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ABSTRACT 

In this work, stable numerical scheme has been developed for 1.5-dimensional film casting 

model of Silagy et al. (Polym Eng Sci 36:2614-2625, 1996) utilizing viscoelastic modified 

Leonov model as the constitutive equation and energy equation coupled with crystallization 

kinetics of semicrystalline polymers taking into account actual temperature as well as cooling 

rate. The model has been successfully validated on the experimental data for linear isotactic 

polypropylene taken from the open literature. Drawing distance, draw ratio, heat transfer 

coefficient and die exit melt temperature were systematically varied in the utilized model in 

order to understand the role of process conditions on the neck-in phenomenon (unwanted film 

width shrinkage during stretching in the post die area) and crystalline phase development during 

flat film production. It is believed that the utilized numerical model together with suggested 

stable numerical scheme as well as obtained research results can help to understand a processing 

window for the production of flat porous membranes from linear polypropylene considerably. 
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1 INTRODUCTION 

For the production of transparent packaging materials via a cast film process, high demands 

are required on the optical properties of the manufactured thin films, which can be achieved by 

the use of wide extrusion dies, very high processing temperatures and short stretching distances 

minimizing the neck-in phenomenon and related dog-bone defect. The film cooling is not 

sufficient and the temperature field is rather uniform in this spatial configuration. It was shown 

in early studies devoted to the heat transfer in film casting, [1–3] and [4] (measured temperature 

drop by IR camera was less than 15°C), that such flows can be viewed as the isothermal. On the 

other hand, if the stretching distance increases too much, the film temperature decreases, melt 

viscosity increases and temperature and/or stress induced crystallization may start to occur, 

which can influence the process considerably. Effect of the temperature in film casting [5] has 

been experimentally investigated for polyethylene terephthalate (PET) polymer using 

the infrared thermography apparatus with the capability to measure the temperature variation 

in the film width and axial direction (machine direction). It was concluded that the temperature 

variations should be accounted for geometries with a large die width and take-up length greater 

than 1/10 of die width. 

There are two contradictory practices of setting up the processing conditions depending on 

whether the final film is to be used for packaging or membrane applications. Thin films for 

wrapping/packaging should possess a transparency with low haze and high clarity whereas 

precursor films for microporous membrane should contain a crystalline phase. The 

development of a crystalline phase in semi-crystalline polymers is strongly influenced by 

applied processing conditions, when under quiescent isothermal conditions of crystallization, 

the kinetics is a function of temperature whilst in a quiescent non-isothermal case, additionally, 

a rate of cooling comes into play [6]. This is especially encountered during fabrication of porous 

membranes where high cooling rates are often applied.  
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A great amount of research effort on the crystallization and flow-induced crystallization in 

the film casting process has been done by a group of Titomanlio and Lamberti [7, 8, 17, 9–16]. 

Very early crystallization models [18–20] were developed for metal materials under the 

constant temperature, that is,  a crystallization rate and thermal history is not linked together. 

Next step in the model development was an introduction of Kolmogoroff-Avrami-Evans 

equation describing the evolution of a crystalline phase through the time [19, 21–23]. Further 

works [24, 25] and [26] used an isokinetic hypothesis which accounts for a proportionality 

between a crystal nucleation and its growth rate. A quite simple determination of the model 

parameters via differential scanning calorimetry (DSC), i.e. not requiring any special apparatus, 

can be considered as a benefit of this approach. More recently, Ziabicki has introduced a model, 

which includes the transient and non-isothermal effects [27, 28]. 

The experimental investigation of crystallization during fast-cooling experiments was 

carried out [29, 30] usually by means of DSC or by using fast scanning chip calorimetry, FSC, 

allowing to reach cooling rates in order of thousands of K/s [31]. For polypropylene (PP), it has 

been shown that a high chain orientation in the melt state can lead to a production of row 

nucleated lamellar structure [32]. 

Isotactic polypropylene (iPP) is a significant commercial thermoplastic polymer with 

various industrial applications and can be considered as a good candidate for a gas separation, 

filtration, medical application, air-permeable membranes in an advanced apparel. 

In the last decades, polypropylene microporous membranes are broadly applied in the 

industry for Lithium-ion batteries in the form of separators to keep electrodes away from each 

other (avoidance of electrical short circuit) as well as to simultaneously allow a transportation 

of ionic charge carriers [33–35]. PP has certain superior properties that favors it over 

polyethylene for such a use as excellent dimensional stability at high temperatures, high melting 

temperature, higher chemical resistance and good mechanical properties. Isotactic 
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polypropylene and its inherited polymorphism enables a crystallization into different crystal 

modifications during a solidification depending on the cooling conditions [36–38]. 

Polypropylene membranes are usually fabricated by the thermal-induced phase separation, 

non-solvent-induced phase separation (using e.g. mineral fillers) and a dry process based on 

melt-stretching mechanism. In particular, the latter method, so-called MEAUS 

(melt extrusion-annealing-uniaxial stretching) technology, possesses an advantage of lower 

expenses and environmental pollution footprint since the use of solvents may be avoided. 

The fabrication process of membranes based on the melt-stretching approach can be 

applicable for semi-crystalline polymers and distinguished into three major consecutive stages: 

first, a precursor film with a lamellar crystalline structure is produced; second, the film is 

annealed to thicken lamellae and obliterate the defects of crystalline phase (an improved 

uniformity and lamellae orientation through melting and recrystallization [39]); third, stretching 

is applied upon the film at a low and high temperature to create voids due to lamellae separation 

and enlarge them into the microporous structure, respectively. To keep good dimensional 

stability over time and lower the shrinkage of the produced microporous membranes, 

an additional treatment step of heat setting [40] is usually included. During the first stage, 

the polymer characteristics and extrusion processing conditions are important in generation of 

a row-nucleated lamellar structure [41]. The polymer architecture, molecular weight and 

molecular weight distribution seem to be the key material characteristics responsible for the 

formation of an appropriate crystalline microstructure [39, 42–45] as a necessary presumption 

for creation of stretching-generated pores with even spatial distribution and suitable size. For 

the cast film processing conditions, it has been reported [46] that the increase in draw ratio and 

severe cooling conditions at the area of die exit have a significant effect on the crystal 

orientation. Further research was conducted for much lower chill roll temperatures and different 

die temperatures [47]. 
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Investigation of a crystallization development/flow-induced crystallization by means of the 

simultaneous modelling with process kinematic equations has already been conducted in 

the field of fiber spinning process [48–56]; however, to our best knowledge, only sparse 

attention has been paid for the film casting process. Thus, it is not surprising that a processing 

window for the production of porous membranes, flow stability and the role of process 

parameters are not fully understood yet. In order to fill this knowledge gap, the novel 

viscoelastic film casting model utilizing 1.5 dimensional (1.5D) membrane approximation [57], 

modified Leonov model as the constitutive equation [58, 59] and energy equation coupled with 

advanced crystallization kinetics [27, 28, 60] was derived, validated and consequently used in 

the detailed parametric study. 
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2 MATHEMATICAL MODELLING 

2.1 Film casting model 

To determine basic process variables in deformation flow with a free surface in the post die 

area, the one-dimensional membrane model [57] for extrusion film casting was employed and 

numerically solved. Even though the dimensionality of the model is unity, it possesses 

the capability to predict both, the reduction in film thickness as well as film width shrinkage 

owning to assumed flow kinematics [61]. From this point of view, the model might be 

considered as a pseudo 2D or 1.5D and principal velocities (see Figure 1) are allowed to be 

varied along the axial direction as follows 

 

u u(x)

v v(x, y) yf (x)

w w(x, z) zg(x)



 

 

 (1) 

Here, velocity in axial, transversal and thickness direction is denoted as u, v and w, respectively. 

The membrane model comprises of governing equations for the continuity and momentum 

conservation that are simultaneously solved with the equation of energy and viscoelastic 

single-mode modified Leonov model as the constitutive equation.  

 

2.2 Constitutive equation 

The utilized modified Leonov model is based on heuristic thermodynamic arguments 

resulting from the theory of rubber elasticity [58, 62–66]. In this constitutive equation, a fading 

memory of the melt is determined through an irreversible dissipation process driven by the 

dissipation term, b. 
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From a mathematical viewpoint, it is relating the stress and elastic strain stored in the 

material as: 

 
1

1,c 2,c

W W
2 c c

I I


  

        

 (2) 

where τ  is the stress, and W, the elastic potential, which depends on the invariants I1,c and I2,c 

of the recoverable Finger tensor c , 

 
 

 
n 1 n 1

1,c 2,cI I3G
W 1 1 1

2 n 1 3 3

         
                           

 (3) 

where G denotes a linear Hookean elastic modulus,  and n are numerical parameters. Leonov 

assumed that the dissipative process acts to produce an irreversible rate of strain 
p

e    

 
11,c 2,c

p

I I
e b c b c

3 3

   
        

   

 (4) 

which spontaneously reduces the rate of elastic strain accumulation. Here, δ  is the unit tensor 

and b stands for dissipation function defined by Eq. 7. This elastic strain c  is related to 

the deformation rate tensor D  as follows 

 
p

c c D D c 2c e 0        (5) 

where c  is the Jaumann (corotational) time derivative of the recoverable Finger strain tensor. 

The process-specific deformation rate tensor takes the following form and contains only 

diagonal terms considering an extensional nature of the flow situation in the air gap. 

 

du dx 0 0

D 0 f (x) 0

0 0 g(x)

 
 

  
 
 

 (6) 
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In this work, the Mooney potential (i.e. n=0 in Eq. 3), and the dissipation function b proposed 

in [59] (see Eq. 7) have been employed. 

  
 

 
1,c

1,c 1,c

1,c

sinh I 31
b I exp I 3

4 I 3 1

                

 (7) 

Here,  and  are temperature independent adjustable model parameters and λ is the relaxation 

time. 

 

2.3 Continuity and momentum conservation equations 

The essential model equations in this section were transformed to the dimensionless form 

with the following convention and in accordance with the open literature [57]: the zero subscript 

and overbar sign denote initial (at the die values) and dimensionless corresponding quantity, 

respectively. Then, the dimensionless component ii of the extra stress tensor 
iiτ  writes 

 ii 0 0
ii

e L

F


   (8) 

where F is drawing force exerted onto film, e0 and L0 are half-width and half-thickness of 

the film at the die, respectively. 

Another set of dimensionless numbers is related to the film dimensions and velocities. 

 
x

x
X

 ;   
0

e
e

e
 ;   

0

L
L

L
 ;   

0

u
u

u
  (9) 

Where, x is the actual axial position in the air gap, X is the length of the air gap and u is the 

axial velocity of the film. Further dimensionless numbers express the intensity of film drawing 

as draw ratio, DR, melt elasticity as Deborah number, De, basic geometry of the process as 

aspect ratio, A, and dimensionless drawing force as E. 
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0

u(X)
DR

u
 ;   0u

De
X


 ;   

0

X
A

L
 ;   

0 0 0

1 FX

E G e L u



 (10) 

Here, melt relaxation time and elastic modulus, both at the die, is denoted as λ and G, 

respectively. 

Then, the conservation of mass under the assumption of melt incompressibility in any position 

within the drawing distance must comply following formula 

 eLu 1  (11) 

Considering the membrane approximation for a thin film in the presence of a constant drawing 

force, the momentum conservation equation yields 

  xx zz u 0      (12) 

Making use of the kinematic free-surface and stress-free surface boundary condition, 

the unknown functions in Eq. 1. (i.e. f(x) and g(x)) can be determined and the film width-stress 

relationship at given dimensionless axial position, x , Eq. 13 deduced as 

 
yy zz

xx zz

dL
A

dx

  
 

  
 (13) 

Differentiating Eqs. 11 and 12 with respect to x  variable and after algebraic rearrangement, 

the derivative of the dimensionless film half-thickness with respect to x  leads to 

 
de 1 dL 1 du

e
dx L dx u dx

 
   

 
 (14) 

Utilization of Mooney potential in the modified Leonov model constitutive equation (i.e. when 

n=0 and β≠0 in Eq. 3), the relationship between the dimensionless stress and recoverable strain 

takes the following form  

 
1

ii ii ii ii

E E E
c c c

De De De

      (15) 
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To determine the diagonal components of the recoverable strain tensor, cii, and their derivatives 

with respect to x , the membrane model and constitutive equations were linked together 

yielding following formulas 

 xx
xx x

dc 1 du 2b
2c Z

dx u dx u
   (16) 

 yy

yy y

dc 1 dL 2b
2c Z

dx L dx u
   (17) 

 zz
zz z

dc 1 de 2b
2c Z

dx e dx u
   (18) 

where the dimensionless dissipation function, b ,  and 
iZ  are defined as 

  
 

 
1,c

1,c 1,c

1,c

sinh I 31
b I exp I 3

4De I 3 1

                

 (19) 

  1 1 1 1

i ii ii ii xx yy zz xx yy zz

1
Z c c c c c c c c c

3

    
        

 
 (20) 

To complete the ensemble of equations, the express for dimensionless streamwise deformation 

rate is constituted by a combination of Eqs. 11, 12, and 15 as follows 

 
   

 

x z x z z x zz2 2

zz xx zz

zz xx
xx zz xx zz

xx zz

1 1 u dL
b Z Z Z Z b Z Z c 1

c c L dx cdu

dx c c Deu
c c c c

c c 2E

   
              

   
 

      
 

 
(21) 

Listed equations in this section, namely Eqs. 13, 14, 16, 17, 18, and 21, represent the basic 

isothermal viscoelastic 1.5D membrane model based on the constitutive equation of modified 

Leonov model and their more detail derivation can be found elsewhere [67]. In order to extend 

the model into a non-isothermal variant with the capability to predict crystallization, the energy 

equation with an appropriate crystallization kinetics has to be incorporated as described in 

the following paragraph. 
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2.4 Energy Equation 

The energy balance equation [7] takes the following form and accounts for the temperature 

change, crystallinity and flow dependency of melt viscosity. 

 
 a c

p p

2HTC T T L dXdT H

dx C m C dx

 
   (22) 

where, the L(x) is film half-width, HTC is heat transfer coefficient, Cp is specific heat capacity, 

m  is mass flow rate in quarter-cross-section, ΔH is latent heat of crystallization, T(x) and Ta is 

melt and ambient air temperature, respectively, and finally Xc(x) stands for content of 

crystallinity in the polymer volume. Heat transfer coefficient was chosen to be a constant for 

the current study as a simplification representing a total heat exchange with the surrounding 

environment. The temperature dependence of the melt relaxation time, λ, is described by 

Arrhenius form with a constant activation energy Ea as follows  

 T 0     (23) 

 
a

T

r

E 1 1
exp

R T T

  
    

  

 
(24) 

where λ0 denotes the melt relaxation time at the die exit, R is the universal gas constant and Tr 

is the reference melt temperature. 

 

Crystallization kinetics 

The crystallization kinetics model adopted in this study was originally drawn by Ziabicki 

[27, 28] and later modified by Lamberti [60]. The quiescent conditions are defined as 

 
0

m mqT T  (25) 
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where 
mT  is the melting temperature of the polymer and 

0

mqT  is the flow-induced equilibrium 

melting temperature. Since the flow-induced crystallization is not included for the current 

study, the polymer melting temperature and flow-induced equilibrium melting temperature are 

equal. 

The volume fraction of crystallized phase, χc, and function P(t) expressing the non-linear 

description of crystallinity evolution derived with respect to time as 

  
 

  cnc

c

eq

X t
t 1 exp P t

X
         (26) 

where Xeq is the equilibrium volume content of crystallinity (maximum in a crystal phase that 

melt can possess) and constant nc is of value 3 and thus nucleation is assumed as heterogeneous 

according to [28] with three-dimensional crystal evolution. After differentiation with respect to 

time, the time-evolution formula is 

 
 

       c cn n 1c

eq c

dX t dP t
X exp P t n P t

dt dt



           (27) 

In the simplified form, the model kinetics proposed by Ziabicki [27, 28] and adopted in this 

work is as follows 

    
d

K t P t
dt

  (28) 

 
  c1/n

thK K 1 TZ   
(29) 

Here, K(t) is the crystallization kinetics constant representing crystallization rate, Kth term is 

responsible for the low cooling rate crystallization, κ1, κ2, and Ec are material parameters 

determined from the isothermal test, R is universal gas constant, Bath and Aath are material 

parameters included into the model by Lamberti considering cooling history and promoting the 

model to be capable to describe a crystallinity evolution at high cooling rates. Fitting 

parameters, κ1, κ2, Ec, Bath, and Aath, for the material used in this work were determined in [60]. 
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 

 

 

 

2

m mc
th 1 22

mm

T T T TE
K exp exp

RT T T TT

   
          

 (30) 

Effect of cooling rate on the crystallization kinetics constant is covered by a non-isothermal 

function, Z, taking the form of 

 
 

 

ath

5
A

m c
ath 5

m

T E
Z B T exp

RTT T T

 
   

 
 (31) 

where, the cooling rate is marked as T , the derivative of the film temperature with respect to 

time, t. The formula for the transition from time to spatial coordinates is following 

 
dT dT

T u
dt dx

   (32) 

After its application on Eq. 27 with dimensionless transformation introduced in the previous 

section and some rearrangement, the final form of equation for the crystallinity evolution in 

dimensionless spatial coordinates demands 

 
 

    
 c cn n 1c

eq c

0

dX x dP x X
X exp P x n P x

dx dx uu



          (33) 

and semi-dimensionless form of the energy equation, Eq. 22, is then given as 

 
 a c

p p

2HTC T T LX dXdT H

dx C m C dx

 
   (34) 

 

Effect of crystallinity on viscosity 

Besides the effect of temperature on the melt relaxation time, the effect of crystallinity on 

viscosity is included into the model through the function µXc that acts directly on the initial 

elastic modulus G0; this approach was presented by Titomanlio in [68]. 

  
cX c 0G X G   (35) 



15 

 

This S-shaped function remains unity as the amount of crystallinity in volume is low and at 

a certain point starts to deviate and sharply raise simulating the phase transition from the melt 

to the solid state: 

  
cX c m

c

h
X 1 f exp

X

 
    

 
 (36) 

It is worth to note that Eq. 12 is no more globally satisfied as in previous works where 

modulus G was taken as a constant [67, 69] and must be treated as follows 

 
xx zz

xx zz

(X) (X) u(X)

xx zz
(0) (0) u(0)

d d du 0
 

 
        (37) 

 

2.5 Boundary Conditions 

Proposed model equations can be mathematically solved only if appropriate boundary 

conditions for downstream, Eq. 38, and upstream region, Eq. 39, are defined.  

  u X DR  (38) 

 

 u 0 1       e 0 1       L 0 1  

 

 
2

1

N 0
0.2

N 0
   

cX (0) 0     DIET(0) T  

(39) 

Regarding the downstream region, only the desired value of draw ratio must be prescribed that 

is satisfied by a priori unknown magnitude of the drawing force which is an object of search. 

In the upstream area (i.e. extrusion die exit region), the count of required values is broader and 

includes the definition of axial velocity, die dimensions, that is gap size and width, which are 

equal to unity due its dimensionless expression, and melt temperature, and crystallinity that is 

assumed to be zero. Due to the employed viscoelastic constitutive equations, the stress state at 
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the die has to be imposed, therefore the diagonal components of the extra stress tensor xxτ , 
yyτ

, and zzτ  are calculated through Eq. 15 utilizing cxx, cyy, and czz components of the recoverable 

strain tensor satisfying the following set of equations 

      1 1

xx zz zz xx

E
c c 1 c c 1 0

De

       
 

 (40) 

 xx yy zzc c c 1  (41) 

 
 1 1

zz yy yy yy zz zz
2

1

E c c c c c cN

N De

      
 

   (42) 

where Eq. 40 arises from the momentum conservation equation (Eq. 12), Eq. 41 from the melt 

incompressibility assumption. Eq. 43 characterizes the polymer melt stress state at the die exit 

region as the ratio of the secondary to primary normal stress difference, 2 1N N , and is 

calculated from the fully-developed slit flow at the extrusion die exit as follows 

 
   

   
zz yy2

1 xx zz

0 0N

N 0 0

  
  

  
 (43) 

 

2.6 Numerical Scheme 

To solve the full set of first-order ordinary differential equations, the numerical scheme 

based on the 4th order Runge-Kutta method implementing adaptive step-size control was 

adopted. The process of calculation is commenced by guessing a value of drawing force 

followed by iterative determination of the stress boundary condition via Eqs. 40–43. Then the 

main set of eight differential equation is solved in the following order: crystallization kinetics 

(Eq. 33), energy of equation (Eq. 34), film half-width (Eq. 13), axial velocity (Eq. 21), film 

half-thickness (Eq. 14) and components of the recoverable elastic strain tensor (Eqs. 16–18). 

Depending on wheatear the desired draw ratio is achieved, the initially estimated drawing force 
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was iteratively updated (increased/decreased) for every following calculation until convergence 

(see Figure 2) using the bisection method. Oscillations in temperature profile development, that 

were occasionally present in calculations causing the instability of computation, were fixed by 

applied stabilizing method of weighting the result of Eq. 34 for actual and previous position x. 

Due to a geometrical symmetry of the film, only 1/4th of the film cross-section was used in the 

calculation as showed in [70]. This basic computational scheme for the determination of 

unknown process variables was looped according to demands of currently conducted parametric 

studies and eventually complemented by the module for a grid linear interpolation to create 

parametric maps. The entire solver was developed in the C++ programming language and 

coupled with GNUPLOT plotting software for automatic graph generation. Typical 

computational time for one calculation of prescribed DR was about 1 minute on the PC with 

the following hardware specifications: CPU: Intel Core i7-7700 at 3.60 GHz, RAM: 32 GB 

DDR4, GPU: AMD Radeon Pro WX 4100 with 4 GB of video memory, SSD: HP Z TurboDrive 

G2 512 GB.  
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3 RESULTS AND DISCUSSION 

3.1 Model validation 

Proposed non-isothermal film casting model has been tested for well characterized linear 

isotactic PP (for the basic characteristics see Table 1) and given processing conditions [9, 10]. 

All model parameters for given material and processing conditions are summarized in Table 2 

and Table 3, respectively. In this work, single-mode modified Leonov model utilizing the 

lowest relaxation time, 0=0.01 s, which is typical for polyolefins [71, 72], was used. It was 

shown by Thete et al. [72] that utilization of lowest relaxation time in the cast film modeling 

can provide reasonable stress predictions in both, axial and transverse directions. Knowing 

Newtonian viscosity, 0=0·G0, and relaxation time at Tr=220°C, temperature independent 

modulus G0 was calculated to be 740,199 Pa. The crystallization kinetics parameters in the 

function given by Eq. 33 were set for given material according to [60], see Table 4. It was 

shown that the modulus increases significantly with the film crystallinity [7, 14, 73, 74], which 

can be taken into account during cast film modeling via Eq. 35. In this work, the adjustable 

parameters of Eq. 36 were chosen according to Table 5 in order to predict significant modulus 

increase even at very low crystallinity levels, which seems to be reasonable [7, 14]. Due to the 

fact that tested iPP melt is linear, i.e., it shows extensional strain thinning, modified Leonov 

parameters  and ,  appearing in Eq. 7 for dissipation function, were adjusted to be equal to 

0 and 0.5, respectively, whereas the parameter  in Eq. 3 was adjusted to be 0.5 (just 

between 0 and 1 meaning that the first as well as second invariant of recoverable Finger tensor 

contributes equally to the elastic potential). Deborah number at the die exit is equal to 6·10-4  

for given material and processing conditions (i.e. much lower than 0.3), which means that there 

is no role of die exit stress state on the post die calculations as shown in our previous work [69]. 

Thus, the second to first normal stress ratio at the die exit was kept the same in all 

calculations, 2 1 0 2N N .   according to [75]. The only free parameter in the presented model 
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is the heat transfer coefficient, HTC, appearing in the energy equation, Eq. 34. This parameter 

is not a priory known and thus its value was adjusted 16 J·s-1·K-1·m-2 in order to capture 

experimentally determined temperature profile between die and chill roll. Comparison between 

proposed model predictions and experimental data for linear iPP and given processing 

conditions (TDIE=200°C, De=6·10-4, DR=34.7, X=0.4 m, m =1.26·10-4 kg·s-1) is provided in 

Figure 3. As can be seen, model predictions utilizing the lowest relaxation time for film half-

width, axial velocity, temperature and crystallinity (especially at high draw distances) are in 

good agreement with the corresponding experimental data. This can be attributed to rapid 

cooling, which increases relaxation time and modulus three orders of magnitude each so that 

the longest relaxation (from reptation) is less effective in this case. The fact, that the non-

isothermal model is capable to describe experimental reality for linear iPP at given processing 

conditions justify to use the model in the detailed parametric study. 

 

3.2 Parametric study 

3.2.1 The role of heat transfer coefficient, draw and aspect ratio on the onset of crystalline 

phase in the produced film 

The key step in production of PP porous membranes is production of a precursor film with 

a row-nucleated lamellar structure [45], i.e. with shish-kebab crystalline phase created due to 

extensional flow in the post die area, which consists of an extended chain crystal (a “shish”) 

and folded chain crystals (“kebabs”) [76]. The processing window is thus the rather narrow and 

detailed role of processing conditions on the development crystalline phase in the resulting film 

is still rather unclear. In this work, the processing window is defined as the conditions (given 

by aspect and draw ratios, TDIE, and heat transfer coefficient), during which produced film 

contains non-zero crystalline phase. An example is provided in Figure 4 for one fixed heat 

transfer coefficient value 2.5 J·s-1·K-1·m-2. Here, the area above the symbols (calculated by the 

numerical model) represents the processing conditions leading to non-zero crystallinity whereas 
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space below them characterizes the region with no crystalline phase in the produced film. In 

this case, experimental process conditions used in the validation study are considered to be the 

reference. The predicted trend visualized in Figure 4 (i.e. that low draw ratios, which correspond 

to longer processing times, give rise to crystalline phase but high draw ratios do not because 

processing time is too short for crystallization) corresponds well with the experimental data 

provided in [77]. Note that numerical model predictions given by the symbols used in Figure 4 

to determine process conditions for crystalline and no-crystalline phase development are 

entitled here as the “border symbols”. 

In order to understand the role of process conditions on the onset of crystalline phase 

development in produced film, the following variables were systematically varied in particular 

ranges: aspect ratio (0.25–4), draw ratio (3–140), heat transfer coefficient (1.5–28 J·s-1·K-1·m-2) 

and die exit melt temperature (200, 225, and 250°C). The chosen ranges correspond to typical 

values used in the real production of PP porous membranes [45, 47, 78, 79]. 

Numerical model predictions for “border symbols” at given a range of processing conditions 

are visualized in Figures 5–7. As can be seen, the processing window for production of film 

containing crystalline phase is enlarged if TDIE decreases or HTC or A increases. This promotes 

to reach crystallization temperature in the film between the die and the chill roll. Interestingly, 

the relationship between A and DR defining “border symbols” for different TDIE and HTC is 

linear. This suggests that all numerically predicted data visualized in Figure 5–7 as the symbols 

can be easily approximated by a simple analytical equation. 

 

3.2.2 Analytical approximation for critical crystallization border 

The following simple analytical equation was chosen to approximate numerical solutions 

for the determination of critical border contour in A vs. DR processing diagrams visualized in 

Figures 5–7 for different TDIE and HTC. 
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   DIEk(HTC,T )

DIEA exp q(HTC,T ) DR  (44) 

where q(HTC, TDIE) and k(HTC, TDIE) are given as 

    k DIE kT

DIE k DIE kk(HTC,T ) T HTC
 

     (45) 

      DIE q DIE q q DIE qq(HTC,T ) T ln HTC T        (46) 

These equations utilize 3 independent variables (DR, HTC, and TDIE) and 8 adjustable 

parameters (αk, βk, γk, δk, αq, βq, γq, δq). Analytical equation, Eq. 44, was used to simultaneously 

fit all numerically determined “border symbols” depicted in Figures 5–7 through last square 

minimization method and obtained optimum parameters are summarized in Table 6. As it can 

be seen in Figures 5–7, an agreement between fitting lines and numerically obtained “border 

symbols” is very good. Thus, Eq. 44 together with its parameters can be considered as a reliable 

approximation of true numerical solutions of “border symbols” for linear iPP at a given range 

of processing conditions.  

 

3.2.3 Determination of processing conditions, at which the Neck-in phenomenon starts to be 

influenced by heat transfer coefficients and crystallization     

It was shown that during production of transparent flat films via cast film technology 

(i.e. at very high temperatures/draw ratios and very small die-roll distances, where no 

crystalline phase is developed) the neck in phenomenon (unwanted shrinkage of the film in the 

width direction) can be reliably predicted via isothermal simulations where the heat transfers 

and crystallization are neglected [67, 69]. It is obvious that there are processing conditions, for 

which isothermal simulations are too simplistic and therefore the neck-in phenomenon cannot 

be predicted realistically. Thus, the key question is “what are the processing conditions for 

linear iPP, at which heat transfer coefficients and crystallization starts to influence the neck-in 

phenomenon” ? In order to answer this question, DR, A, and HTC were systematically varied 

in the proposed numerical model for the reference processing conditions at the lowest 
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investigated melt temperature at the die exit, for which the need to utilize non-isothermal 

calculation is the most probable. For all investigated processing conditions, both, isothermal as 

well as non-isothermal calculations have been performed. For each simulated case, neck-in 

value at the chill roll was evaluated. If differences between neck-in values obtained from 

isothermal and non-isothermal calculations were lower than 5 %, it was considered that neck-in 

predictions from isothermal calculations were reliable and non-isothermal effects can be viewed 

as negligible. For the processing conditions, in which differences in neck-in were higher than 

5 %, it was considered that non-isothermal effects have to be included in the numerical 

simulations. Results of the performed parametric study are visualized in Figures 8–10. Here, 

the “isothermality boundary symbols” represent processing conditions, at which neck-in 

differences between isothermal and non-isothermal calculations were 5 % for given HTC value. 

The area below these symbols represents processing conditions for which isothermal 

calculations provide a good estimate for the neck-in phenomenon whereas above these symbols, 

non-isothermal effects have to be taken into account to predict neck-in reliably. For the wide 

range of HTC, it was possible to approximate numerical solutions for “isothermality boundary 

symbols” via the same set of simple analytical equations as for the critical crystallization border, 

Eqs. 44–46, but utilizing different set of parameters (αk, βk, γk, δk, αq, βq, γq, δq), which are 

summarized in Table 7. As can be seen in Figures 8–10, Eq. 44 can approximate numerical 

solutions very well for the following range of variables:  

DR 3 140  , A 0.25 4  , T 200 250   °C and HTC 4 30   J·s-1·K-1·m-2. 

 

3.2.4 Effect of A, DR, HTC, TDIE on cast film process      

In this part, A, DR, HTC, and TDIE were systematically varied in the numerical model 

considering the reference processing conditions (HTC=16 J·s-1·K-1·m-2, TDIE=200°C, DR=37.4, 
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X=0.4 m) in order to understand their effect on the dimensionless film half-width and axial 

velocity, temperature, and crystallinity; all as the function of dimensionless drawing distance. 

In the first step, the aspect ratio, A, was varied from 0.01 up to 10 (via changing drawing 

distance) keeping another reference processing conditions fixed. Results are provided in 

Figure 9. From here, it is visible that if A increases, the neck-in increases, axial velocity profile 

is changing from a convex to concave shape, film temperature decreases, and crystallinity 

increases. 

In the second step, the draw ratio, DR, was changing from 3 to 140 (via step increase in 

take-up speed). Obtained numerical results are provided in Figure 12. Obviously, an increase 

in DR leads to higher neck-in, axial film velocity, final film temperature and lower crystallinity.  

In the third step, the heat transfer coefficient, HTC, was varied from 0 to 100 J·s-1·K-1·m-2. 

As it can be seen from Figure 13, an increase in HTC causes a reduction in neck-in, the change 

of axial velocity profile from a convex to concave shape as well as decrease in film temperature.  

There is an interesting not fully intuitive relationship between HTC and film crystallinity. In 

more detail, there is a range of HTCs 0–3 J·s-1·K-1·m-2, for which the final film does not contain 

any crystalline phase. If the HTC increases above some critical value (in this case above 

3 J·s-1·K-1·m-2), film crystallinity increases, reaching the maximum and then decreasing. This 

suggests that there exists optimum HTC for given material and processing conditions, at which 

the amount of crystalline phase is maximal. 

In the final step, melt temperature at the die exit, TDIE, was varied from 150 to 300°C. 

Obtained model predictions are visualized in Figure 14. Clearly, a decrease in TDIE increases 

the neck-in and crystallinity whereas the film temperature and axial velocity are reduced.   
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3.2.5 Note on pros and cons of utilized membrane approach for cast film modeling 

Utilized a pseudo 2D or 1.5D membrane approach possessing the benefits of a reasonable 

simplicity and numerical stability. Nevertheless, the compromise made on the assumptions of 

a flow kinematics having an ability to predict the film width retraction implies certain 

drawbacks. The distribution of flow types, that is a planar and uniaxial extensional flow at the 

film center and peripheral regions, respectively, as observed in [80], is not fully covered by this 

approach due to assumed linear variation of lateral velocities [61] in a given axial position. As 

a result, the model is not capable to predict edge-bead defect (edge portions of the film are 

thicker than its central part). Assumption that the heat transfer coefficient (HTC) is constant 

during the process allows both, simple determination of HTC from the known temperature 

profile as well as straightforward parametric study to elucidate basic role of HTC. This can be 

considered as an advantage of the chosen approach. Of course, in reality, the heat transfer is 

complex, driven by a forced and natural convection as well as a heat radiation emitting from 

the film surface where change in the processing conditions (stretching distance, film speed, film 

temperature), parameters of the surrounding gas (thermal conductivity, density, viscosity, 

specific heat capacity, volumetric expansion coefficient) and used polymer (emissivity) has 

effect on the HTC. Thus, with respect to the essential 1.5D film casting model kinematics 

utilized in this study, it seems that current state of a development has approached to its limits 

and a great space and opportunity for partial improvement lays in extending the model 

considering for macromolecule orientation and flow-induced crystallization, more realistic 

description of heat transfer via variable heat transfer coefficient or incorporation of multi-mode 

approach for material description. 
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4 CONCLUSIONS 

In this work, stable numerical scheme has been developed for 1.5D film casting model of 

Silagy et al. [57] utilizing viscoelastic modified Leonov model as the constitutive equation 

[58, 59] and energy equation coupled with crystallization kinetics of semicrystalline polymers 

taking into account actual temperature as well as temperature gradient [27, 28, 60]. The model 

has been successfully validated on the experimental data for linear isotactic polypropylene 

taken from the open literature [10].  

Aspect ratio, A, (0.25–4), draw ratio, DR, (3–140), heat transfer coefficient, HTC, 

(1.5 28  J·s-1·K-1·m-2) and die exit melt temperature, TDIE, (200, 225, and 250°C) were 

systematically varied in the utilized model in order to understand the role of process conditions 

on the onset of crystalline phase development in production of iPP flat porous membranes via 

cast film process. It was found that numerically predicted critical crystallization border in 

A vs. DR dependence for given HTC and TDIE can be successfully approximated by a simple 

analytical equation.  

 Utilizing isothermal as well as non-isothermal numerical calculations, it was possible to 

determine processing conditions (in terms of DR, A, TDIE, and HTC) for linear iPP, for which 

isothermal simulations are too simplistic and therefore the neck-in phenomena cannot be 

predicted realistically. It was possible to find out suitable analytical approximation for the 

“isothermality boundary” in A vs. DR dependence for different HTCs, which is applicable 

within the following range of processing variables: DR 3 140  , A 0.25 4  , 

T 200 250   °C and HTC 4 30    J·s-1·K-1·m-2. 

Finally, the effect of A, DR, HTC, and TDIE on the dimensionless film half-width and axial 

velocity, temperature and crystallinity (all as the function of dimensionless drawing distance) 

was systematically investigated via non-isothermal simulations for linear iPP. It was found that 

neck-in can be reduced if A or DR decreases or if HTC or TDIE increases. It has also been shown 
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that produced film crystallinity increases if A increases or if DR or TDIE decreases. The most 

interestingly, it has been revealed that if the HTC increases above some critical value, film 

crystallinity increases, reaching the maximum and then decreasing. This suggests that there 

exists optimum HTC for given material and processing conditions, at which the amount of 

crystalline phase is maximal. It is believed that the utilized numerical model together with 

suggested stable numerical scheme as well as obtained research results can help to understand 

a processing window for the production of flat porous membranes from linear iPP considerably.  
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5 LIST OF SYMBOLS 

Latin Symbols Meaning Unit 

A  Aspect ratio 1 

athA  Fitting parameter in crystallization kinetics 1 

athB  Fitting parameter in crystallization kinetics s 

b  Dissipation term s-1 

b  Dimensionless dissipation term 1 

c  Recoverable Finger tensor 1 

1
c


 Inverse recoverable Finger tensor 1 

0

c  
Jaumann (corotational) time derivative of the 

recoverable Finger strain tensor 
s-1 

pC  Specific heat capacity of polymer J·kg-1·K-1 

xxc  
Normal component of the recoverable Finger tensor 

in axial x-direction 
1 

yyc  
Normal component of the recoverable Finger tensor 

in transverse y-direction 
1 

zzc  
Normal component of the recoverable Finger tensor 

in thickness z-direction 
1 

D  Deformation rate tensor s-1 

De  Deborah number 1 

DR  Draw ratio 1 

p
e  Irreversible rate of strain tensor s-1 

E  Dimensionless take-up force 1 

aE  Flow activation energy J·mol-1 

cE  Fitting parameter in crystallization kinetics K 
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e  Half-thickness of the film at any x location m 

0e  
Die half-gap (half-thickness of the film at the die 

exit) 
m 

e  
Dimensionless half-thickness of the film at any x 

location 
1 

F  Take-up force (drawing force) N 

, mf , h  
Parameters in function describing the effect of 

crystallinity on elastic modulus 
1 

 f x  Rate of deformation in transverse y-direction s-1 

G  Linear Hookean elastic modulus Pa 

0G  Linear Hookean elastic modulus at the die exit Pa 

HTC  Heat transfer coefficient J·s-1·K-1·m-2 

 g x  Rate of deformation in thickness z-direction s-1 

i  Index i, noting the spatial direction 1 

1,cI  First invariant of recoverable Finger tensor 1 

2,cI  Second invariant of recoverable Finger tensor 1 

 K t  Crystallization kinetics function s-1 

thK  Isothermal function of crystallization kinetics s-1 

k  Slope function in the suggested analytical equation 1 

L  Half-width of the film at any x location m 

0L  
Half-width of the die (half-width of the film at the 

die exit) 
m 

L  
Dimensionless half-width of the film at any x 

location 
1 

MFR , m  Mass flow rate kg·h-1 

nM  Number average molar mass g·mol-1 
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wM  Mass average molar mass g·mol-1 

1N  First normal stress difference Pa 

2N  Second normal stress difference Pa 

n  Non-linear Leonov model parameter 1 

cn  Type of crystallization growth 1 

 P t  Function of non-linear crystallinity evolution 1 

q  
Intercept function in the suggested analytical 

equation 
1 

R  Gas constant J·K-1·mol-1 

T  Rate of cooling °C·s-1 

DIET  Melt temperature at the die °C 

mT  Melting temperature of polymer °C 

0

mqT  Flow-induced equilibrium melting temperature °C 

T  Melt temperature °C 

rT  Reference temperature in the Arrhenius law °C 

u  
Axial velocity component of the film at any 

x location 
m·s-1 

u(X)  Chill roll speed m·s-1 

0u  Axial velocity component at the die exit m·s-1 

u  
Dimensionless axial velocity component of the film 

at any x location 
1 

v  
Transverse velocity component of the film at any 

x location 
m·s-1 

W  Elastic potential Pa 

w  
Thickness velocity component of the film at any 

x location 
m·s-1 
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X  Take-up length (stretching distance, air gap) m 

x  Position in axial x-direction m 

x  Dimensionless position in axial x-direction 1 

x, y, z  
Spatial coordinates in axial, transverse and thickness 

direction, respectively 
1 

cX  Crystallinity content in the polymer volume 1 

eqX  
Equilibrium level of crystallinity in the polymer 

volume 
1 

Z  Non-isothermal function of crystallization kinetics 1 

x y zZ , Z , Z  Substitution variables 1 

yyxx zz
dcdc dc

, ,
dx dx dx

 
Derivative of Finger tensor components with respect 

to dimensionless x  position 
1 

du dL de
, ,

dx dx dx
 

Derivative of dimensionless axial velocity, width 

and thickness with respect to dimensionless x  

position 

1 

cdX

dx
 

Derivative of crystallinity with respect to 

dimensionless x  position 
1 

dT

dx
 

Derivative of temperature with respect to 

dimensionless x  position 
°C 

   

Greek Symbols Meaning Unit 

k k k k

q q q q

, , , ,

, , ,

   

   
 

Fitting parameters in the suggested analytical 

equation 
1 

T  Arrhenius law parameter 1 

  Non-linear Leonov model parameter 1 

H  Crystallization latent heat kJ·kg-1 

  Unit tensor (Kronecker delta) 1 
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0  Newtonian viscosity Pa·s 

1  Fitting parameter in crystallization kinetics s-1 

2  Fitting parameter in crystallization kinetics 1 

  Melt relaxation time s 

0  Melt relaxation time at the die exit s 

cX  Effect of crystallinity on elastic modulus function 1 

  Non-linear Leonov model parameter 1 

  Non-linear Leonov model parameter 1 

P  Polymer density kg·m-3 

  Extra stress tensor Pa 

xx  Normal stress in axial x-direction  Pa 

yy  Normal stress in transverse y-direction Pa 

zz  Normal stress in thickness z-direction Pa 

xx  Dimensionless normal stress in axial x-direction 1 

yy  
Dimensionless normal stress in transverse 

y-direction 
1 

zz  Dimensionless normal stress in thickness z-direction 1 

c  Volume fraction of crystallized phase 1 
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7 TABLES 

Table 1. Basic characteristics for iPP T30G [9, 14, 17]. 

 

Mn 

(g·mol-1) 
Mw 

(g·mol-1) 
PDI 

(1) 

η0
### 

at 220°C 

(Pa·s) 

Tacticity 

(mmmm) 
Ea 

(kJ·mol-1) 

Cp
#

 

(J·Kg-1·K-1) 

ρP
#
 

(kg·m-3) 

ΔH## 

(kJ·kg-1) 

75,000 481,000 6.4 7,402 87.6% 40.092 2,200 920 209 

# – Value taken from [81] as typical value for polyolefins. 

## – Value of crystallization latent heat taken from [82] as value for fully crystalline PP. 

### – Acquired by data digitalization technique from Figure 1 in [9]. 

 

Table 2. Modified Leonov model parameters for iPP T30G at Tr=220°C. 

 

λ0 (s) G0 (Pa) ξ (1) ν (1) β (1) 

0.01 740,199 0 0.5 0.5 

 

Table 3. Summarization of processing conditions for iPP T30G taken from [10]. 

 

Ω 

(rpm) 
MFR 

(10-4 kg·s-1) 
u0 

(10-3 m·s-1) 
u(X) 

(10-3 m·s-1) 
X 

(m) 
TDIE  

(°C) 
2L0 

(m) 
2e0  

(10-4 m) 
DR  

(1) 

20 1.26 1.68 58.3 0.4 200 0.2 5 34.7 

Ambient temperature, Ta, was kept at 23°C for all numerical studies.  

 

Table 4.  Crystallization kinetics parameters for iPP T30G taken from [60]. 

 

Xeq 

(1) 
nc 
(1) 

m
T  

(K) 

Ec/R 
(K) 

κ1 
(1069 s-1) 

κ2 
(1) 

Aath 
(1) 

Bath 
(10-57 s) 

0.61 3 463.15 45,570 2.778 5.871 1.7721 3.448 

 

Table 5.  Parameters used in Eq. 36 describing effect of crystallinity on elastic modulus G. 

 

f# (1) h (1) m# (1) 

2,000 10-5 1.2 

# – Value was taken from [9]. 

 

Table 6.  Parameters used in Eq. 44 for the determination of critical crystallization border. 

 

αk (1) βk (1) γk (1) δk (1) αq (1) βq (1) γq (1) δq (1) 

−0.0058 0.4677 0.0072 −1.1269 0.0003 −1.0809 0.0086 −0.2473 
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Table 7.  Parameters used in Eq. 44 for the determination of isothermality boundary. 

 

αk (1) βk (1) γk (1) δk (1) αq (1) βq (1) γq (1) δq (1) 

0.0009 0.1900 −0.0004 0.1554 −0.0002 −0.8144 −0.0002 0.9799 
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8 FIGURES 

 

Figure 1. Schematic illustration of extrusion film casting process.  
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Figure 2. The flow diagram of implemented numerical scheme to solve the proposed film 

casting model.  
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Figure 3. Comparison between experimental data for iPP T30G (TDIE=200°C) and given 

processing conditions (De=6·10-4, DR=34.7, X=0.4 m) taken both from [10] and model 

predictions for dimensionless drawing distance variables considering constant heat transfer 

coefficient, HTC=16 J·s-1·K-1·m-2. (a) Dimensionless Final Half-width, (b) Dimensionless 

Axial Velocity, (c) Temperature, (d) Crystallinity. 

 

3c) 3d) 

3a) 3b) 
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Figure 4. Predicted processing window for production of linear iPP films with (area above 

the border symbols) and without (area below the border symbols) the crystallized phase for 

given heat transfer coefficient (HTC=2.5 J·s-1·K-1·m-2) and melt temperature at the die exit 

(TDIE=200°C). 

 

 

Crystallization 

No crystallization 
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Figure 5. Effect of draw ratio, heat transfer coefficient (see numbers in J·s-1·K-1·m-2 provided 

at each data set) and melt temperature at the die exit, TDIE=200°C, on the aspect ratio, at which 

crystallization in linear iPP film starts to occur (border predicted by a numerical model is given 

by the symbols, lines represent analytical approximation given by Eq. 44).  
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Figure 6. Effect of draw ratio, heat transfer coefficient (see numbers in J·s-1·K-1·m-2 provided 

at each data set) and melt temperature at the die exit, TDIE=225°C, on the aspect ratio, at which 

crystallization in linear iPP film starts to occur (border predicted by a numerical model is given 

by the symbols, lines represent analytical approximation given by Eq. 44). 
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Figure 7. Effect of draw ratio, heat transfer coefficient (see numbers in J·s-1·K-1·m-2 provided 

at each data set) and melt temperature at the die exit, TDIE=250°C, on the aspect ratio, at which 

crystallization in linear iPP film starts to occur (border predicted by a numerical model is given 

by the symbols, lines represent analytical approximation given by Eq. 44). 
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Figure 8. Effect of draw ratio and heat transfer coefficient (see numbers in J·s-1·K-1·m-2 

provided at each data set) on the critical aspect ratio below which the non-isothermal and 

isothermal calculations gives for linear iPP practically the same neck-in value (considering melt 

temperature at the die exit equal to 200°C, border predicted by a numerical model is given by 

the symbols, lines represent analytical approximation given by Eq. Error! Reference source not 

found.). 
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Figure 9. Effect of draw ratio and heat transfer coefficient (see numbers in J·s-1·K-1·m-2 

provided at each data set) on the critical aspect ratio below which the non-isothermal and 

isothermal calculations gives for linear iPP practically the same neck-in value (considering melt 

temperature at the die exit equal to 225°C, border predicted by a numerical model is given by 

the symbols, lines represent analytical approximation given by Eq. Error! Reference source not 

found.). 
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Figure 10. Effect of draw ratio and heat transfer coefficient (see numbers in J·s-1·K-1·m-2 

provided at each data set) on the critical aspect ratio below which the non-isothermal and 

isothermal calculations gives for linear iPP practically the same neck-in value (considering melt 

temperature at the die exit equal to 250°C, border predicted by a numerical model is given by 

the symbols, lines represent analytical approximation given by Eq. Error! Reference source not 

found.). 
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Figure 11. Effect of aspect ratio (changed via drawing distance, X) on dimensionless-drawing-

distance dependent dimensionless film half-width (top, left), dimensionless axial velocity (top, 

right), temperature (bottom, left) and film crystallinity for the linear iPP and the reference flow 

conditions (HTC=16 J·s-1·K-1·m-2, TDIE=200°C, DR=34.7). 
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Figure 12. Effect of draw ratio on dimensionless-drawing-distance dependent dimensionless 

film half-width (top, left), dimensionless axial velocity (top, right), temperature (bottom, left) 

and film crystallinity for the linear iPP and the reference flow conditions (A=4, HTC=16 J·s-

1·K-1·m-2, TDIE=200°C).  
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Figure 13. Effect of heat transfer coefficient on dimensionless-drawing-distance dependent 

dimensionless film half-width (top, left), dimensionless axial velocity (top, right), temperature 

(bottom, left) and film crystallinity for the linear iPP and the reference flow conditions (A=4, 

DR=34.7, TDIE=200°C).  
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Figure 14. Effect of melt temperature at the die exit on dimensionless-drawing-distance 

dependent dimensionless film half-width (top, left), dimensionless axial velocity (top, right), 

temperature (bottom, left) and film crystallinity for the linear iPP and the reference flow 

conditions (A=4, DR=34.7, HTC=16 J·s-1·K-1·m-2). 

 


