and polydispersity determination 

Molecular weight (Mn number–average and Mw weight–average) and polydispersity (Đ = Mw/ Mn) of the 
source polymers (PLA, PHB, PHBH, PHBV) as well as the scaffolds obtained from degradation study in 
model digestive fluid was measured by size exclusion chromatography (SEC Infinity 1260 system, size 
separation by PL gel MIXED-C column, Agilent Technologies, USA) coupled with Dawn Heleos II 
multiangle light scattering (MALS) detector (Wyatt Technology, USA) and Optilab T-eEX differential 
refractometer (dRI, Wyatt Technology, USA). The individual samples were dissolved in chloroform (4 mg 
mL-1) for 3 hours at 70 °C and filtered before analyses (0.45 µm syringe filter with nylon membrane). 
Chloroform was used as eluent at a flow rate of 0.6 ml min-1, the measurement temperature was 25 °C 
and the sample injection volume was 100 µL. For each analyzed sample the measurement was 
performed in three replicates. The obtained molecular weights were calculated by ASTRA software 
(Wyatt Technology, version 6.1) using the value of the refractive index increment of PHB and PHBV 
(dn/dc = 0.0336 mL g-1), PHBH (dn/dc = 0.0462 mL g-1) and PLA (dn/dc = 0.0265 mL g-1). These values of 
dn/dc were determined by the batch measurement of the concentration dependence of the absolute 
refractive index of individual polymers (concentration in the range from 3.6 to 5.6 mg/mL) using Optilab 
T-eEX differential refractometer (dRI, Wyatt Technology, USA) equipped with syringe pump with 
adjustable flow-rate and a manual injection valve (Model R99-E, Razel Scientific).  

3. Results and discussion 

Thermal properties of polymers 

Non-isothermal crystallization 

The thermal behavior of PLA and PHA polymers were studied by non-isothermal and isothermal DSC 
experiments. The data of non-isothermal DSC are summarized in Table 3. Figure 1 shows the DSC cooling 
and second heating scans. The PLA employed in this work cannot crystallize or melt at 20 °C min-1. This 
indicates that the D-content of 4 % slows down the crystallization rate and if the material is cooled at a 
rate as fast as 20 C min-1 it remains completely amorphous [46]. The crystallization was so slow that even 
at a cooling rate of 2°C min-1 the material could not crystallize [47]. The advantage of the amorphous 
structure is that the materials have low shrinkage.  
In contrast to PLA, all investigated PHAs are semi-crystalline polyesters (Table 3). The crystallization 
behavior of PHA polymers depends on their chemical composition, the presence of additives (e.g., 
nucleating additives) and processing conditions. PHB crystallizes very slowly, as it exhibits a very small 
crystallization peak during cooling (see Figure 1a) and a cold crystallization peak during the heating scan 
(Figure 1b). This polymer shows the lowest crystallization temperature, 41.1 °C, followed by PHBH, which 
has a Tc of 82.9 °C, and finally, the sample with the highest Tc is PHBV, with a value of 101.9 °C. PLOM 
micrographs indicate that PHBH and PHBV have a much higher number of nuclei (producing much smaller 
spherulites) and this can explain their higher crystallization temperatures, as the non-isothermal 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

7 
 

crystallization temperature, when a polymer is cooled from the melt, is a function of the nucleation 
density.   
Figure 1b shows some complex bimodal melting for PHBV and PHBH, which merits an in-depth study to 

ascertain its origin, but that is outside the scope of the present work. This bimodal melting could be due 

to reorganization during the scan or the presence of two different polymorphs. In general, one would 

expect a reduction in melting point and crystallinity when PBH is randomly copolymerized with 

hydroxyvalerate or hydroxyhexanoate depending on the amount of comonomer incorporated. If the 

melting enthalpy of the second heating scan is analyzed, see Table 3, it can be observed that PHB has 

the highest melting enthalpy, whereas PHBH and PHBV show a significantly lower melting enthalpy. One 

would need to determine the copolymers composition to be able to normalize the melting enthalpies by 

PHB content to quantitatively determine the reduction in crystallinity that could be present in the 

copolymers, in comparison with PHB homopolymer. The melting point of PHBH is lower than that of PHB 

as expected; however, that of PHBV is higher for unknown reasons. 

Figure 2 shows polarized light optical micrographs of biopolymers cooled from the melt at a constant 

rate of 20 °C min-1. Spherulites are observed in all PHA samples except PLA, which is amorphous. PHB 

exhibits very large spherulites with a diameter larger than 100 micrometers. It is well known that PHB 

has very low nucleation rates, hence it can form very large spherulites (as the growth rate is much larger 

than the nucleation rate) [48]. The formation of large spherulites induces stress concentration around 

the interspherulitic regions leading to low impact resistance and brittleness [49].  

On the other hand, PHBH and PHBV contain a large number of small spherulites. Copolymerization can 

induce nucleation enhancement in random copolymers [50]. Additionally, both copolymers are obtained 

industrially and they may contain nucleating agents.  

Overall Isothermal crystallization behavior 

The results of the isothermal crystallization are listed in Table 4 below. The experimental data obtained 

by isothermal crystallization was fitted to Avrami equation [51]: 

1 − 𝑉𝑐(𝑡 − 𝑡0) = exp(−𝑘(𝑡 − 𝑡0)𝑛)                                       (1) 

where Vc is the relative volumetric transformed fraction, k is the overall crystallization rate constant and 

n is the Avrami index.   

Table 4 shows the values of Avrami fitting parameters. The Avrami index reflects the geometry of the 

crystalline structures and the kinetics of the nucleation process. If spherulitic structures are formed, i.e., 

3-dimensional structures, the Avrami index should be between 3 and 4. On the contrary, if axialites are 

constituted, 2-dimensional structures, the Avrami index takes a value between 2 and 3. If the nucleation 

is instantaneous when spherulites are formed, the Avrami index takes a value of 3, whereas if it is 

sporadic, the Avrami index should be 4. In the case of axialites, when the nucleation is instantaneous, 

the Avrami index is equal to 2, whereas if it is sporadic, it will take a value of 3.  

The values of the Avrami index obtained for PHB and PHBV were generally in a range of values that can 

be approximated to 2-4 and 3-4, respectively, as can be seen in Table 4.  The increase of the Avrami 

index with the higher crystallization temperature indicates that the morphology of crystals changes from 

axialites to spherulites as could be expected, since at higher Tc, i.e., lower supercooling, each spherulite 

can grow with less restriction (i.e., impingement with the neighboring spherulites does not occur in the 
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initial stages of the crystallization process) forming 3-dimensional structures. At low supercoolings also 

sporadic nucleation occurs, which results in Avrami index values near 4. Regarding the overall 

crystallization rate constant, as could be expected, it is reduced by increasing the crystallization 

temperature.  

One important result that can be appreciated in Table 4 for PHB, as well as for PHBV, is that the melting 

temperature values measured after the isothermal crystallization do not increase with Tc. This means 

that most probably, degradation occurred during the isothermal measurements. This is one of the 

problems associated with both PHB and PHBV, as they tend to degrade as soon as they are melted. The 

results reported in Table 4 are, therefore, influenced by degradation and cannot be used to extrapolate 

equilibrium melting temperatures. 

On the other hand, the results of Table 4 exhibit the expected trends for PHBH, as its melting point 

increases with Tc values. In fact, Figure 3 shows that the determination of the equilibrium melting 

temperature was possible by employing the Hoffman-Weeks extrapolation. A reasonable value of 156.5 

ºC was obtained, which is approximately 13 ºC higher than the highest experimental melting point 

obtained at high Tc values. This value is comparable with the value determined by Xu et al. (Tm
0 of PHBH 

= 159.4 °C) [44]. The equilibrium melting temperature of poly(hydroxyalkanoates) markedly depend on 

their chemical structure, copolymer composition and molecular weight [52, 53].  

Regarding PHBH, most Avrami index values were in a range close to 3.5, being the variation of the index 

very subtle. In this case, a spherulitic structure is most likely obtained with a nucleation process that 

becomes more sporadic increasing the Tc since the Avrami index increases. In fact, the PLOM of Figure 2 

shows very small but recognizable spherulites for PHBH after non-isothermal crystallization. The 

theoretical half crystallization times are in full agreement with the experimental half crystallization 

times, which shows that the Avrami equation can predict the overall isothermal crystallization, fitting 

very well the experimental values.  

The results of the isothermal crystallization experiments indicate that PHBH does not seem to 

experience thermal degradation, at least within the level that can be detected by DSC (especially 

considering the changes in Tm values with Tc). 

Thermal stability 

TGA was used to assess the thermal stability of polymers in air. Figure 4 shows the TGA curves of PHB, 

PHBV, PHBH and PLA up to 500 °C. The onset of thermal degradation, the temperature with the 

maximum sample weight-loss and the residual mass at 500 °C obtained from TGA curves are reported in 

Table 5. The values of the onset of thermal degradation (Tonset) show that PLA is the most stable material 

since it has the highest Tonset, 282 °C. PLA is followed by PHBH and PHB, which shows an onset of thermal 

degradation temperature of 250.9 °C and 243.1 °C. The material with lower thermal stability is PHBV 

since its thermal degradation begins at 230.1 °C, which is 51.9 °C lower than the onset degradation 

temperature of PLA. Similarly, the values of the temperatures at the maximum weight-loss rate (Tmax), 

indicate that PLA is more stable than the analyzed PHAs. PHBV and PHBH are copolymers and exhibit 

two main maximum weight-loss rate peaks. The values at the maximum weight-loss rate depend on the 

molecular weight of polymers and the presence of fillers or other additives. The values of the onset of 

thermal degradation (Tonset) show that PLA is the most stable material since it has the highest Tonset. The 

temperature with the maximum weight loss rate of PHBV is comparable with that of PLA although PHBV 
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starts to degrade at lower temperatures. PHBV is the only material that shows a residue at 500 °C, this 

residue of 2.8 % indicates the presence of a very stable additive. The presence of this additive may 

explain why the temperature at the maximum weight loss of PHBV is comparable with that of PLA. From 

the point of view of melt processing, the most indicative parameter is the onset of thermal degradation; 

according to this parameter, the thermal stability follows this order from the most stable to the least 

stable material: PLA  PHBH  PHB  PHBV. 

In order to predict the behavior of polymers during melt processing such as extrusion and FDM, 

rheological measurements were performed. It is known that the viscoelastic and mechanical properties 

of products based on biodegradable polyesters depend on the applied processing conditions (humidity, 

processing temperature, shear stress and time) and on the presence of additives [35, 54]. The 

rheological behavior of PHAs and PLA was determined at a temperature well above the melting peak 

(considering the first scan obtained by DSC), ensuring the complete melting of the sample. The same 

temperature was used for the extrusion of filaments.  

Figure 5 shows the behavior of the complex viscosity as a function of frequency. Considering the 

behavior of the polymers, the materials could be divided into two groups; the first group is constituted 

by PLA and PHBV, those polymers show a significant Newtonian behavior over a wide frequency range. 

A slight reduction of the viscosity, i.e., pseudoplasticity, is observed at frequencies above 20 rad s-1. 

PHBV shows a slight increase of the viscosity at low frequencies, which could result from the presence of 

the additive, which is able to form a percolated network, which results in a slight pseudoplastic 

behavior. If the viscosity values are compared, PHBV shows very low viscosity values, about 51 Pa s, 

therefore its melt processing without the addition of efficient stabilizers is excluded. In order to process 

the polymers by extrusion to obtain the filament or to perform FDM, the materials require some melt 

strength, with an adequate viscosity value. The viscosity of PHBV is very low, so it does not have 

adequate melt strength. Regarding the second polymer group, constituted by PHB and PHBH, they show 

a significant pseudoplastic behavior, which indicates that these materials are sensitive to processing 

conditions such as shear and frequency. PHBH shows the highest viscosity, almost 2 order of magnitudes 

higher than PLA at low frequencies. Regarding PHB, it shows a viscosity value about one order of 

magnitude higher than PLA at low frequencies.  

 

The susceptibility of PHAs to thermal degradation was further studied by carrying out three frequency 

scans in total, employing the same sample. Table 6 shows the values of the Newtonian viscosities 

determined from the three frequency sweep measurements, according to the following equation: 

𝜂´ =
𝜂0

1+(𝜔𝜆0)𝛼                                          (2) 

where 𝜂0 is the Newtonian viscosity, 𝜆0 the relaxation time and 𝛼 a non-linearity index. 

The reduction of the viscosity of PLA, PHB, PHBV and PHBH after three frequency sweep runs were 3.3 

%, 26.6 %, 22.9 % and 7.3 %, respectively.  Therefore, the most stable materials, i.e., the polymers with 

the lowest viscosity reduction, were PLA and PHBH. The reduction of viscosity results from the decrease 

of the molecular weight due to thermal degradation. 
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The reduction of viscosity was further studied by normalizing the initial complex viscosity values at t = 0 

min over time (see Figure 6). PHB and PHBV displayed a significant reduction of the viscosity for 40 

minutes. The recorded decrease in viscosity indicates that the processing of filaments from PHB and 

PHBV via the extrusion process will not be possible due to the drastic thermal degradation during melt 

processing. Regarding PHBH, in this case, there is only a slight viscosity reduction similar to that of PLA. 

Therefore, thermal processing and preparation of the filaments from PHBH should be possible without a 

severe change in molecular weight. 

 

Mechanical and viscoelastic properties of filaments and scaffolds 

Considering the thermal stability of the poly(hydroxyalkanoates) studied in this work, the most suitable 

material for the preparation of filaments and scaffolds is PHBH.  Thus, filaments for FDM made from 

PHBH have been prepared. With the PHBH filaments, the scaffolds have been prepared and the 

properties of those PHBH scaffolds have been compared with PLA scaffolds (see Figure 7).  

Table 7 summarizes the mechanical properties of filaments and scaffolds made from PHB and PLA. The 

scaffolds exhibited about 125 % (PLA) and 269 % (PHBH) higher elastic modulus than the original 

filaments. The values of the tensile strength and elongation at break of scaffolds are much lower than 

the original filaments. These changes correspond to the processing history and the geometry of the 

samples. A very important factor in polymer melt processing is the thermal stability of the polymer. 

Although it has not been tested and was not among the aims of the present study, the thermal stability 

and mechanical performance of PHAs could be improved by the addition of inorganic nanofillers such as 

silver nanoparticles, zinc oxide nanoparticles, graphene oxide (GO) or molybdenum disulfide nanosheets 

embedded with nanodiamond particles [55-58]. Recent studies showed that the incorporation of co-

dispersed nanostructures support the better distribution of nanofillers in the polymer matrix and certain 

combinations of nanofillers may involve even a synergistic effect on improving the mechanical behavior 

and antibacterial activity of the scaffolds [58, 59].  

Mechanical properties of PHBH filaments and scaffolds are lower compared to those of PLA, but it 

corresponds with their semi-crystalline state and viscoelastic behavior at room temperature. The 

stiffness of scaffolds measured at room temperature reflects the fact that PLA is amorphous and glassy 

at room temperature; hence, it has a high elastic modulus, as expected. On the other hand, PHBH is a 

semi-crystalline polymer with a lower elastic modulus, as at room temperature it is between Tg and Tm.   

DMA measurements were carried out to analyze the behavior of the viscoelastic properties of PHBH and 
PLA scaffolds in the temperature range from -20 °C to 105 °C.  The temperature-dependent curves of 
storage moduli and loss factors of PLA and PHBH scaffolds are presented in Figure 8. Storage moduli 
characterize the ability of the scaffolds to store energy and reflect their stiffness.  
As shown in Figure 8, PHBH scaffolds have about 47 % higher storage modulus than PLA scaffolds at 
temperatures below 0°C. The values of the storage moduli of both materials decreased with increasing 
temperature, as expected (Table 8). When the temperature reaches the Tg of each material, i.e., the 

temperature corresponding to the maximum of tan  or the inflection point of the elastic modulus, the 
elastic modulus drops markedly. In the case of PLA, above the Tg the material shows the typical rubbery 
behaviour with a very low storage modulus (as it is an amorphous material), however, PHBH shows a 
more gradual reduction of the storage modulus so, the material keeps some rigidity even above the Tg, 
as expected for a semicrystalline material below Tm. As shown in Figure 8, the values of loss factors 
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confirmed the different crystalline character of PLA and PHBH scaffolds. The tan  peak of PLA scaffolds 
reaches a value of about 1.8. This high value indicates an amorphous character of the sample. In 

comparison, the tan  peak of PHBH scaffolds reached a value of 0.1, which indicates a high degree of 
crystallinity since the presence of crystals hinders the mobility of polymer chains in the amorphous 

regions of the sample, which results in lower tan  values. 
 
 

Cytocompatibility 

The cytocompatibility of any biomaterial is crucial for its applicability. The absence of cytotoxicity must 

be considered as an essential property in tissue engineering. In the present study, the cytotoxicity of the 

extracts of PLA and PHBH scaffolds have been tested by MTT assay. Figure 9 shows the quantitative 

analyses of cytotoxicity of extracts of scaffolds in followed dilution with cultivation media: 10 %, 25 %, 

50 % and 100 %. All extracts received relative values of viability higher than 0.8, which means they do 

not induce any cytotoxic effect. Moreover, the statistical analysis, ANOVA, showed that all groups of 

extracts are considered to have equal variance and do not show significant differences.  

As all the prepared scaffolds do not induce the cytotoxic effect, the test of cell adhesion and 

proliferation was performed on all samples. The experiment was conducted in two sets, the adhesion 

and proliferation on A) pure scaffolds without additional surface treatment or on B) the surface of 

scaffolds which were covered by gelatine, which is commonly used material improving the initial 

adhesion of cells on the surfaces. The results are shown in Figure 10. It is clearly seen that compare to 

reference (Tissue Culture Plastic), the cells do not adhere and proliferate well on the PLA scaffolds. The 

cytocompatibility was not significantly improved even by coating with gelatine. The PHBH scaffolds 

demonstrate also very good cytocompatibility.  

As shown in Figure 10D and 10E, the number and morphology of cells were sufficiently comparable to 

reference in the case of pure PHBH as well as PHBH coated with gelatine. The results obtained correlate 

with the study by Yang et al. Their experiments have shown that PHBH promotes cell growth compared 

to PLA. Proliferation was evaluated using murine fibroblasts L929. After lipase treatment, the cells on 

the samples were able to proliferate even better [60]. Similar findings were achieved in the work of 

Shangguan et al., PHBH and PLA films were tested in this study. The proliferation of cells on PHBH was 

higher than on PLA films. In this study, the PHBH material was physically modified to improve cell 

growth. However, it was not the resultant film that was modified by UV radiation, but the powder used 

for their production [61]. Another possible surface modification of the PHA scaffolds is coating by silk 

fibroin. Silk fibroin encourages cell adhesion without altering the mechanical properties of the material 

[62]. Other researchers indicated that the biocompatibility of polymer scaffolds could be enhanced by 

the admixing of superparamagnetic Fe3O4 nanoparticles [57, 63]. Shuai et al. presented that the action 

of the magnetic field provided a more favorable physicochemical and biological microenvironment for 

cell adhesion, growth, proliferation and differentiation of polyglycolic acid/Fe3O4 scaffolds [63].  

As already mentioned, in this work the surface was modified by coating it with 0.1 % gelatine. However, 

proliferation was almost identical if the treated and untreated samples are compared. Gelatine mainly 

promotes the initial adhesion of the cells. The proliferation of NIH/3T3 cells on PHBH scaffolds was much 

better than on PLA scaffolds (see Figure 10). This shows that the materials prepared in this work can be 

applied even without further surface modification. 
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Abiotic degradation of scaffolds in model digestive fluid 

The degradation of PLA and PHBH scaffolds in synthetic gastric juice (in vitro, pH = 1.6, 37 °C) has been 
monitored for 52 days. Both PLA and PHBH are polyesters that are sensitive to hydrolysis. The key 
parameters that influence the degradation rate of aliphatic polyesters in fluids include chemical 
structure, molecular weight and distribution, sample geometry and morphology (thickness, porosity), 
processing history (crystallinity) and hydrolysis conditions [64]. The results of the mass weight and 
molecular weight changes obtained during the degradation of PLA and PHA scaffolds are displayed in 
Table 9.  
During the first twenty days, the values of the mass weight of both types of scaffolds increased slightly, 
being this increase more pronounced for PLA. It should be considered that PLA is almost completely 
amorphous and that the water absorption of the amorphous region is higher in comparison with the 
crystalline regions.  
A better way of analyzing the evolution of abiotic degradation of polyesters is to study the variation of 
molecular weight during time. The carboxylic esters bearing a tertiary beta-hydrogen start to 
decompose and the molecular weight of polymer decreases, while non-degraded polymer chains start to 
reorganize and crystallize (see Figure 11 and Table 10). Prior to degradation, the PLA scaffold had a 

specific melting enthalpy H = 2.9 J g-1, hence a very small crystallinity degree of Xc = 3.1 %. After 52 
days of abiotic degradation, the enthalpy increased to 27.2 J g-1 (Xc = 29.2 %). This indicates that 
degradation occurs during this period, as will be mentioned later, the molecular weight is reduced, 
which promotes the crystallization. However, in the case of PHBH, the degree of crystallinity of PHBH 
after 52 days of abiotic degradation increased only slightly. The similar melting enthalpy value can be 
explained considering that prior to degradation, PHBH could be near the maximum crystallization 
degree of the material.  
In the second step of degradation (after 40 days), scaffolds started to lose their mass due to the 
deterioration of crystalline regions and they were very brittle. The most relevant parameter to check if 
degradation occurs is the molecular weight of residual polymers. As can be seen in Table 9, during the 
abiotic degradation of the samples, there is a progressive reduction of the molecular weight for both 
studied polymers. The reduction of the molecular weight of the scaffolds after 52 days of incubation in 
synthetic gastric juice reached about 43.6 % for PLA scaffolds and 62.7 % for PHBH scaffolds. As was 
already described in the literature [65, 66], the hydrolytic degradation of PLA and PHB-based 
copolymers is dependent on many factors including polymer chain length, crystallinity, molecular weight 
distribution, surface pretreatment, porosity and processing conditions, but in summary the rate of the 
process can be described using a first order kinetics, according to: 
 

𝑀𝑤(𝑡) = 𝑀𝑤(0) ∙ exp (−𝑘𝐷𝜏)                                          (3) 

where Mw(0) is the molecular weight at the beginning of the experiment, kD is a degradation rate 

constant of the first order kinetic of degradation and  is the duration  scaffold degradation in gastric 

juice.  

The observed decrease of molecular weight in time for both studied scaffolds showed typical 
exponential decay, which confirmed the adequacy of using a first order kinetics for modeling polymer 
degradation in our study (see in linearized form in Fig. 12).  
The application of the kinetic model provided the value of kD = (0.0107 ± 0.0007) day–1 for PLA and 
slightly higher value of kD = (0.0169 ± 0.0030) day–1 for PHBH. These rate constants of degradation 
represent important parameters for further modeling and prediction of changes in molecular weight in 
time and for theoretical calculation of actual molecular weight of the polymer in the scaffold. The result 
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also indicates that degradation is faster in the case of PHBH scaffolds than in PLA, which could be 
advantageous for some biomedical applications. Our data are also in good agreement with the values 
published in the literature [52], where the authors used first order kinetics for degradation modeling of 
PLA, PHA and other polysaccharides hydrolysis in aqueous buffers. They obtained a value of kD = 0.0117 
day–1 for PLA and observed a faster rate of degradation for PHA-based polymers and copolymers in 
comparison with PLA, which confirms our results.  
 
Conclusions 

In this work, the suitability of different poly(hydroxyalkanoate)s with potential applications in 
biomedicine have been studied. Among the different PHAs studied, it has been found that 
poly(hydroxybutyrate-co-hydroxyhexanoate) has adequate thermal stability and rheological properties 
to be used in FDM. The assessment of PHB and PHBV thermal degradation showed that these polymers 
are susceptible and markedly degrade during repeating melt processing. The rheological and mechanical 
properties of the filaments prepared from PHBH confirmed that they are sufficient for fused deposition 
modeling.  
Scaffolds prepared from PHBH by FDM have shown good mechanical and viscoelastic properties. These 
scaffolds showed no cytotoxicity. The cytocompatibility in terms of cell proliferation showed significant 
differences as PLA scaffolds do not allow the cells to proliferate on their surfaces, while the PHBH 
scaffold surface allowed the cell proliferation comparable to tissue culture plastic. Compared to PLA 
scaffolds, PHBH promoted much higher cell proliferation and faster abiotic degradation in model 
digestive fluid. It can be concluded that PHBH possesses excellent properties to be used as material for 
scaffolds. These results illustrate that PHBH could expand the offer of biodegradable polymers used for 
fused deposition modeling, offering excellent biocompatibility and biodegradability in body fluids. 

Acknowledgments 

This work was funded through the project SoMoPro (project No. 6SA18032). This project has received 

funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie 

Skłodowska-Curie, and it is co-financed by the South Moravian Region under grant agreement No. 

665860. Authors KS and PH thank to the Czech Science Foundation (19-16861S). AJM and LS 

acknowledge funding from the Basque Government through grant IT1309-19. LS acknowledges 

postdoctoral grant from Basque Government. Note: Authors confirm that the content of this work 

reflects only the author’s view and that the EU is not responsible for any use that may be made of the 

information it contains. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

[1] J. Lim, M. You, J. Li, Z. Li, Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based 

scaffolds, Mat. Sci. Eng. C 79 (2017) 917-929. 

[2] E. Elmowafy, A. Abdal-Hay, A. Skouras, M. Tiboni, L. Casettari, V. Guarino, Polyhydroxyalkanoate 

(PHA): applications in drug delivery and tissue engineering, Expert Rev. Med. Devic. 16(6) (2019) 467-

482. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

14 
 

[3] P.X. Ma, Scaffolds for tissue fabrication, Mater. Today 7(5) (2004) 30-40. 

[4] F.J. O'Brien, Biomaterials & scaffolds for tissue engineering, Mater. Today 14(3) (2011) 88-95. 

[5] W.M. Saltzman, Biomedical Engineering: Bridging Medicine and Technology, Cambridge University 

Press, Cambridge, 2009. 

[6] H.N. Chia, B.M. Wu, Recent advances in 3D printing of biomaterials, J. Biol. Eng. 9(1) (2015) 4. 

[7] A.R. Boccaccini, J. Gough, Tissue Engineering Using Ceramics and Polymers, Woodhead Publishing 

Limited, Abington Hall, England, 2007. 

[8] C. Gao, S. Peng, P. Feng, C. Shuai, Bone biomaterials and interactions with stem cells, Bone res. 5(1) 

(2017) 1-33. 

[9] P. Feng, P. Wu, C. Gao, Y. Yang, W. Guo, W. Yang, C. Shuai, A multimaterial scaffold with tunable 

properties: toward bone tissue repair, Adv. Sci. 5(6) (2018) 1700817. 

[10] C. Shuai, Y. Xu, P. Feng, G. Wang, S. Xiong, S. Peng, Antibacterial polymer scaffold based on 

mesoporous bioactive glass loaded with in situ grown silver, Chem. Eng. J. (2019) 304-315. 

[11] M. Koller, Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial 

macromolecules for pharmaceutical and therapeutic applications, Molecules 23(2) (2018) 362/1-362/20. 

[12] A. Kovalcik, S. Obruca, I. Fritz, I. Marova, Polyhydroxyalkanoates: Their Importance and Future, 

BioResources 14(2) (2019) 2468-2471. 

[13] M. Koller, A review on established and emerging fermentation schemes for microbial production of 

Polyhydroxyalkanoate (PHA) biopolyesters, Fermentation 4(2) (2018) 30. 

[14] C. Rigouin, S. Lajus, C. Ocando, V. Borsenberger, J.M. Nicaud, A. Marty, L. Avérous, F. Bordes, 

Production and characterization of two medium-chain-length polydroxyalkanoates by engineered strains 

of Yarrowia lipolytica, Microb. Cell Fact. 18(1) (2019) 99. 

[15] K. Zhao, Y. Deng, J.C. Chen, G.-Q. Chen, Polyhydroxyalkanoate (PHA) scaffolds with good mechanical 

properties and biocompatibility, Biomaterials 24(6) (2003) 1041-1045. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

15 
 

[16] X.-Y. Xu, X.-T. Li, S.-W. Peng, J.-F. Xiao, C. Liu, G. Fang, K.C. Chen, G.-Q. Chen, The behaviour of 

neural stem cells on polyhydroxyalkanoate nanofiber scaffolds, Biomaterials 31(14) (2010) 3967-3975. 

[17] A.C. Levine, A. Sparano, F.F. Twigg, K. Numata, C.T. Nomura, Influence of cross-linking on the 

physical properties and cytotoxicity of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering, ACS 

Biomater. Sci. Eng. 1(7) (2015) 567-576. 

[18] M. You, G. Peng, J. Li, P. Ma, Z. Wang, W. Shu, S. Peng, G.-Q. Chen, Chondrogenic differentiation of 

human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA 

granule binding protein PhaP fused with RGD peptide, Biomaterials 32(9) (2011) 2305-2313. 

[19] S.-T. Cheng, Z.-F. Chen, G.-Q. Chen, The expression of cross-linked elastin by rabbit blood vessel 

smooth muscle cells cultured in polyhydroxyalkanoate scaffolds, Biomaterials 29(31) (2008) 4187-4194. 

[20] Y.-W. Wang, Q. Wu, G.-Q. Chen, Reduced mouse fibroblast cell growth by increased hydrophilicity 

of microbial polyhydroxyalkanoates via hyaluronan coating, Biomaterials 24(25) (2003) 4621-4629. 

[21] S. Rathbone, P. Furrer, J. Lübben, M. Zinn, S. Cartmell, Biocompatibility of polyhydroxyalkanoate as 

a potential material for ligament and tendon scaffold material, J. Biomed. Mater. Res. A 93(4) (2010) 

1391-1403. 

[22] E. Masaeli, P.A. Wieringa, M. Morshed, M.H. Nasr-Esfahani, S. Sadri, C.A. van Blitterswijk, L. Moroni, 

Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity, 

Nanomedicine: Nanotechnology, Biology and Medicine 10(7) (2014) 1559-1569. 

[23] T.H. Ying, D. Ishii, A. Mahara, S. Murakami, T. Yamaoka, K. Sudesh, R. Samian, M. Fujita, M. Maeda, 

T. Iwata, Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, 

bioabsorption and tissue response, Biomaterials 29(10) (2008) 1307-1317. 

[24] T. Volova, D. Goncharov, A. Sukovatyi, A. Shabanov, E. Nikolaeva, E. Shishatskaya, Electrospinning of 

polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and 

properties, J. Biomat. Sci-Polym. E. 25(4) (2014) 370-393. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

16 
 

[25] D.-X. Wei, J.-W. Dao, G.-Q. Chen, A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate 

Microspheres as Injectable Scaffolds for Tissue Regeneration, Adv. Mater. 30(31) (2018) 1802273. 

[26] C. Mota, S.Y. Wang, D. Puppi, M. Gazzarri, C. Migone, F. Chiellini, G.Q. Chen, E. Chiellini, Additive 

manufacturing of poly [(R)‐3‐hydroxybutyrate‐co‐(R)‐3‐hydroxyhexanoate] scaffolds for engineered 

bone development, J. Tissue Eng. Regen. M. 11(1) (2017) 175-186. 

[27] J.-Y. Baek, Z.-C. Xing, G. Kwak, K.-B. Yoon, S.-Y. Park, L.S. Park, I.-K. Kang, Fabrication and 

characterization of collagen-immobilized porous PHBV/HA nanocomposite scaffolds for bone tissue 

engineering, Journal of Nanomaterials 2012 (2012). 

[28] S.A. Ashter, Introduction to Bioplastics Engineering, William Andrew Publishing, Oxford, UK, 2016. 

[29] T. Pereira, M. Silva, M. Oliveira, I. Maia, J. Silva, M. Costa, R. Thiré, Effect of process parameters on 

the properties of selective laser sintered Poly (3-hydroxybutyrate) scaffolds for bone tissue engineering, 

Virtual and Physical Prototyping 7(4) (2012) 275-285. 

[30] S. Saska, L.C. Pires, M.A. Cominotte, L.S. Mendes, M.F. de Oliveira, I.A. Maia, J.V.L. da Silva, S.J.L. 

Ribeiro, J.A. Cirelli, Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) 

scaffolds functionalized with osteogenic growth peptide for tissue engineering, Mater. Sci. Eng. C 89 

(2018) 265-273. 

[31] B. Duan, W.L. Cheung, M. Wang, Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via 

selective laser sintering for bone tissue engineering, Biofabrication 3(1) (2011) 015001. 

[32] S.H. Diermann, M. Lu, G. Edwards, M. Dargusch, H. Huang, In vitro degradation of a unique porous 

PHBV scaffold manufactured using selective laser sintering, J. Biomed. Mater. Res. A 107(1) (2019) 154-

162. 

[33] W. Kosorn, M. Sakulsumbat, P. Uppanan, P. Kaewkong, S. Chantaweroad, J. Jitsaard, K. 

Sitthiseripratip, W. Janvikul, PCL/PHBV blended three dimensional scaffolds fabricated by fused 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

17 
 

deposition modeling and responses of chondrocytes to the scaffolds, J. Biomad. Mater. Res. B 105(5) 

(2017) 1141-1150. 

[34] R. Kudelski, J. Cieslik, M. Kulpa, P. Dudek, K. Zagorski, R. Rumin, Comparison of cost, material and 

time usage in FDM and SLS 3D printing methods, 2017 XIIIth International Conference on Perspective 

Technologies and Methods in MEMS Design (MEMSTECH), IEEE, 2017, pp. 12-14. 

 
[35] A. Kovalcik, K. Meixner, M. Mihalic, W. Zeilinger, I. Fritz, W. Fuchs, P. Kucharczyk, F. Stelzer, B. 

Drosg, Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate 

supernatant, Int. J. Biol. Macromol. 102 (2017) 497-504. 

[36] I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold 

architectures for tissue engineering applications, Biomaterials 23(4) (2002) 1169-1185. 

[37] J.G. Ausejo, J. Rydz, M. Musioł, W. Sikorska, M. Sobota, J. Włodarczyk, G. Adamus, H. Janeczek, I. 

Kwiecień, A. Hercog, A comparative study of three-dimensional printing directions: The degradation and 

toxicological profile of a PLA/PHA blend, Polym. Degrad. Stabil. 152 (2018) 191-207. 

[38] ColorFabb, Filaments PLA/PHA value pack, 2018. (Accessed 01.11.2018 2018). 

[39] P. Research, Filament PLA/PHA, 2019. (Accessed 01.07.2019). 

[40] S. Wang, L. Capoen, D.R. D’hooge, L. Cardon, Can the melt flow index be used to predict the success 

of fused deposition modelling of commercial poly (lactic acid) filaments into 3D printed materials?, 

Plastics, Rubber and Composites 47(1) (2018) 9-16. 

[41] A.F. Balogová, R. Hudák, T. Tóth, M. Schnitzer, J. Feranc, D. Bakoš, J. Živčák, Determination of 

geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for 

urethral substitution, J. Biotechnol. 284 (2018) 123-130. 

[42] I. Armentano, E. Fortunati, N. Burgos, F. Dominici, F. Luzi, S. Fiori, A. Jiménez, K. Yoon, J. Ahn, S. 

Kang, Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase 

systems, Express Polym. Lett. 9 (7) (2015) 583-596. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

18 
 

[43] J.V. Ecker, I. Burzic, A. Haider, S. Hild, H. Rennhofer, Improving the impact strength of PLA and its 

blends with PHA in fused layer modelling, Polym. Test. 78 (2019) 105929. 

[44] A.T. Lorenzo, M.L. Arnal, J.J. Sánchez, A.J. Müller, Effect of annealing time on the self-nucleation 

behavior of semicrystalline polymers, J. Polym. Sci. Pol. Phys. 44(12) (2006) 1738-1750. 

[45] T.W. Atkins, S.J. Peacock, In vitro biodegradation of polyhydroxybutyrate-hydroxyvalerate 

microcapsules exposed to Hank's buffer, newborn calf serum, pancreatin and synthetic gastric juice, J. 

Microencapsul. 14(1) (1997) 35-49. 

[46] A.J. Müller, M. Ávila, G. Saenz, J. Salazar, Crystallization of PLA-based Materials, in: A. Jiménez, M.A. 

Peltzer, R.A. Ruseckaite (Eds.), Poly(lactic acid) Science and Technology: Processing, Properties, Additives 

and Applications, RSC Polymer Chemistry Series, Cambridge, 2015, pp. 66-98. 

[47] A. Greco, A. Maffezzoli, Rotational moulding of poly-lactic acid, AIP Conference Proceedings, AIP 

Publishing, 2016, p. 060007. 

[48] P. Barham, A. Keller, E. Otun, P. Holmes, Crystallization and morphology of a bacterial 

thermoplastic: poly-3-hydroxybutyrate, J. Mater. Sci. 19(9) (1984) 2781-2794. 

[49] E. Ten, Jiang, L, Zhang, J., Wolcott, M.P., Mechanical performance of polyhydroxylalkanoates (PHA)-

based biocomposites, in: M. Misra, Pandey, J.K., Mohanty, A. (Ed.), Biocomposites: Design and 

Mechanical Performance, Elsevier Science, Cambridge UK, 2015, p. 39. 

[50] M. Safari, A. Mugica, M. Zubitur, A. Martínez de Ilarduya, S. Muñoz-Guerra, A.J. Müller, Controlling 

the Isothermal Crystallization of Isodimorphic PBS-ran-PCL Random Copolymers by Varying Composition 

and Supercooling, Polymers 12(1) (2020) 17. 

[51] P. Xu, Y. Cao, P. Lv, P. Ma, W. Dong, H. Bai, W. Wang, M. Du, M. Chen, Enhanced crystallization 

kinetics of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanate) with structural 

optimization of oxalamide compounds as nucleators, Polym. Degrad. Stabil. 154 (2018) 170-176. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

19 
 

[52] S.J. Organ, P.J. Barham, On the equilibrium melting temperature of polyhydroxybutyrate, Polymer 

34(10) (1993) 2169-2174. 

[53] S.J. Organ, Variation in melting point with molecular weight for hydroxybutyrate/hydroxyvalerate 

copolymers, Polymer 34(10) (1993) 2175-2179. 

[54] P. Holcapkova, P. Stloukal, P. Kucharczyk, M. Omastova, A. Kovalcik, Anti-hydrolysis effect of 

aromatic carbodiimide in poly(lactic acid)/wood flour composites, Compos. Part A-Appl. S. 103 (2017) 

283-291.  

[55] S.K. Misra, S.P. Valappil, I. Roy, A.R. Boccaccini, Polyhydroxyalkanoate (PHA)/inorganic phase 

composites for tissue engineering applications, Biomacromolecules 7(8) (2006) 2249-2258.  

[56] Z. Mo, J. Lin, X. Zhang, Y. Fan, X. Xu, Y. Xue, D. Liu, J. Li, L. Hu, C. Tang, Morphology controlled 

synthesis zinc oxide and reinforcement in polyhydroxyalkanoates composites, Polym. Composites 35(9) 

(2014) 1701-1706. 

[57] N. Pramanik, J. De, R.K. Basu, T. Rath, P.P. Kundu, Fabrication of magnetite nanoparticle doped 

reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering 

application, RSC Adv. 6(52) (2016) 46116-46133. 

[58] P. Feng, Y. Kong, L. Yu, Y. Li, C. Gao, S. Peng, H. Pan, Z. Zhao, C. Shuai, Molybdenum disulfide 

nanosheets embedded with nanodiamond particles: co-dispersion nanostructures as reinforcements for 

polymer scaffolds, Appl. Mater. Today 17 (2019) 216-226.  

[59] C. Shuai, W. Guo, P. Wu, W. Yang, S. Hu, Y. Xia, P. Feng, A graphene oxide-Ag co-dispersing 

nanosystem: dual synergistic effects on antibacterial activities and mechanical properties of polymer 

scaffolds, Chem. Eng. J. 347 (2018) 322-333. 

[60] X. Yang, K. Zhao, G.-Q. Chen, Effect of surface treatment on the biocompatibility of microbial 

polyhydroxyalkanoates, Biomaterials 23(5) (2002) 1391-1397. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

20 
 

[61] Y.Y. Shangguan, Y.W. Wang, Q. Wu, G.Q. Chen, The mechanical properties and in vitro 

biodegradation and biocompatibility of UV-treated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), 

Biomaterials 27, (2006) 2349-2357. 

 [62] H.-X. Yang, M. Sun, Y. Zhang, P. Zhou, Degradable PHBHHx modified by the silk fibroin for the 

applications of cardiovascular tissue engineering, ISRN Materials Science 2011, ID 389872, (2011). 

[63] C. Shuai, Y. Cheng, W. Yang, P. Feng, Y. Yang, C. He, F. Qi, S. Peng, Magnetically actuated bone 

scaffold: Microstructure, cell response and osteogenesis, Compos Part B-Eng.  (2020) 107986. 

[64] L. Avérous, Synthesis, Properties, Environmental and Biomedical Applications of Polylactic Acid, in: 

S. Ebnesajjad (Ed.), Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and 

Applications, Elsevier Science, Oxford, UK, 2013, p. 181. 

[65] B. Laycock, M. Nikolić, J.M. Colwell, E. Gauthier, P. Halley, S. Bottle, G. George, Lifetime prediction 

of biodegradable polymers, Prog. Polym. Sci. 71 (2017) 144-189. 

[66] A. Bonartsev, A. Boskhomodgiev, A. Iordanskii, G. Bonartseva, A. Rebrov, T. Makhina, V. Myshkina, 

S. Yakovlev, E. Filatova, E. Ivanov, Hydrolytic degradation of poly (3-hydroxybutyrate), polylactide and 

their derivatives: kinetics, crystallinity, and surface morphology, Mol. Cryst. Liq. Cryst. 556(1) (2012) 288-

300. 

 

 

Table 1 

Molecular weight, polydispersity and melt volume rates (MVR) of polymers.  

Sample Mn 

(kDa) 
Mw 

(kDa) 
Đ MVR at 190°C, 2.16 kg 

(cm3 10 min-1) 
      

PLA 2003D 

 

85  2 98  2 1.15 13.3  1 

PHB Hydal 

 

299  3 350  3 1.17 nd 
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PHBV, Mirel P1004 

 

105  3 290  4 2.76 108.9  3 

PHBH X131A 

 

121  1 163  4 1.35  18.3  2 

nd – not determined 

 

 

Table 2 

Conditions for isothermal crystallization kinetics study by DSC; Tc – crystallization temperature. 

Sample 1st step 2nd step 3rd step 4th step 5th step 

PHB Heating  
25 → 190 °𝐶 
at 20 °C min-1 

Holding 
3 min at 
190 °C 

Cooling 
190 °𝐶 → 𝑇𝑐 
at 60 °C min-1 
𝑇𝑐 = 81 − 89 °𝐶 

 

Holding step for 
enough time to 
allow the sample to 
complete 
isothermal 
crystallization 

Heating  
𝑇𝑐 → 190 °𝐶 

at 20 °C min-1 
in order to record the 
melting behavior after 
the isothermal 
crystallization 

PHBV Heating  
25 → 165 °𝐶 
at 20 °C min-1 
 

Holding 
3 min at 
190 °C 

Cooling 
190 °𝐶 → 𝑇𝑐 
at 60 °C min-1 
𝑇𝑐

= 117 − 128 °𝐶 
 
 

Holding step for 
enough time to 
allow the sample to 
complete 
isothermal 
crystallization 

Heating  
𝑇𝑐 → 190 °𝐶 

at 20 °C min-1 
in order to record the 
melting behavior after 
the isothermal 
crystallization 

PHBH Heating  
25 → 165 °𝐶 
at 20°C min-1 
 
 
 

Holding 
3 min at 
190 °C 

Cooling 
165 °𝐶 → 𝑇𝑐 
at 60 °C min-1 
𝑇𝑐

= 106 − 117 °𝐶 
 
 

Holding step for 
enough time to 
allow the sample to 
complete 
isothermal 
crystallization 

Heating  
𝑇𝑐 → 165 °𝐶 

at 20 °C min-1 
in order to record the 
melting behavior after 
the isothermal 
crystallization 

 

 

Table 3 

Differential scanning calorimetry data of PLA and PHAs. 

 1st heating cycle Cooling cycle 2nd heating cycle 
Sample Tm  

(°C) 
Hm  
(J g-1) 

Tc  
(°C) 

Hc  
(J g-1) 

Tg 
(°C) 

Tcc  
(°C) 

Hcc  
(J g-1) 

Tm  
(°C) 

Hm  
(J g-1) 
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PLA 151.1 34.4 - - 61.7 - - - - 
PHB 169.3 63.8 41.1 7.8 -10.2 46.4 26.4 163.7 66.9 
PHBV 148.9/169.4 32.8 101.9 36.1 -7.8 - - 155.8/167.8 30.6 
PHBH 134.7/144.4 27.2 82.9 43.4 0.7 - - 134.5/144.9 29.0 

 

 

Table 4 

Parameters of the Avrami fit obtained from the isothermal crystallization at different crystallization 

temperatures (Tc). 

Sample Avrami parameters Melting behavior after isothermal 
crystallization 

Tc  
(°C) 

n t1/2 theo 
(min) 

t1/2 exp 
(min) 

k 
(min-1) 

R2 Tm1  
(°C) 

Hm1  
(J g-1) 

Tm2  
(°C) 

Hm2  
(J g-1) 

 
PHB 
 82 2.2 3.12 2.77 0.05440 0.9987 152.0 14.0 165.2 31.0 
 83 2.6 3.58 3.36 0.02620 0.9989 151.5 13.6 165.2 30.7 
 85 2.8 6.21 6.68 0.00431 0.9999 151.5 19.4 164.3 29.0 
 86 3.2 7.40 7.61 0.00120 0.9995 151.6 17.5 164.1 30.0 
 87 3.3 9.96 9.96 0.00038 0.9984 151.6 16.7 164.1 29.2 
 88 3.5 7.24 7.47 0.00063 0.9990 151.0 18.5 163.7 28.2 
 89 4.1 8.49 9.49 0.00010 0.9949 150.9 18.7 163.5 27.5 

PHBV 117 2.9 0.91 0.90 0.90900 0.9999 159.9 26.6 166.9 3.0 
 118 3.1 1.06 1.06 0.57500 0.9999 159.2 26.8 166.5 2.5 
 119 2.9 1.18 1.17 0.43300 0.9999 158.7 27.1 166.0 2.0 
 120 3.7 1.53 1.57 0.14200 1.0000 157.2 26.6 165.4 1.5 
 121 3.6 1.83 1.87 0.07940 1.0000 156.6 26.8 164.4 1.4 
 122 3.8 2.26 2.33 0.03210 1.0000 156.1 25.7 164.1 1.2 
 123 3.8 2.81 2.91 0.01350 0.9999 155.6 25.6 163.3 0.3 
 124 3.5 3.33 3.44 0.01020 1.0000 155.3 24.7 - - 
 125 4.2 4.52 4.75 0.00129 0.9998 155.0 23.2 - - 
 127 4.1 7.63 8.03 0.00017 0.9999 154.6 21.0 - - 
 128 4.3 10.1 10.64 0.00003 0.9999 154.4 20.9 - - 

PHBH 107 3.4 3.06 3.06 0.01510 0.9998 140.1 32.8 - - 
 108 3.5 3.44 3.42 0.00936 0.9998 140.4 33.4 - - 
 109 3.5 3.82 3.79 0.00631 0.9998 140.5 33.4 - - 
 110 3.5 4.37 4.34 0.00375 0.9997 140.8 33.7 - - 
 111 3.5 4.87 4.82 0.00270 0.9997 141.3 34.4 - - 
 112 3.4 5.42 5.34 0.00210 0.9997 141.7 35.2 - - 
 113 3.5 6.13 6.10 0.00120 0.9998 142.2 36.0 - - 
 114 3.5 6.94 6.84 0.00077 0.9997 142.5 37.1 - - 
 115 3.3 7.45 7.83 0.00098 0.9995 142.9 38.2 - - 
 116 3.5 8.95 8.84 0.00030 0.9996 143.3 39.5 - - 
 117 3.7 10.62 10.51 0.00010 0.9996 143.6 40.7 - - 
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n- Avrami exponent, predicted half-time crystallization (t1/2 theo), experimental half-time crystallization 

(t1/2 exp), overall transformation constant (k) and the data correlation coefficient (R2) 

 

 

Table 5 

TGA data of PLA, PHB, PHBV and PHBH in air and at heating rate of 10°C min-1.  

Sample Tonset (°C) Tmax (°C) Massrest at 500°C 
(%) 

PLA 282.0 339.6 0 
PHB 243.1 276.2 0 
PHBV 230.1 286.8 and 352.8 2.8 
PHBH 250.9 276.9 and 318.0 0 

 

 

Table 6 

Newtonian viscosities of PLA pellets and PHAs pellets after multiple frequency sweeps at selected 

temperatures. 

Number of runs  0 (Pa s) at 1 Hz   

PLA at 185 °C PHB at 175 °C PHBV at 175 °C PHBH at 150 °C 

1st run 213.8 1500 51.0 7609 
2nd run 209.5 1305 45.0 7423 
3rd run 206.7 1100 39.3 7052 

 

 

Table 7 

Mechanical properties of PLA and PHBH filaments (fil) and scaffolds (scaf). 

Sample E (MPa) B(MPa) B (%) 

PLA_fil 670  17.1 46.2  1.6 24  2.6 
PHBH_fil 260  28.0 22.1  4.0 22  4.0 
PLA_scaf 1510  23.7 30.4  1.7 16  0.5 
PHBH_scaf 960  80.0 18.3  2.5 11  0.9 
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Table 8 

DMA properties of PLA and PHBH scaffolds. 

 Storage modulus, E´ (MPa) at Loss factor, Tan  
Sample -20 °C 0 °C 20 °C 37 °C 60 °C Tan 1  

at max 
Tan 1  
at max (°C) 

Tan 2  
at max 

Tan 2  
at max (°C) 

PLA_scaf 2630 2460 2140 1580 10 1.84 53.2 - - 
PHBH_scaf 3870 3560 1740 1030 590 0.13 15.8 0.07 58.2 

 

 

Table 9 
Abiotic hydrolysis of biopolymers in vitro at 37 °C in synthetic gastric juice, scaffolds of 

35210.34 mm. 

Incubation time  
(days) 

Relative mass 
change related to 

the original 
weight (%) 

Mw 
(kDa) 

Đ Relative decrease 
of Mw (%) 

PLA     
0 0 101  3.32 1.54  0.49 0 

6 + 6.03  1.12 90  3.14 1.53  0.11 10.9 

20 + 7.13  0.45 77  4.90 1.52  0.07 23.8 

40 - 0.18   0.08 63  1.67 1.62  0.09 37.6 

52 - 1.16  0.15 57  1.03 1.51  0.10 43.6 

PHBH     
0 0 162  3.46 1.31  0.07 0 

6 + 1.82  0.65 109  5.87 1.51  0.09 32.6   

20 + 1.77  0.74 92  0.09 1.45  0.01 42.8  

40 - 0.08  0.03 68  1.19 1.46  0.03 57.9 

52 - 0.31  0.08 61  1.73 1.62  0.10 62.7 

 

 

Table 10 

Thermal characteristics derived from first DSC heating scan.  

Sample Tcc1 
(°C) 

Hcc1  

(J g-1) 

Tcc2 
(°C) 

Hcc2  

(J g-1) 

Tm1 
(°C) 

Tm2 
(°C) 

Tm3 
(°C) 

Hm  

(J g-1) 

aXc 
(%) 

PLA_scaf_0 days 88.1 20.5 137.1 1.8 149.2   25.2 3.1 
PLA_scaf_52 days - - - - 151.5   27.2 29.2 
PHBH_scaf_0 days - - 114.0 2.8 124.6 144.4 154.3 33.3 - 
PHBH_scaf_52 days - - - - 125.5 142.7 151.2 35.2 - 
a 𝑋𝑐 =

∆𝐻𝑚−∆𝐻𝑐𝑐

∆𝐻𝑚
0 × 100, Hm

0 of PLA = 93.0 J g-1 [39] 
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Fig. 1. DSC (a) cooling and (b) subsequent heating scans for PLA, PHB, PHBV and PHBH. [Color Figure can 

be viewed in the online issue]. 
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PLA PHB 

  
PHBV PHBH 

 

Fig. 2. Polarized Light Optical Micrographs of spherulitic morphology of poly(lactic acid) (PLA) and 

polyhydroxyalkanoates (PHB, PHBH, and PHBV). Micrographs have been taken at room temperature 

after cooling from the melt at 20°C min-1. [Color Figure can be viewed in the online issue]. 
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Fig. 3. Hoffman-Weeks plot for determination of Tm
0 of PHBH. [Color Figure can be viewed in the online 

issue]. 
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Fig. 4. Weight of the samples as a function of temperature obtained by TGA for PLA, PHB, PHBV and 

PHBH. [Color Figure can be viewed in the online issue]. 
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Fig. 5. Plots of complex viscosity versus frequency for PLA, PHAs at processing temperatures used for 

filament extrusion. [Color Figure can be viewed in the online issue]. 
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Fig. 6. Evolution of complex viscosity, * (t)/ *0 (t=0) versus time of PLA, PHB, PBHV and PHBH. [Color 

Figure can be viewed in the online issue]. 
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Fig. 7. 3D printed (a) PHBH scaffolds and (b) PLA scaffolds. [Color Figure can be viewed in the online 

issue]. 

 

Fig. 8. Temperature dependence of storage moduli and loss factors of PLA and PHBH scaffolds. [Color 

Figure can be viewed in the online issue]. 
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Fig. 9. Relative number of viable cells compared to reference according to ISO 10993-5 standard. The 

dashed line highlights the critical viability to be assessed according to requirements of EN ISO 10993-5, 

where viability > 0.8 means no cytotoxicity. [Color Figure can be viewed in the online issue]. 
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Fig. 10. Micrographs of NIH/3T3 cultivated directly on PLA and PHBH scaffolds. A) Reference; B) PLA; C) 

PLA coated with gelatine; D) PHBH; E) PHBH coated with gelatine. [Color Figure can be viewed in the 

online issue]. 
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Fig. 11. DSC first heating scans of scaffolds before (0 days) and after abiotic degradation (52 days) in the 

synthetic gastric juice. [Color Figure can be viewed in the online issue]. 
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Fig. 12. Linearized model of first-order kinetics applied on degradation of PHBH and PLA. [Color Figure 

can be viewed in the online issue]. 
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Graphical abstract 

 

Highlights 

 PHBH displayed thermal stability and rheological properties comparable with PLA 

 PHBH scaffolds were prepared by fused deposition modeling 

 PHBH scaffolds displayed remarkable mechanical and viscoelastic properties 

 PHBH scaffolds were non-toxic and supported excellent cells proliferation 

 Satisfactory degradation rate of PHBH and PLA scaffolds in synthetic gastric juice  
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