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ABSTRACT 

In this work, linear isotactic polypropylene (L-PP) and long-chain branched polypropylene 

miscible blend (LCB-PP), both having comparable weight average molecular weight, zero-shear 

viscosity and polydispersity index, were used to produce nonwovens via melt blown technology in 

order to understand role of long chain branching on the fiber diameter distribution. Basic 

morphological characteristics of produced nonwoven samples have been determined using digital 

image analysis of SEM images considering different magnifications to capture nanofibers as well 

as microfibers. At the same air flow rate, polymer flow rate, and temperature the average fiber 

diameters were the same, 1.6 μm, but the coefficient of variation, CV, was greater for the linear PP 

than for the blend. Material elasticity was assessed by reptation-mode relaxation time, λ, 

determined by fitting of deformation rate dependent shear viscosity by Cross and Carreau-Yasuda 

models as well as via fitting of frequency dependent loss and storage moduli master curve by a 

two-mode Maxwell model. It was found that λ is higher for LCB-PP in comparison with L-PP and 

the Cross model gives a meaningful relaxation time while the Carreau-Yasuda model does not 

despite giving a better numerical fit. Extensional rheology was assessed by the strain rate 

dependent uniaxial extensional viscosity (estimated from the entrance pressure drop using the 

Gibson method). The infinite shear to zero-shear shear viscosity ratio  /0 ratio (obtained directly 

from the shear viscosity data measured in a very wide shear rate range) was shown to be 

proportional to the maximum normalized extensional viscosity at very high extensional strain rates, 

E,/(30).  /0 was related to temperature and basic molecular characteristics of given polymers 

via simple equation. It was observed that extensional viscosity for both samples firstly decreases 

with increased extensional strain rate to its minimum value at 200 000 – 400 000 1/s, and then 

increases to plateau value, E, (corresponding to the maximum chain stretch) at about 2·106 1/s. 
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At low deformation rates, extensional viscosity is higher for LCB-PP in comparison with L-PP, 

but the trend is switched at very high deformation rates; E, (and also E, / 30) becomes lower 

for LCB-PP in comparison with L-PP. These results suggest that high stability of LCB-PP blend 

can be explained by its higher stretchability at very high deformation rates (occurring at the die 

exit where an intensive fiber attenuation takes the place) and its lower stretchability at medium and 

low deformation rates, at which melt/air inertia driven bending instability called whipping occurs. 
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INTRODUCTION 

Melt blown technology is a process, in which polymer melt is pushed through a spinnerette 

die containing hundreds or thousands small orifices (typically in the range of 9 – 100 per inch) [1 

– 4] with consequent stretching of formed fibers by hot air, which can reach speed of the sound 

[5]. Sketch of the melt blown line is provided in Figure 1. Produced fibers, typically with average 

fiber diameters about 1 – 2 m [2, 6 – 8], are collected on the suitable collector in the form of 

nonwoven textile, which is commonly used in area of medical equipment such us surgical face 

mask and gowns, drapes, filtration (air or liquid), battery separators, sorbents and wipes, protective 

overalls, face mask, hygiene (diapers, nappies, towels), biosensors, scaffolds for tissue engineering 

and many other areas [7, 9, 10]. Polypropylene is the most frequently utilized material in this 

process for its low cost, ease of processing, good mechanical properties, and chemical inertness 

[11 – 13]. There is number of unwanted flow phenomena, which significantly increases 

nonuniformity of produced polymeric fibers and/or reduces the processing window in this 

technology, namely: whipping-like motion of fibers due to turbulent air flow field [8, 14 – 24], 

fiber breakup [8, 25] (leading to melt spraying [8, 19, 22, 23, 26], formation of very short fibers – 

flies [2, 8, 23, 26 – 29 ] and generation of small isolated spherical particles [8]), jam – connecting 

two or more individual fibers together increasing resulting fiber diameter considerably, [23], die 

drool – unwanted accumulation of material at the die exit [30], secondary flow – occurrence of 

vortexes inside the die reducing the flow stability [31] and shots – creation of holes in the produced 

nonwoven textile [6, 8, 32 – 35]. 

It was found that fiber diameter distribution is well described by log-normal function [8, 

36 – 38]. There is very little knowledge on the role of polymer chain structure and rheology on the 



5 

fiber diameter distribution, especially for PPs. Nayak et al. [7] have shown that injection of air and 

water into the vent port of the extruder decreased shear viscosity and molecular weight of two 

polypropylenes (having originaly Mw = 100 875 g/mol and Mw = 77 590 g/mol) by 61.8 % – 63.4 

% and 56.6 % – 58.8 %, respectively, causing reduction in fiber diameter, down to 438 – 755 nm. 

The role of Newtonian viscosity, 0, and elasticity (captured via the longest melt relaxation time, 

) on diameter distribution of melt blown fibers was systematically studied for binary polystyrene 

blends (comprised of low molecular weight PS and different levels of high molecular weight PS) 

in [36] utilizing a single-hole melt blowing die and the same operating conditions (hole 

diameter = 0.2 mm, T~180 oC). It has been found that firstly, decrease in 0 (i.e. in the molecular 

weight) decreased average fiber diameter with little effect on coefficient of variation, CV, and 

secondly, if  became higher than a threshold value, CV was reducing while simultaneously, 

average fiber diameter was increasing. These findings have been confirmed theoretically by Zhou 

C., [39] based on 1D slender-jet approach utilizing a Giesekus (or PTT) constitutive equation and 

linear stability analysis. The authors also mentioned that “PS is not commonly used for melt blown 

nonwoven products, especially at the molecular weights considered here, due to poor solvent and 

thermal resistance and due to brittleness” [36]. This gives rise to the question, whether the obtained 

conclusions for binary PS blends are also valid for industrially important melt blown polymers 

such as PPs (linear and branched), multi-hole melt blowing dies and different processing 

conditions. Moreover, the melt elasticity was correlated with the linear viscoelasticity property 

only (i.e. with the longest relaxation time) although fiber attenuation in melt blowing is a non-

linear process associated with very high extensional strain rates (∼ 106 s-1). The authors justified 

this utilized simplification by the statement that "currently there is no extensional method available 

to quantify the non-linear rheological behavior at these high rates" [36]. Thus, utilization of 
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methodologies and parameters allowing to determine extensional rheology of melt blown polymers 

at very high deformation rates can be considered as the key step to further explore understanding 

of polymeric nanofibers formation by the melt blown technology. 

In order to understand role of long chain branching in PPs on elasticity, high extensional 

rate rheology and melt blown stability, well characterized linear polypropylene (L-PP) and long-

chain branched polypropylene (LCB-PP) blend (both having comparable molecular weight, 

polydisperzity index a zero-shear viscosity) were used to produce nonwovens with comparable 

average fiber diameter on multi-hole Reifenhäuser Reicofil pilot plant melt blown line at different 

Die-to-Colector Distances (DCDs). 

 

EXPERIMENTAL 

Materials  

In this work, linear isotactic PP (L-PP, 76k, Borflow HL504FB) and PP miscible blend (containing 

30wt% of high molecular weight branched PP Daploy WB180HMS (LCB-PP, 247k) in low 

molecular weight linear PP Borflow HL512FB (L-PP, 56k)) were used. These samples, which have 

been provided by Borealis Polyolefine company (Linz, Austria), were carefully characterized via 

an Advanced Rheometric Expansion System (ARES, 2000 model, Rheometrics Scientific, USA) 

using parallel plate geometry, a Rosand RH7-2 twin bore capillary rheometer and a high accuracy 

Fanuc Roboshot S-2000i electric high-speed injection molding machine using an instrumented 

rheometric capillary die nozzle and high temperature gel permeation chromatography in [40, 41]. 

For high-shear rheology, a capillary die of 8 mm length and diameter 0.5 mm as well as 

an orifice die of the same diameter were used to enable Bagley and Weissenberg-Rabinowitsch 
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corrections. Low shear rate viscosity data were measured with 25mm parallel plates utilizing 

torque transducer 2 K FRTN1 with a 2 µNm low resolution limit. The aluminium bottom plate 

with the overflow channel was used to prevent polymer melt leakage flow out of the geometry. 

Due to extremely low viscosities of tested PPs it was only possible to measure viscosity without 

significant scattered data only above about 1 1/s. Basic molecular characteristics; first, 0, and 

secondary, , Newtonian plateau viscosities; zero-shear rate, E0, and infinite, E, flow activation 

energies for all utilized melt blown polypropylene samples are summarized in Tab. 1 and Figure 

2. Although samples have comparable weight average molecular weights (Mw = 76 – 78 kg/mol), 

polydispersity (4.41 – 4.50) by gel permeation chromatography and 0 (T = 230 oC) = 22.8 – 24.5 

Pa·s, LCB-PP blend is more elastic due to presence of the branched high molecular weight PP 

component, which is visible in Figure 2 as the high molecular weight tail. Note that LCB-PP 

sample has star-like structure [42 – 48] and L-PP/LCB-PP systems are miscible for blends 

containing up to 50 wt% LCB-PP [46, 49 – 52].  

In order to determine characteristic (reptation-mode) relaxation time, λ, for material elasticity 

assessment, two different methodologies were used. In the first method, flow curves for given 

samples were fitted by Cross, Eq.1, and Carreau-Yasuda, Eq.2, models  
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where η0, η∞, λ, a and n are their adjustable parameters. It is important to mention that both shear 

viscosity models were used to fit the measured data keeping the 
0

  and 
 parameters fixed, i.e. 

equal to measured values provided in Table 1. Comparison between experimentally determined 
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flow curves and model fits are provided in Figures 3 and Figure 11 in [40] for LCB PP blends and 

the L-PP, respectively. Root Mean Squared Error (RMSE) defined via Eq. 3 was used to evaluate 

the fitting error for given polymer sample and the model used. 
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where δ is the number of measured points, ηi and 
i̂  represent measured and predicted shear 

viscosity points at given shear rate. Obtained model parameters are summarized in Table 2, 3. 

In the second method, time-temperature superposition principle was applied for the frequency 

dependent storage (G’) and loss (G’’) moduli (measured at 170, 180, 190, 210 and 230 oC in linear 

viscoelastic region) to generate master curve at 230 oC, which was consequently fitted by a two-

mode Maxwell model, Eqs 4 – 5 [36, 53] as shown in Figure 4. Based on these fits, the longest 

relaxation time, 1, for L-PP and LCB-PP blend was found to be 5.36 ms and 7.95 ms, respectively. 
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Here  is the frequency, 1 and 2 are the longest and the shortest relaxation times, respectively, 

and G1 and G2 are corresponding moduli. 
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Extensional viscosities for both investigated samples were determined from the measured 

entrance pressure drop data using the Gibson model, which is based on the sink flow kinematics 

with no vortices and it is given by the following equations [54 – 56]: 
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Here EntP  represents the entrance pressure drop arising from the uniaxial extensional flow only, 

Rb is the barrel radius,  is the entrance angle, k represents local slope in the EntP  vs. App  function  

in log-log scale. The term  ,kI , which is given by Eq. 8, needs to be treated numerically.  

Melt blown experiment 

Nonwoven samples from L-PP and LCB-PP were produced on the Reifenhäuser Reicofil pilot 

plant melt blown line (see Figure 5) utilizing the nosepiece die (sharp die) having the following 

characteristics: total and active width equal to 350 mm and 250 mm, respectively; orifice diameter: 

0.4 mm;  number of holes per active part: 470; processing conditions: melt/air temperature: 270 

°C; collector belt speed: 4 m/min, die-to-collector distances: 200 and 500 mm. Air volume flow 

rate was adjusted to be about 390 m3/hr for given processing conditions and used polymer to reach 
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the same average fiber diameter for all samples, i.e. 
202.0196.310 

 nm, keeping the mass flow rate for 

one orifice the same (0.0885 g/min). All performed experiments are summarized in Table 5. Note 

that utilized melt blown spinning line is practically identical to an industrial Reicofil melt blown 

line. The difference is the width of the produced webs and maximum attainable highest line speed, 

i.e. there is no limitation to mimic production of nonwovens for filter applications, which is 

typically performed at low line speeds. 

Morphological characterization 

For given processing condition and polymer used, two samples with dimensions 10 mm × 10 mm 

were cut out from different locations of the produced nonwoven and coated in Polaron SC7640 

sputtering device under the following conditions: Argon as protective atmosphere, Palladium as 

coating material, plasma current 25 mA, voltage 2.1 kV, chamber pressure 6 Pa and all this for 60 

seconds. Then, HITACHI Tabletop TM-1000 scanning electron microscope (SEM) was used to 

visualize nonwoven structure for each sample at three different magnifications (500×, 1000×, 

2500×) with the following operating conditions: an accelerating voltage 15 kV, electron gun: pre-

centered cartridge filament, vacuum pump: turbomolecular pump 30 l/s × 1 unit and detection 

system: high-sensitive semiconductor BSE detector. In order to determine basic morphological 

characteristics of produced nonwovens, the following procedure has been applied by using in-

house developed software (UTBsoft Filtration) at the Faculty of Technology, Tomas Bata 

University in Zlín. Firstly, skeletonization SEM image processing was applied to determine fiber 

centerlines and local fiber diameters according to technique proposed in [57, 58]. Secondly, fiber 

diameter distribution was fitted by a log-normal function to determine the mean, dav, standard 

deviation, , and coefficient of variation, CV, utilizing the following equations [8, 36 – 38]: 
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It is important to mention that melt blown nonwovens consist of nanofibers as well as microfibers, 

i.e. combination of SEM images at different magnifications for given sample have to be applied to 

capture relevant information about thin as well as thick fibers to determine correct, overall fiber 

diameter distribution. Example of the applied procedure is visualized in Figure 6 for LCB-PP 

sample (DCD = 200 mm). As it can be seen, fiber diameter distributions obtained from SEM 

images at magnification 500×, 1000× and 2500× contain the most important information about the 

highest, medium and the lowest fiber diameters, respectively. Thus, the final, overall fiber diameter 

distribution for given sample and given area is suggested to be given by data overlapping from all 

three utilized magnifications (see example in Figure 6).  It is important to mention that normalized 

fiber diameter distribution has to be used in order to combine data from different images, which 

takes into account of both, number of analyzed fiber diameters as well as the analyzed area.  In 

order to handle the sample inhomogeneity (and potentially varied quality of SEM images at 

different magnifications), one has to utilize more images from different places (especially at the 

highest magnifications to get correct information about low fiber diameter tail). The UTBsoft 

program, we have developed, allows to combine an arbitrary number of SEM images with different 

magnifications to generate one normalized fiber diameter distribution curve. 
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RESULTS AND DISCUSSION 

Reptation-mode relaxation time 

Even if the 5 parametric Carreau-Yasuda model has higher fitting capability to describe flow curve 

for both investigated PP samples than 4 parametric Cross model (see Figure 3 and Table 2, 3), its 

parameters, namely index of non-Newtonian behavior n and relaxation time  does not seems to 

have physical meaning when non-zero  is considered. In more detail, the Carreau-Yasuda model 

predicts that, firstly, the relaxation time  is higher for less elastic L-PP in comparison with more 

elastic LCB-PP blend containing high molecular weight fraction, which is not realistic and 

secondly, parameter n is the same, practically equal to 0, for different PPs. Closer analysis has 

revealed that the model fits the measured data for both samples with the simple S shape curve with 

no fully developed power-law regime utilizing  and a fitting parameters only to give the best 

numerical fit (i.e. the parameter n has no direct physical meaning). In the case of the Cross model, 

 for more elastic LCB-PP is correctly predicted to be higher (0.714 ms) in comparison with low 

elastic L-PP (0.356 ms), which is in good correspondence with the open literature [43, 59]. 

Amintowlieh et al. has showed that increase in LCBs in PP increases the Cross relaxation time 

(from 0.6 s to 1.2 s) at practically unchanged polydispersity factor Mw/Mn (equal to 3.3 for L-PP 

and 3.7 for branched PP) [59]. Similarly, Münstedt [43] has shown that long chain branching of 

polyolefines increases the elasticity (characterized by recoverable compliance) even if the molar 

mass distribution remains the same. Observation that the Cross model gives a meaningful 

relaxation time while the Carreau-Yasuda model does not despite giving a better numerical fit is 

further supported by the performed an independent measure of the longest relaxation time obtained 

by fitting small amplitude oscillatory shear data with a generalized Maxwell model, which was 
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found to be higher for LCB-PP (7.95 ms) in comparison with L-PP (5.36 ms). The fact that the 

Cross model gives about one order lower relaxation time in comparison with the longest Maxwell 

relaxation time can be attributed to its macroscopic nature.   

Infinite to zero-shear rate viscosity ratio 

 Another way to assess the melt elasticity of melt blown PPs, independently of any fitting 

model, is determination of  /0 ratio directly from the measured data summarized in Table 1. In 

view of the nonlinear models with objective time derivatives of strain (such as Oldroyd type 

models, corotational Jeffreys model or Giesekus model), this variable is equal to retardation to 

relaxation time ratio, 2/1, [60, 61] and as shown theoretically by Saengow and Giacomin [62, 

63], increase in  (keeping the 0 constant) decreases the fluid elasticity. In the uniaxial 

extensional flow, polymer melt behaves as the Newtonian fluid if the extensional strain rate is 

below the reciprocal value of the reptation time (where the extensional viscosity is given by 

Trouton ratio, E,0 = 30) or if the strain rates are very high and maximum chain stretch is reached 

[64]. At these very high deformation rates, it can be reasonable to consider that extensional 

viscosity is proportional to  as E, = k, where k is the material constant characterizing 

disentangled and fully stretched polymer chains. Thus, /0 can be viewed as the parameter, 

which is directly related to a maximum attainable uniaxial extensional strain hardening E,/(30) 

occurring at very high deformation rates where maximum chain stretch occurs. In order to support 

the validity of this physical interpretation of /0 ratio, let us consider the Giesekus model 

prediction for the normalized uniaxial extensional viscosity  0  [60]: 
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where   is the extensional strain rate and  is the nonlinear Giesekus model parameter called as 

the dimensionless “mobility factor”. It is not difficult to show that the following asymptotic 

formula holds for Eq. 13 (if 0  and 2/1 is substituted by  /0 in this equation):  
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From Eq.14, it is visible that  /0 is directly proportional to the normalized uniaxial extensional 

viscosity at extremely high deformation rates, as expected. 

In our recent experimental studies [40, 41], it was shown that 0 and  are given for studied 

polymers as 
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where T is the actual temperature, Tr is the reference temperature, Mw is the weight average 

molecular weight, E0 and E is zero-shear rate and infinite-shear rate flow activation energy, 

respectively, R is the universal gas constant (8.314 J/K/mol), n is the power-law exponent and K is 

the proportionality constant. Combining Eqs. 15 – 16 or Eqs. 17 – 18 the following expressions 

can be obtained for temperature dependent  /0 ratio 
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where Mc is a critical molecular weight, which is approximately 2 – 3 times the molecular weight 

6900 g/mol between chain entanglements for isotactic PP [65, 66]. In order to clarify the role of 

the molecular weight and temperature on the  /0 ratio, both equations are visualized in Figure 7 

for studied linear and branched PPs utilizing experimentally determined parameters summarized 

in Tables 1, 6. As it can be seen,  /0 decreases with increased molecular weight and increases 

with increased temperature for both samples. The most importantly, LCB-PP sample shows lower 

value of  /0 (due to higher power-law exponent n) and stronger temperature dependence (due 

to higher difference between E0 and E) in comparison with L-PP at the given Mw and temperature 

ranges. 

   

Extensional rheology 

Deformation rate dependent uniaxial extensional viscosity data for both tested PPs are provided in 

Figure 8. As it can be seen, extensional viscosity firstly decreases with increased extensional strain 

rate to its minimum value at 200 000 – 400 000 1/s, (where the strain rates can be considered to be 

comparable with the inverse of the Rouse time) and then increases (due to starting occurrence of 

the chain stretch) to plateau value, E, (corresponding to the maximum chain stretch) at about 

2·106 1/s. At low deformation rates, extensional viscosity is higher for LCB-PP in comparison with 

L-PP, but the trend is switched at very high deformation rates and E, (and also E, / 30) 

becomes lower for LCB-PP in comparison with L-PP. Interestingly, reduction in E, / 30 due to 

LCB is in good qualitative agreement with the prediction of Eq. 19 for  /0 visualized in Figure 
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7, which underlines importance and usefulness of this material parameter obtained from shear 

viscosity data. 

Note that the experimental data provided in Figure 8 are based on three independent 

entrance pressure drop measurements at different volume flow rates. It should also be mentioned 

that the used Gibson model to estimate extensional rheology is based on sink flow kinematics to 

describe the entrance pressure drop in constrained convergence considering that the dominant 

source of the entrance pressure drop is extensional flow, which does not depend strongly on the 

velocity profile across the die. Thus, the Gibson model is not able to describe or predict the 

formation of recirculation zones [55]. The maximum attainable extensional strain during abrupt 

contraction flow can be calculated as 











d

b
max

D

D
ln2            (21) 

where Db and Dd is the barrel (15mm) and the orifice die (0.5mm) diameter, respectively [67]. 

According to Eq. (21), max is 6.8 in this case. 

    

Understanding of melt blown process dynamics 

 SEM images, fiber diameter distributions and log-normal function fits for produced LCB-

PP and L-PP nonwovens at two different DCD distances are provided in Figures 9 – 12, whereas 

obtained CV values are plotted in Figures 13 – 14 as the function of the longest Maxwell relaxation 

time and  /0 (both shifted to the processing temperature 270 oC via Eq. 20; see Table 4). It is 

clearly visible that, CV decreases with decreased  /0 (i.e with E,) and with increased elasticity, 
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1, for both DCD distances as well as decrease in DCD distance reduces CV. As it can be seen in 

Figure 14, obtained trend between CV and 1 is in good agreement with the experimental work of 

Tan et al. [36] who used different PS with similar 0 but different elasticity (also characterized by 

the longest relaxation time, 1, determined via fitting of frequency dependent loss and storage 

moduli master curve by a two-mode Maxwell model and shifted to melt blowing temperature). 

Differences between CV for PP and PS (even if the fiber diameter is comparable in both cases) can 

be attributed to different values of Rouse time (which is much higher for PS in comparison to with 

PP) as well as due to different extensional rheology. The fact, that CV varies with DCD even if 1 

or  /0 is unchanged suggests that knowledge of deformation rate dependent rheological 

parameters rather than their limiting values should be preferred to fully understand melt blown 

process dynamics. Note that CV values reported in this work are comparable with CV values (50 

%) for nonwovens with average fiber diameter 6 m (made from PPs with Mw = 175 kg/mol [6]) 

but much lower than CV values (88 %) for PP nonwovens with and Mw = 42 kg/mol and average 

fiber diameter 0.774 m [7]. 

As it can be seen in Figure 15, there is combination of extensional and shear flows in the 

post die area during the melt blown process. Thus the final diameter distribution is given by the 

shear viscosity [7, 36], the shear elasticity [36] and the uniaxial extensional viscosity of the 

polymer melt. As shown above, /0 parameter characterizes normalized infinite uniaxial 

extensional viscosity E,/(30) occurring at very high extensional strain rates, i.e. at about 1.5 – 

2·106 1/s for tested PP melts as visible in Figure 8. Due to the fact that fiber attenuation in melt 

blowing process is associated with extensional strain rates in order of millions reciprocal seconds 

[36], the /0 can be considered as an additional useful parameter to understand behaviour of 

polymer melts in such flow conditions. 
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In more detail, the extensional strain rate is the highest at the die exit (region I in Figure 15 

where the air speed is the highest) and then it starts to decrease with the drawing distance due to 

decreased air speed (region II in Figure 15). Due to the fact that the LCB-PP sample has lower 

/0 (i.e. higher stretching ability at extremely high deformation rates) and lower infinite shear 

viscosity  than L-PP sample, it can reduce the fiber diameter in region I more effectively than 

the L-PP sample. In region II, i.e. at medium and low deformation rates, the elongational viscosity 

of LCB-PP sample is higher in comparison with L-PP and thus, L-PP can be stretched more 

intensively than LCB-PP sample. However, the melt stretching can be considered to be more 

unstable in region II due to occurrence of high melt/air inertia driven bending instability called 

whipping [8, 14 – 24]. Thus, for the specific processing conditions leading to the same fiber 

diameter for LCB-PP and L-PP samples (like in the performed experiments), CV is lower for LCB-

PP in comparison with L-PP and the stabilizing effect is more pronounced for smaller DCDs. 

Additionally, from Eq.19 visualized graphically in Figure 7, it can be seen that increase in zero 

and infinite flow activation energies difference, E0 - E, (via adding of high molecular weight 

LCB-PP into low molecular weight L-PP in this work) causes stronger decrease of /0 (i.e. 

E,/(30)) with decreased melt temperature in comparison with L-PP. From this, it can be deduced 

that LCB-PP melt becomes more stretchable at extremely high deformation rates than L-PP melt 

even if the temperature is decreased due to intensive melt cooling at the die exit (region I). This 

can be considered as additional stabilizing factor reducing CV of fiber diameters.  

It is important to mention that presence of the "nonuniform" fibers, captured here via CV, 

is very important to nonwoven performance because it leads to broader pore size distribution and 

generation of more anisotropic structures, which decreases mechanical properties and filtration 

characteristics of nonwovens [68, 69]. 
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CONCLUSION 

In this work, L-PP and LCB-PP blend, both having comparable Mw (76 – 78 kg/mol), zero-shear 

viscosity (22.8 – 24.51 Pa·s at 230 oC) and polydispersity Mw/Mn (4.41 – 4.50) were used to 

produce nonwovens via melt blown technology at constant temperature (270 oC) and two different 

die-to-collector distances (200 mm and 500 mm) in order to understand role of long chain 

branching on the fiber diameter distribution. Melt elasticity was evaluated via macroscopic 

relaxation time determined by shear viscosity data fitting by Cross and Carreau-Yasuda models 

and the longest relaxation time obtained by fitting small amplitude oscillatory shear data with a 

generalized Maxwell model. Extensional rheology was assessed by the strain rate dependent 

uniaxial extensional viscosity (estimated from the entrance pressure drop using the Gibson method) 

as well as through  /0 ratio (obtained directly from the measured experimental data), which is 

proportional to the maximum normalized extensional viscosity at very high extensional strain rates, 

E,/(30). Basic morphological characteristics of produced nonwoven samples have been 

determined using digital image analysis of SEM images considering three different magnifications 

to capture nanofibers as well as microfibers.  

It has been found that firstly, Carreau-Yasuda relaxation time is unrealistically higher for 

less elastic L-PP in comparison with more elastic LCB-PP blend and power-law index remains 

artificially the same, practically equal to 0, for both samples. In the case of the Cross model, 

relaxation time for more elastic LCB-PP was correctly predicted to be higher in comparison with 

low elastic L-PP, which is in good correspondence with the open literature as well as with the 

longest Maxwell relaxation time obtained from frequency dependent loss and storage moduli 

measurements. Secondly, extensional viscosity for both samples decreases with increased 
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extensional strain rate to its minimum value at 200 000 – 400 000 1/s, and then increases to plateau 

value, E, at about 2·106 1/s. Thirdly, extensional viscosity (and also E, / 30, which is 

proportional to  /0), is lower for LCB-PP in comparison with L-PP at very high deformation 

rates, but the trend is switched at low deformation rates and extensional viscosity becomes higher 

for LCB-PP in comparison with L-PP. Fourthly, fiber diameter distribution (coefficient of 

variation, CV) for the nonwovens produced via melt blown technology is lower for LCB-PP blend 

in comparison with L-PP sample fifthly, decrease in die-to-collector distance reduces CV and 

finally, simple relationship between  /0 (which is proportional to E, / 30), temperature and 

basic molecular characteristics of both samples was formulated. 

It has been suggested that high stability of LCB-PP blend can be explained by its higher 

stretchability at very high deformation rates (occurring at the die exit where an intensive fiber 

attenuation takes the place) and its lower stretchability at medium and low deformation rates, at 

which melt/air inertia driven bending instability called whipping occurs. 

Obtained results suggests, that utilization of low molecular weight and branched polymers 

can stabilize production of polymeric nanofibers and microfibers through melt blown technology 

considerably. It is believed, that above described findings provides new rheological insight to 

designing polymers for the melt blown process and represents useful experimental data for 

validation or development of advanced molecular based constitutive equations considering the 

effect of chain stretch on the extensional viscosity rise (until maximum stretch is achieved) at the 

strain rates, which are higher than the reciprocal value of the Rouse time. 
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TABLE 1. Basic characteristics of utilized PP samples summarized from our prevous work [40, 41] 

 

Sample 

Name 

 

Mn 

(g/mol) 

Mw 

(g/mol) 

Mz 

(g/mol) 

Mz+1 

(g/mol) 

Mw/Mn  

(-) 

η0 (230 oC) 

(Pa∙s) 

ηꝏ (230 oC) 
(Pa∙s) 

E0
 

(kJ/mol) 
E

 

(kJ/mol) 

HL512FB 

(L-PP, 56k) 
14250 56250 114500 187500 3.95 7.79±0.312 0.165±0.0005 

56.590 25.204 
HL504FB 

(L-PP, 76k) 
17200 75850 165500 278000 4.41 22.80±1.149 0.229±0.0025 

30wt% 

LCB-PP blend, 

78k 

17350 78150 191000 373500 4.50 24.51±0.973 0.216±0.0024 59.539 23.367 

Daploy 

(LCB-PP, 247k) 
36950 246500 815000 1705000 6.67 2379.33±8.783 - 65.698 - 

 

 

TABLE 2. Cross model fitting parameters for each material at T = 230 °C 

 

Sample 

Name 

 

η0 

(Pa∙s) 

λ 

(ms) 

a 

(-) 

ηꝏ 

(Pa∙s) 
RMSE 

HL504FB (L-PP), 76k 22.80* 0.356* 0.91662* 0.229* 0.047119* 

30wt% LCB-PP blend, 78k 24.51 0.714 0.84243 0.216 0.140986 

*Data are taken from [40] 

 

TABLE 3. Carreau-Yasuda model fitting parameters for each material at T = 230 oC 

 

Sample 

Name 

 

η0 

(Pa∙s) 

λ 

(ms) 

a 

(-) 

N 

(-) 

ηꝏ 

(Pa∙s) 
RMSE 

HL504FB (L-PP), 76k 22.80* 0.222* 0.71466* 1 × 10-12* 0.229* 0.040775* 

30wt% LCB-PP blend, 78k 24.51 0.175 0.50823 1 × 10-12 0.216 0.099320 

*Data are taken from [40] 

 

TABLE 4. Basic rheological characteristics shifted to the melt blown processing temperature 

via Arrhenius shift factor 

 

 

Sample 

Name 

 

T 

(oC) 

η0(T) 
(Pa∙s) 

λCross(T) 
(ms) 

λCarreau-Yasuda(T) 
(ms) 

 
λ1, Maxwell (T) 

(ms) 
 

ηꝏ(T)/ η0(T) 

(-) 

HL504FB (L-PP), 76k 270 8.42 0.131 0.082 1.978 174.5·10-4 

30wt% LCB-PP blend, 78k 270 8.59 0.250 0.061 2.780 166.6·10-4 
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TABLE 5. Summarization of melt blown experimental data, T = 270 oC, Speed belt = 4 m/min 

Sample No. 

Newtonian 

viscosity 

[Pa∙s] 

Die to 

collector 

distance 

[mm] 

Coeficient 

of variation 

[%] 

Standard 

deviation 

[%] 

HL504FB (L-PP), 76k  8.42 

200 54.46 0.080 

500 54.84 1.345 

30wt% LCB-PP blend, 78k 8.59 

200 40.12 1.940 

500 47.27 2.515 

 

TABLE 6. Summarization of material constants appearing in Eqs. 15 – 16 and 19 (experimentaly determined in [40, 41]) 

Material 
K0 [Pa·s·(mol/kg)1/n] Kꝏ [Pa·s·(mol/kg)1/n] 

n [-] 
T = 190 °C T = 230 °C T = 190 °C T = 230 °C 

LCB-PP 1.25 × 10-18 3.79 × 10-19 4.00 × 10-6 2.48 × 10-6 4.049 

L-PP 1.54 × 10-16 4.81 × 10-17 4.55 × 10-6 2.72 × 10-6 3.620 
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FIGURE 1: Sketch of melt blown line [9, 70]. 
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FIGURE 2: Molecular weigth distribution of LCB-PP and L-PP samples (top) with 

enhanced view for high molecular weight fractions (bottom). 
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FIGURE 3: Comparison between experimentally determined shear viscosity data and  model 

predictions (Top: Cross model, Bottom: Carreau-Yasuda model) for LCB-PP at 230 °C and 

fixed η0 and η∞ parameters. 
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FIGURE 4: Experimentally measured frequency dependent storage, G’, and loss, G’’ moduli at 

230 oC for L-PP and LCB-PP samples (symbols) fitted by a two-mode Maxwell model (lines).  

 

 

 

 

 

 

 

 

 

 



37 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5: Reifenhäuser Reicofil pilot plant melt blown line. 
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Magnification: 500× 

    

 

 

 

  

 

      

 

  

 

 

 

   

 

  

 

 

 
FIGURE 6: Description of utilized automatized methodology to determine fiber diameter 

distribution for LCB-PP blend (DCD = 200mm) at one area and three different magnifications via 

in-house developed software (UTBsoft); Left – SEM image; Middle – visualization of detected 

fiber diameters; Right – obtained fiber diameter distribution; Bottom – final overall fiber diameter 

distribution. 

Magnification: 1000× 

Magnification: 2500× 
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FIGURE 7: Effect of weight average molecular weight (top) and temperature (bottom) on the  

 /0 ratio for L-PP and LCB-PP samples predicted according to Eq.19 – 20 and parameters 

summarized in Tables 1 and 4. 
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FIGURE 8: Experimentally measured uniaxial extensional viscosity plotted as the function of 

extensional strain rate for L-PP and LCB-PP samples at 230 oC.  

 

 

 

 

E,, (LCB-PP) 
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Area 1 

    

Area 2 

   
 

FIGURE 9: SEM images for L-PP sample and DCD = 200mm at two different areas and different 

magnifications (left – 500×, middle – 1000×, right – 2500×) together with corresponding final 

overall fiber diameter distribution.  

 

 

Area 1 

   

Area 2 

   
 

FIGURE 10: SEM images for L-PP sample and DCD = 500 mm at two different areas and 

different magnifications (left – 500×, middle – 1000×, right – 2500×) together with 

corresponding final overall fiber diameter distribution.  
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FIGURE 11: SEM images for LCB-PP sample and DCD = 200 mm at two different areas and 

different magnifications (left – 500×, middle – 1000×, right – 2500×) together with 

corresponding final overall fiber diameter distribution.  
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FIGURE 12: SEM images for LCB-PP sample and DCD = 500 mm at two different areas and 

different magnifications (left – 500×, middle – 1000×, right – 2500×) together with 

corresponding final overall fiber diameter distribution.  



43 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 13: Effect of /0 on coefficient of fiber diameter variation, CV. 
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FIGURE 14: Effect of the longest relaxation time on coefficient of fiber diameter variation, CV, 

for different polymers and processing conditions. 
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FIGURE 15: Dynamics of fiber attenuation during melt blowing process for two different die-

collector distances and two melts with different extensional rheology. In region I the extensional 

rates are very high (considering to be higher than the reciprocal value of the Rouse time) while in 

region II, the extensional strain rates are low (considering to be lower than the reciprocal of the 

Rouse time reaching strain rates comparable to the reciprocal of the reptation time, ). a) Polymer 

sample with low infinite extensional viscosity, E,, and high extensional viscosity at low strain 

rates b) Polymer sample with high E, and low extensional viscosity at low strain rates.  

a) b) 


