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Abstract: - This paper deals with the so called describing functions method description as a simplified method
of describing certain types of nonlinear systems, using the complex function of frequency response. The first
part showed its using as an example of some so-called hard nonlinear systems (e.g. the mechanical chain c
robots). In the actual last part, the formalization of the limit cycle prediction process is performed based on the
representation of the non-linear element by describing function. The basic approach for this prediction is based
on the application of an extended version of the well-known Nyquist criterion from linear control theory to a
description of the systems with describing function utilization
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1 Introduction harmonic prediction, jump phenomenon and non-
linear system response to sinusoidal input.

Inherent and inseparable part of the symptomatic o . o
subsystems of mechatronic systems (mechanical2 Describing functions applications
subsystem, subsystem of actuators, sensors subsys- possibility

tem) - including robotic systems — they are the spe-

cific nonlinearities occurring in their mechanical | ets first discuss briefly on what types of nonlinear
and regulatory subsystems. These specific, so-calledsystems the method is applicable and what type of

hard nonlinearities, exemplified by non-viscous information about the nonlinear system can provide.
friction, saturation, backlash, hysteresis, etc., are

often the cause of unwanted behavior of the system,
but in some cases they are used as a tool for intro-
ducing specific desired system properties.

In the publication [11], a basic description of the
using possibility of some powerful tool for linear Simply put any system that can be transformed into
control-frequency systems analysis and designing the arrangement of Fig.1 can be studied using de-
was performed. Linear system description utilization scriptive functions. There are at least two important
by a complex function, frequency response, instead classes of systems in this category.

of differential equations, is a tool that cannot be The first important class is "almost" linear systems.
directly applied to a non-linear system because the By "almost" linear systems we mean systems that
frequency response cannot be defined for a non- contain so-called "hard" nonlinearities in the control
linear system. However, for some nonlinear sys- loop but are otherwise linear. These systems arise in
tems, an extended version of the frequency responsethe design of control law using a linear approach,
called function-describing method can be used for but its implementation includes "hard" nonlinearities
the approximate analysis and prediction of non- such as motor torque saturation, actuator (or sensor)
linear behavior. backlash (dead band), Coulomb friction, or hystere-
The main use of this method is to predict the limit- sis in a controlled system.

ing cycles of nonlinear systems, which will form the

main content of this contribution. But the method

has a number of other applications such as sub-

2.1. On what types of nonlinear systems the
method can be used

E-ISSN: 2224-2856 432 Volume 13, 2018



WSEAS TRANSACTIONS on SYSTEMS and CONTROL Zdeng&k Urednitek

Non-linear part linear part in Fig.1, can be decomposed as the sum

Linear part of many harmonic oscillations, and because the

linear member, due to its low pass filter properties,

0 + x —f w y fuses higher frequencies, the output y(t) must in
h W= G(s) - most cases consist of the lowest harmonic oscilla-
tions. It is therefore reasonable to assume that the

signals throughout the system are essentially sinus-
oidal, thus allowing the technique used in the previ-
ous section.

Limit cycle prediction is very important because
limit cycles can occur in physical nonlinear systems.
Sometimes the limit cycle may be desirable. This is
the case for limit cycles in electronic oscillators.
Another case is the so-called vibration technique to
minimize the negative effect of Coulomb's friction
in mechanical systems. On the other hand, in most
control systems, the limit cycles are undesirable.
This can be for several reasons:

Fig.1 Non-linear system.

An example is the system of Fig.2, containing hard
non-linearity in the actuator.

-

0+ x(1) w(t) u(®) y(t)

=

Gy 9] G, (s)

1. The limit cycle is the path to instability, caus-
ing poor accuracy of regulation.

Constant oscillations associated with the limit
cycle may cause increased wear or mechanical
failure in the hardware of the control system.
The limit cycle may also cause other undesira-
ble effects such as passenger discomfort during
autopilot flight.

GSCHS (S)

Fig.2 Control system with one "hard" non-linearity

The regulated system is linear as well as the control-
ler. But the actuator contains hard nonlinearity. This 3.

system can be reconfigured to the form of Fig.1.
with

Gr= q%g( quyg(é[esens(s) In general, although precise knowledge of the shape

of the limiting cycle curve is not necessary, the

An "almost" linear system containing non-linearity knowledge of its existence or non-existence, as well
in a sensor or controlled system can also be recon-as its approximate amplitude and frequency, is nec-
figured to the shape of Fig.1. essary. The method describing functions is applica-
The second class of systems are systems containingble for these purposes. Knowledge of this kind can
real nonlinear subsystems whose dynamic equationsalso lead to the design of compensators in order to
can be converted to the structure of Fig. 1. We have avoid limiting cycles.
seen an example of such a system in the [11].

2.3. Basic assumptions of describing func-

2.2 Describing function applications tions using

For systems as shown in Fig.1, the limit cycle may Let us consider the non-linear system in the general
occur as a result of non-linearity. But linear control form of Fig. 1. In order to be able to use the basic
cannot predict this problem. On the other hand, de- Version of the method de_scrlblng _fl_Jnctlons, the sys-
scriptive functions can conveniently be used to de- €M must meet the following conditions:

tect the existence of limit cycles and to determine There is only one non-linear member.

their stability. Regardless of whether they are "hard" A non-linear member is time-invariant.

or "soft" nonlinearities. The use for limiting cycle 3. In sinusoidal inpui(t) =sir{w), only the
analysis is due to the fact that the shape of the sys- fundamental harmonic can be considered in
tem signal on the limiting cycle is commonly ap- the outputw.

proximated by a sinusoidal one. 4. Non-linearity is odd function.

This can be conveniently explained on the system of The first condition means that if there are two or
Fig.1. Suppose the linear part in Fig.1 has the char- more non-linear components in the system, they can
acteristics of the low pass filter (which is the case either be joined to one (such as parallel pairing of
for many physical systems). If there is a limit cycle two nonlinearities) or, only one the nonlinearity is
in the system, then the system signals must be all under consideration and the other is neglected.
periodic. Because the periodic signal, as input to the
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The second conditionmeans that we only consider occurs whenever the non-linearity f(x) is a uniquely
autonomous non-linear systems. This is sufficient invertible function because the output is

for much practical nonlinearity, such as saturation of . .

amplifiersF,) transmission back}llash, Coulomb friction f[A[sm(w[t+2n)] = f[A[sm(w[t)].

between surfaces and hysteresis in relay systems.By using the Fourier series, the periodic function
The reason for this assumption is that the Nyquist w(t)can be expanded as

criterion, on which the describing function is broad-

ly based, requires linear time-invariant systems. _ > .

1¥he third cgndition is essential for the )(/jescribing W(t)_320+k221[ QECO£ kmﬂ)Jr b Bm(k@o[ﬂ)] @)
function. It represents an approximation because the

output from the nonlinear element at the sinus input where Fourier coefficients are function Afand .
usually contains, besides the basic, even higher Itis valid:

harmonics. The assumption means that higher har-
monics can be neglected in the analysis in compari-

a, :imj W YOco ko) ({wX); k= 0,100
son to the basics one. In order for this assumption to T

)

be fulfilled, it is important that the next linear ele-
ment has the character of the low pass. l.e.

|q i) >>| nCiley)  forn=23,...

This means that higher harmonics in the output of

nonlinearity will be significantly filtered. Thus, the
third assumption is often callediliering hypothe-

sis

The fourth condition means that the graph of the
nonlinear relationf(x) between the input and the
output of this member is symmetrical with respect to

the origin of the coordinate system. This assumption

is introduced for simplicity, i.e. that Fourier devel-

opment can neglect the DC component. Note that

most of the nonlinearities occurring in our systems
(robot motion system) meet this condition.

Failure to meet the above conditions has been wide-
ly studied in the literature on the use of general con-

text descriptors such as multiple nonlinearities,
time-dependent nonlinearity, or multiple sinusoids.

However, these conditions relaxation-based meth-
ods are usually much more complicated than basic

versions based on the above four conditions.

3 Basic definition

Consider the sinus input of a non-linear element
with amplitude Aand frequencw. l.e.

x(t) = Alsir{wlt)
as is shown in Fig. 3.

A-sin(w-t) w(t)
——

Non-linear Assinfo-t) Msin(o-t+6)

element

Describing

N(A,»)

Fig. 3 The non-linear element and its representation
by the describing component

Nonlinear element output is often a periodic but
generally non-sinusoidal function. Note that this
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b, :%DT W §) Bin(k @) @(w); k=1

As a result of the fourth of the above assumptions, it
is a,=0. Furthermore, the third condition means

that you only need to consider the basic harmonics
w, (t).

> W)= w()= alcodwl )+ b tsinfelt)=
M sin(w( + ¢)
where

M Aw)=, &+ and

3

. a b
Sing(A, w) = —=— :cosh(A, w) = —=—

S e T
because

al cofwl )+ b, [sin(wIt)
b= Mico® ;g = MBind => M=,/a& +b?

= al cofwl )+ b [sin(wlt)=

NI cogoO}Osird + si{w) Eosp] =
MGin(wd +¢)
The term (3) means that the basic harmonic corre-
sponding to the sinus input is the sinusoidal function

of the same frequency. Representing in a complex
variable, it is possible to write this sinus as

w(j= MOg“™) = (i + iCh ) ™"

Similarly to the frequency response concept of the
linear system, which is the ratio of sinusoidal output
to the sinus input in the frequency domain, we de-
fine the describing function of the nonlinear ele-
ment asthe complex ratio of the fundamental
harmonic output to the sinus input I.e.

M @iMW)
A et

N(A, @)= =M o :%[ﬂbﬁiml) (4)

A
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By describing function which describes a non-linear
element, this elementfor the sinusoidal input -can
be presented as a linear element with frequency
transmission. This is shown in Fig.3..

The describing function concept therefore can be
understood as extending of the frequency response
term. For linear dynamic system the frequency tran-
sition function is independent of the amplitude of
the input signal. But describing function of the non-
linear element differs from the frequency transition
function of the linear element by being dependent
on the amplitude of the input signal. Thus, the rep-
resentation of the non-linear element of Fig. 3 is
sometimes calleduasi linearization.

Generally the describing function depends on the
frequency and amplitude of the input signal. There
are, however, several special casesthé non-
linearity is a odd function, describing function is
real and does not depend on the input frequency.
Real describing functionN(A, w) is the conse-

quence ofa, =0 in this case.

4 Examples of discontinuous
nonlinearities

Nonlinearities can be divided into continuous and
discontinuous. Since discontinuous nonlinearities
cannot be approximated locally by linear functions,
they are often referred to as "hard" nonlinearities.
These "hard" nonlinearities often occur in regulatory

systems, both in small scale and large scale opera—g

tions. Whether it can be considered as nonlinear or
linear- when it is operating in a small scale of activi-
ty- the size of the "hard" nonlinearity arbitrates and
the also the application of its effect on the perfor-
mance of the system.

Due to the frequent occurrence of "hard" nonlineari-
ties, let's briefly discuss the characteristics and ef-
fects of two important.

4.1 Describing function of the saturation

If the input of the physical device increases, it is
often possible to see the following phenomenon. If
input is small, its magnification leads (often propor-
tionally) to increasing output. But when it reaches a
certain value, its further magnification leads to little
or no increase in output. The output simply stays
close to its maximum value. We say thevice is

saturation in this state. A simple example is a tran-
sistor and a magnetic amplifier. Saturation type of
non-linearity is commonly caused by limitations in
component size, material properties, and limitation
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of available power. In Fig.8 there is a typical non-
linearity of saturation, where the stronger line repre-
sents real non-linearity and thinner is its idealization

- partial linearization.
/

X

w

Linear part

Saturation Saturation

-

—

Fig. 4 Saturation nonlinearity

Most actuators show saturation nonlinearity. For
example, the output torque of the servo motor can
not grow to infinity and exhibits saturation not only
due to the properties of the magnetic material.
Similarly, the torque (pressure) hydraulic servo
motor controlled by valve is limited by the
maximum accessible system fluid pressure.
Saturation may have a complicating effect on the
properties of the control system. Simply, the
occurrence of saturation reduces device gain (e.g.of
amplifier) when the input signal increases. As a
result, if the system is unstable in its linear part, the
divergent behavior can be suppressed to permanent
oscilations through signal. On the other hand, in a
linear stable saturation system, the system's
response drops because saturation reduces effective
ain.

The input-output relationship for saturation non-
linearity is illustrated in Fig. 5 witla andk as the
determining parameters of non-linearity.

wit)

Not-saturated output

w 1
tka

N\iga=k

saturovany vistup
Saturated output

Pl

ro

Fig. 5Non-linearity of saturation and its input-
output relationship.
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Because this non-linearity is an odd function, we
assume that its descriptive function will be real and
will be only a function of the input amplitude.
Consider the input

x(t) = ABin(wt)
If A<a, then, the input remains all the time in the
linear region and therefore the output is
w(t) = kA BIn(w).
The describing function is

b, = %[ O kOATsir{e) Sin(cor) @(wl®) =k (A

And so

N(A, @)= b, + iR, = k
Let's think tha®n>a. The input and output are then
drawn in Fig.5. Output on intervdTr, 1) is
kAGIn(wd) -m<wid<-m+y
k&
kCABin(wi)
k@& y<wl<sm-y
k[AGIN(wd) m-y<wldsm
where for the angle we obtain

—T+y<wli<-y
—y<wlt=sy

w(t)=

siny = a
A
Due to the oddity of the functiom = f (x) isg, = 0.
Determineb;.

b, = ?1[ [I]'[ [ ATsir{w )] Bin(w 1) @(w) =

N %ol z
=2 nm y~ sirty) Ceody =2nm%v-2 1-(a”:>

_ 2[k[A

a
b —_
! Tt A

So describing function is
1 . b
N(A, ) =N(A)= oy + i) = 2 =

= 2k E%arcsir{a) _a 1- (aT] ©
T A A A

Dividing by k we get the so-called normalized de-

scription functior{\l (A% :

fos2)- 252

N(A)
K

=NEN
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In Fig. 6 its shape is plotted according to the ratio
A

a

120

4' NA)YK
1
00

\
\
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000
70 Ala 8%

pr—

Fig.6 Normalized describing function of saturation
non-linearity

It is possible to see the three properties of this de-
scribing function:

1. If the input amplitude is in the linear region, then
N(A)=k.
2. As the input

decreases.
3. There is no phase shift.

amplitude increasesN (A)

The first feature is evident from the above men-
tioned. When signal is low, saturation does not oc-
cur. The second is also intuitively obvious. Satura-
tion reduces the ratio of output to input. The third
property is also understandable. Said symmetric
saturation does not cause phase shift in the output.
As a special case of saturation we can consider the
saturation wittkk = oo, i.e. non-linearity on-off-com-
parator. Its dependenee= f (x) is in Fig. 7.

i ,

X
—_—

e @« &« @& w & @ & @
Fig. 7 Non-linearity of comparator type

Thus, this case corresponds to the limiting case of a
linear saturation functioa — 0; k — o, which does

not exclude that(k =M. Althoughb; can be ob-
tained from the (6) by limit, it is easier to calculate it
directly.
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1 T , _ angle of rotation of the output wheel corresponding
b, = ;[DJ f{ ACsir{e )] sin(e) (i) = to this path be denoted hsLet the gear ratio be

_h

:ic{-j Msir{w) Ed(w[t)+f MEﬂsir(wEt)m(wD)} =
= 2f M- cofor]°, + M-codw)] 7=

I
1

=2 g{- N{— 1 (- 1 E?])] + M(1- (- 1&))} =

4 H S | /__"_./
= Fig.9 Non-linearity of gear backlash type
So, describing function is Thus, the torque is transmitted only when

1 .
N(A, w):N(A):K[ﬂbl'Hml): 8 \rlﬂbl(t)—fzﬂbz(t)\Eszbz
(8) 1 b,(t)- E|)2(t)203

_b_4m

A TA =,
Normalized describing function
=

(t)-r,
£0,00-0200 =1 £ (0~ 0, (0] 20~
N(A%,, :ﬂ[":i ~f(A) is on Fig.8. )

r()-0.(0] 20

10 e 12

k
BN =11 1
BT = £,z 0.0)then | 000020 b
o 1
- 2| ®.(0)-0.()|<0=
1 1
-1 < ®a(0)< 000 then | L0 0,(0)] < b
- \ Thus, while the angular rotation between the recal-
- \ culated driving wheel at the output and the driven
. wheel with different size (gear ratiok$ is less than
2 T : : b, the torque between the wheels is not transmitted.

A
Fig.8 Normalized describing function of on-off non-

linearity. (l]>—“

4.2 Describing function of backlash and hys-
teresis non-linearity

2pitrcos (2pifftine)

M_vule
wa
jaz
1 ) m2 100
h az 02
e

mm

In systems with mechanical force (torque) transmis- Fig. 10 Torque transfer dynamic model with back-
sion, the backlash often occurs. This is due to the lash between teeth

small airspace in the transmission mechanism. In a gased on the dynamic model shown in Fig. 10 and
transmission chain consisting of, for example, a the response behaviour of this non-linearity to the

gearbox with front wheels (with parallel shafts), gjnyg inputx(t) = Asinwd (for A>k[b) shown
there is always some airspace between a pair Ofin Fig.11 and Fig.12, can be written

adjacent wheels. It is not just a consequence of inac-
curacies in production and assembly. This is a pre-
requisite for reasonable transfer efficiency.

Fig.9. shows a typical situation. The result of the
dead zone in torque transfer between the teeth is that
when the driving wheel is rotated, there is a certain
path on the contact wheel circle, within which the
torque is not transmitted to the driven wheel. Let the
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x(t)

/N
'\ -7
~_/

T T =k T L]

o

Fig.11 Time course of variables describing the
interaction of two wheels with backlash
for the sine input angle

!

howft)-t

{ bk

A

wit)

6 ‘ /

b
(0T

»-\~r-m/\

™2 AN

\li

Fig. 12 Input-output context for backlash type non-
linearity in gearing

EDﬁ\—b - < -1m+y

k

%DABsir(wEtHb —mHy<wldg -2
w(t)= —(iEA—bj —g<wﬂlsy

%DAB;ir(w[t)—b y<wis?

Em_b E<(.oEIls1'[

k 2

For A< k[b:>kTEb21 the output is zero. We

determine the angle i.e. the angle at which the

backlash influence ends and the output wheel begins

to move: Is valid
1 . 1
EDABIHV—[—(E A - b)] =b=

:%DABiny+%DA— b= b= siny=%b—1

Now, unfortunatelyw (t) is not odd Thus neither

a; nor by is zero and we have to determine them.

The calculation is lengthy.
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ofi-oe)

' ©)
e fond )

So

1 . 1
IN(A, ) =qub1+ i) =XE{/af +b?
ON(A,w)= arct{zlJ

1
The describing function amplitude for backlash
Is shown in Fig. 13 and its phase is in Fig. 14.

]\ N

o
~

1

Fig.13 The desé:ribing function amplifude for the
tooth backlash
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Fig.l4 The describing function phase for the tooth
backlash

Here they are some interesting facts:
1. IN(A, w) _.% for b - 0

k b

2. N(A, w) growswhen e decreases

A

3. IN(A,w) - 0for b

Phase shift (from Oto -90) is due to the effect of a
given non-linearity. It is the result of the time shift
caused by the backlagh[rad] on the output side of
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the gear. Higheb leads naturally to greater phase
shifting, which may cause a stability problem with
the feedback control system.

5 Analysis of nonlinear systems by the
describing functions utilisation

In the following section we show the prediction of
the limit cycles of the selected nonlinear system
type based on the nonlinear element representation
by the describing function. The basic approach for
this prediction is based on the application of an ex-
tended version of the known Nyquist criterion from
linear control to an equivalent system.

5.1 Nyquist criterion and its extension

Let us consider the linear system from Fig. 15.

GG)

HE)

Fig.15 Closed linear control circuit
The characteristic equation of this system is

3 3= H9ods)=0 (10)
Let's recall thag(s)- sometimes called as an antipar-

allel circuit transmission function- it is the rational
function of the complex parametsmwith the roots
of its numerator forming the poles of the closed
system. The roots of its denominator are the poles of
the open regulatory system with transmission

G(9= H9ms(s):
The Nyquist criterion serves to determine the stabil-
ity of the closed loop. As is well known, the closed
loop will be stable if all the poles of the closed cir-
cuit transmission are in the left half of the Gauss
plane. Nyquist, however, has shown that closed loop
stability can be determined based on the frequency
response of the open loop and the position of its
poles. This is advantageous, since open loop trans-
mission is, as opposed to closed loop transmission,
mostly available. It is neither necessary to know the
analytical shape, just experimentally detected data.
It is also possible to use it for systems with transport
delays where algebraic criteria fail.

5.1.1 Cauchy phase theorem

Consider a closed, negative-oriented cuiiye(a
clockwise curve) in a plane that does not pass
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through any root (zero or pole) of tl¥s) transmis-
sion. If we gradually set the points from this curve
in the selected direction @G(s), we will obtain an-
other oriented, closed curvg,in theG plane.

This process is calleshapping of the closed curve
Isfrom planes to the planés. E.g. picture Fig. 16

shows the curve for the mapping process in case the
mapping function (transmission) is equal

G(S) - s+ 05

(309

ImT

Plane s

Re

Fig.16 The curvég
Its parametric equations are
ep=- 25 19¢o
Re} _ s ¢ 0(0;-2m)
In{9= 15in¢
Thus, the curve envelops the two poles of the given
transmission -2, -3, and does not cover its zero - 0.5.

After any point substitution of this curve into the
G(s) transmission, we get the curves in Fig. 17.

TN /7/‘\\
ANEEER 4R \
(A

NE=

\

Fig.17 The curve ¢ andr for transmission

s+ 05
&ls)= (st 9r{s+3)
There is a relationship between the number of nulls
and poles inside the closed cumvgand the change
of the phase of the curvg, in other words, how

much turns the vector begins at the beginning and
passing successively the points on the cpogvén

the direction obtained by mapping the curye

This relationship tellsChauchy's theorem about
the phase:

If the closed, negative-oriented curve in the plane
encompassig zeros andi, poles of the transmis-
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sion G(s) and doesn't passes through its pole or Example. The open circuit is created by a two time-
zero, then the closed curve formed by mapping the invariant inertial cells in series with a proportional

curve to the plan& by the function$s(s), circulate gainK regulator. Open loop transfer is

the origin of this plan@g -n, in the negative direc- K K

H = P © = P =
tion. Go(5)= (=1, @d1+1, 3) =Gol0)= (@ +it, o)L +iT, () -

For the case in Fig. 17, there are two poles in the )

closed curve and r?o zero. Thas= 0 andFr)1A =2 =- K, @, 07 -1) - K Bollr, + 12)

The curve also does not go through zero or pole. 12 E{Tfll)z+1J+T12 O +1 120 EETfI]o2+1]+T12 0o +1
According to the previous statement, the number of , .
turns-2 should be in the negative directions, which Lo i
are two circles in the positive direction. S Gr)apr

RN

5.1.2 Nyquist stability criterion

Create a negative-oriented curig that encir-

cles the entire right half of plarselt consists of
an imaginary axis and a semicircle with an infi-
nite radiusr - o across the right half (see
Fig.18)

~[ [ [ V]

A
Im | Plane s

Fig.19 The frequéhcy charact'eri‘stics forb
Go(9)= (x méé(sk 013)

The frequency characteristic of this system for spe-
cific values K ,1,,7,is in Fig. 19. How does the

change in gainKpof the proportional controller

occur?

Nyquist
curve [

Fig.18 The Nyquist curve
This shape is advantageous since the points on the HANEEN ] \ ____ T

.................

imaginary axis correspond to the frequency charac-
teristioG(ijw) after the mapping and the curve

through the infinity corresponds to the point at the
beginning of the plane G. The closed cuivgis

therefore the frequency characteristic for

w0 (- o0; w). a b
In the Nyquist criterion, therefore, we map to the Fig.20 The frequency characteristic for a)
Gyplane. Since the open circuit transmissiBgis K, =5and b) K, =100

usually given as the product of the transfer of the
base type cells, the construction of the frequency
characteristic is not a major problem.

The Nyquist criterion in the final form is ing the gain occurs as a scale change on both real
The Nyquist criterion in the final form is and imaginary axes. Thus, it is clear that by any gain
Closed feedback circuitis stable if the frequency K, >0it is not possible to shift the frequency re-

response othe open circuit in the complex plane sponseGO(ioo) so that it circulates the point (-1; 0).

irculat int (-1,0) i iti directi f . .
circulates point (-1,0) in a positive direction for Therefore, the number of turns of the point (-1; 0) is

frequency changes fromreo toco as many times . . : .
as the number of open loop transmission poles lie in equal to O for all possible gains. Since the transmis-

the right half of the plane sion Go(iw) does not contain any unstable pole, we

In Fig. 20 a), b) the critical part of the frequency
characteristic for the two gains jis given. Chang-
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can say on the basis of the Nyquist criterion that the
closed circuit will be stable folK, > 0.
Example. The regulated system has a transmission
1 1
Gls)= g A+l
T [ (e vallde- (o-va)]
So it has two poleg= 2++/3;s,=2-+/3 in the

right part of the Gaussian plane. The controller is a
real PD controller (with 1st order filtering)

Kp 5+1
Ggls)=—2——
(9 010B+1
Open loop transfer is

Ko OB+1 Kp Oio+1

GO(S)= :»Go(im)= =
(oms )3 - 43+9) (0100+1) Eﬁ(iw)z‘m“’*l}

_ 100K, " + 390K, 00 + 6 ~10) 1000 K o 07 - 10K, ~39)

[wz + 100] E(m“ +1405° + 1) (wz + 100) EEm“ +1400° + 1]

For a sufficiently large derivative gain, the intersec-
tion with the negative real axis is more negative
than point-1, as shown in Fig. 21.

T

Im

AN

/ N
[ \
VAR
4s ,,z{\ s ay, 0)‘—)4'0005 os  ops m=(;;=_)”

\ /
N ,

/

[~

Fig.21. Frequency response &I, =5

The frequency characteristic will make two circles
around the point (-1.0) in the positive direction. This
case is stable, since according to the Nyquist criteri-
on, the number of turns in the positive direction
coincides with the number of open loop unstable

poles. If the gailK ;is greater than any limit value
Kpomin: then the closed circuit will be stable
(Fig.22).
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Fig.22 Frequency response fp = Kp = 424.

For small gaifK 5, the intersection with the nega-

tive real axis is to the right of the point (-1.0). The
number of rounds around the point (-1.0) is in this
case 0. The closed circuit is unstable (Fig. 23).

Py

Im

/ ?7\\

Fig.23 Frequency respbnse fop =3.
Summarize the findings so far:

1. Create a negative-oriented curve - the so-called
Nyquist curve that encircles the entire right half
of planes. It consists of an imaginary axis and a
half-circle with an infinite radius over the right
half-plane (see figurEig.18).

Map this closed curve from plaséo planeG by
transfer of an open loop. l.e. create the frequency

response of the open loo@ (9= H 9O5(s).
Determine the number of turns of this cumiNe
around the point (-1, 0) of the Gaussian pl&ne
Determine the numbearg, the number of zero of

2.

:Q:O
Als)

in the right part of the plane with help
N=rng—-ny=ng=N+n,, wheren,the

the characteristic equatiorp(g) = 5(3)
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number of poles in the right part of plards This case includes all one-valued non-linearity (ex-
(unstable poles). Then the numbeg is the pressed as a function of one variable) and some non-
number of unstable poles of the closed-loop linear non-linearity expressible as a function of two
system. variables - e.g. backlash.
Equation (10) moves to form
5.2 Existence of limit cycles G(iw) = - 1 (12)
N(A)
Let us suppose that in the system of Fig. 24 there is We can draw the frequency respoiis€iw) (varia-
a spontaneous oscillation with amplitude and ble w) and the negative function inverse to describ-
frequencyw. Th_en, the_vanaples in the loop must ing the function. 1 (variable amplituda) to
meet the following relationships: N(A)
describing functions (U linear part the CompIeX Gaussian p|ane_

r)=0 x(1) " ¥y

N(A,») Gliw) Consider the following examplt_a: _ _
Draw the frequency characteristic of the linear part
and__1 in the Gaussian plane for the following

N(A)
circuit
Fig.24 Nonlinear system with one "hard" nonlineari- describing funketion = _linear part |
i r(y e[ 1> | " « »(0)
y X ==y + .{f/{" (s+1)G+2) = -
w =N(A, w) X -
y =G(iw) v
So we get B
y =G(|oo)|]v_ =G o) (A0 =G_(' W) IN(A, @) i-y)= Fig.25 Example for explain the graphical identifica-
= y=-G(i) IN(A.0)) Iy = [1+ G i) IN(A )] /=0 tion of limit cycle existence
Becausey # 0, it h.as to pay For the frequency characteristic of the linear part is
1+G(iw) IN(A,w) = 0, valid
which we can write as K . K
' = =G, = =
. 1 %= o ger2) O )= i fior 2
Gliw) = -———— (11)
N(A, w) _, Kle-of) . 3K
Therefore, the amplitudd and the frequencyo of o +de? +4) (o +1j (o +4)

the system's limit cycle must meet (11). If this equa- Backlash and hysteresis describing function is (see
tion has no solution, then the nonlinear system does 9)

not create a limit cycle. N(A, @)= N(A)= b, +imy)=
The relation (11) represents two non-linear equa- A n
4Eb|:kE€l—b AJ

tions (one for the real part and the other for the im- TN\ ok®) g _km)|_,
aginary part of the equation) of the two variables ko %AEEE VJ 241 Zd(ﬂ kmmﬁl A J] k Ot
and w. There is usually a definite number of solu- The angley applies

tions. 2[klb

In general, it is difficult to solve these equations by siny= -1
analytical methods, especially for higher order sys- That is true

tems. Generally, a graphical approach based on ‘i“AEL%:

drawing both sides of equation (11) in the Gaussian NA) b -

plane is used looking for intersections of two ~ [zmzc@-@wmc@-zd%jq/@]-immm l_bBEJ

curves.

5.2.1 Frequency-independent describing function - kmEEAZEE;_y)”Eél_Zd(AE)VmTEE _%ﬂ -
L b kb

Let's first consider the simplest case when describ- {AEEE_V)”E@_ZE%) kmm{l_fﬂ +[4D(Ebtél_bd’§ﬂ

?ng functionN is only a fur.wction of the amplitud, i 4|:A|:k2|:b|:ntﬁl—%)

ie. N(A, w): N(A) is valid. {Atﬁg—y)wtﬁl—zﬂ%) kmm@_%ﬂz{mm@_bdﬂ]z
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Fig. 26 shows both characteristics in Gauss plane.

lIm

* Im Re NS G(iw)

/I:P/‘-n i (04

“nr =
( | 3r_J \Q\ Re
NG T AN

@

\ Glio :)\

1 {

/

AN
\ I et Fig.27. Limit cycle detection for frequency depend-
—) ent describing function
Fig.26 Limit cycle detection for the situation in ' The right side of (11) corresponds to the whole set
Fig.25. of curves in the complex plane with the variable

amplitude A and w as fixed for each curve - see

If the curves intersect, then there is a limit cycle ¢ ) g
y Fig.27. There is generally an infinite number of

with the valuesA andw corresponding to the inter-
sections that are the solution of equation (L1). If the intersections between the cures) and > .
curves intersection is times repeated (in example 2 N(A, w)
times), then the system haspossible limit cycles. ~ Only the intersections in the correspondgndi-
Which limit cycle will be achieved depends on the cate limit cycles.

initial conditions. To avoid the complexity of finding identical fre-
In Fig. 26 both curves intersect at two points. The quencies at the intersections, it may be advanta-
first one answers to théy; = 095, o, = 195, the geous to consider the graphical solution (10) direct-

other one to thd, = 2525 o, = 682. ly, based on the plaB (10 IN(A, ).

Note that for nonlinearities with; = 0 (one-valued
non-linearity - expressed as odd function of one
variable) the describing function is with

1
N(A)
lies on the real axis.
It is also useful to point out that the above procedure
gives only the prediction of the existence of limit
cycles. The validity and accuracy of this prediction
should be confirmed by simulation.

Im{N(A,w)} =0, it is the real function, i.e-

G(im).N(A,0)
Fig.28 Term (11) graphical solution

5.2.2 Frequencydependent describing function For a fixedA and a changefrom 0 to e, we ob-
tain the curves representigfiw)IN(A, w). Different

In general, the describing functions are dependent values A correspond to the set of curves as in

on both amplitude and frequency, Ne=N(A,w) . Fig.28. A curve passing through a pof#t,0)  on

The described method can be used here, but with the Gaussian plane indicates the existence of a limit

greater generality. The right side of (11) corre- cycle with the curveA as the amplitude and fre-

sponds to the whole set of curves in the complex quencyw corresponding to this point is the fre-

plane with the variable amplitud® andw as fixed quency of the given limit cycle.

for each curve - see Fig. 27. Although this procedure is much easier than in the
previous case, it requires repeated calculations
G(iw)IN(A,w) to generate a set of curves. Therefore,
there is a clear advantage of computer tools using.

E-ISSN: 2224-2856 443 Volume 13, 2018



WSEAS TRANSACTIONS on SYSTEMS and CONTROL Zdeng&k Urednitek

5.3 Limit cycles stability Limit Cycle Criterion : Each intersection of the
frequency characteristics of the system linear part
As we know, the limit cycles can be stable or unsta- G(iw) without the poles in the right-hand side of
ble. In the previous we discussed how to detect their _ 1
existence. the Gaussian plane and the curvgm where
As we know, the limit cycles can be stable or unsta- ] ] ) N )
ble. In the previous we discussed how to detect their N(A,w) is the non-linearity describing function
existence. Let us now discuss how to determine the corresponds to the limit cycle.
stability of the limit cycle by extending the Nyquist If the points near the intersection and along the
criterion detailed in 5.1. c
Let us consider the frequency characteristics and

not surrounded by a curveG(i(o), then the corre-
sponding limit cycle istable If the points near the

rve; with the increasing amplitudeare
N(A, w)

- 1 .
charactenstlcs—w of Fig. 26. There are two

intersections, predicting that the system has two . _ 1 _

limit cycles. The amplitude valud; of the first intersection and along the curvm with the
intersectionL ; is smaller than the amplitude value ’
A, of the second intersectidry. For simple discus- 1
sion, let's assume in general that linear transmission -———, then the corresponding limit cycle us-
function G(s) does not have unstable poles, which is (A w)

true in our example. stable . . . .
Let's first discuss the stability of the limit cycle at Example. Consider a simple one-dimensional satel-

the first intersection. Let us assume that the system lit€ model at constant height and having one degree
first operates at thie; point with limiting amplitude ~ Of freedom - anglg, indicating the angular position
A, and its frequency will be. As a result of a small ~ ©f the antenna with an inertia momeht= 1k9”‘2
disturbance, the amplitude of the input to the non- controliable by double rockets generating with con-
linear member slightly increases and the working Stant positive or negative mechanical torque

point moves from point; towards pointL,. Be- '
cause the new point is surrounded by a cGfie),
according to the extended Nyquist criterion in 6.1,
the system at this operating point is unstable and the
system signal amplitudes will increase. Therefore,
the operating point will continue to move along the

increasing amplitud@ are surrounded by a curve

1 .
curve _N(A) towards the second point of the

limit cycle. Q\

If, on the other hand, a system disturbance causes arig.29 Simplified control of the satellite angular
reduction in the amplitude, i.e., the movement on position

the red curve fron, in the direction fronl, then  Fjg. 30 shows the block structure of the angle con-
the amplitude of the oscillation& will be further trol.

reduced as the new working point is not surrounded Rockets Satellite

by a curve, and according to the extended Nyquist i —— P

criterion the system at this operating point is stable. ¢ =1 1 |@ 1 ¢

The working point moves fronh, along the red QF [T S s

curve to the downward directiogh. | B G

Thus, a small disturbance changes theworking Fig.30 Block diagram of simplified satellite angular
point, and this point is unstable. A similar analysis position control

can be performed to evaluate the stability of the - : :
e . i C For the frequency characteristic of the linear part is
limit cycle at pointL,. We will find that this limit valid
cycle is stable.

Summarizing the discussion for this example and : % %

using the results of the previous section, we can Giin (S)_S_z E

formulate a criterion for the existence and stability
of the limiting cycles:

=Gy, (ioo) ==

Comparator describing function is (8)
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N(A, @) =N(8) =3 oy + i) =2 = 2 wh .

That is true

1 1 nlA -
-—— _=-A = S

N(A) b, 4IM A :

For nonlinearities witha; = 0 (one-valued non- T 0T T 01T el | =™
linearity - expressed as odd function of one variable)

the describing function is withm{N(A,w)}=0 , itis

N =
P
=

04 Go)

the real function, i.e.—i lies on the real axis. /
N(A) .
In our case also the frequency characteristic of the Fig.32 Limit cycle detection for the situation in
linear part lies on the real axis! Both curves merged. Fig.30
Thus, there are infinitely many intersections of both
curves, but individual points correspond to different . o
A andw. E.g. the intersection with the value on the changecw from 0 to c and the line |nd|cat|r_lg
real axis-0.438 corresponds to the parameters of chgnge oiA.fror.n Otol. We see that the oply point
both linesA = 0.558 w= 0.477 Therefore, the es-  Of intersection is the p0|r[t0, O] of Gaussian plane.
timation is that there are infinitely many limit cycles  Thus, the "limit cycle” will have amplitude of 0 and
corresponding to different amplitudes and frequen- an infinite frequency. It is a point. The curve does

On Fig. 32 is part of the frequency characteristic at

cy. not enclose it wheA rises, the point will be stable.
Can we decide whether or not the intersection points L %" e

are surrounded by a cun@(jw) near the intersec- 9
tions and along a curve_ L with increasing i i

N(A. ) " Wy BTy o
amplitude A? These are two merging linesVe AR ?

know the system is on the line of critical stability
Let us consider the variant of the example with add-

ed some linear friction with the coefficient Thus Fig.33 The Physical multiport diagram of the situa-
the new block diagram is tion from Fig.31.
Rockets Satellite
gy - Fig. 33 shows the physical multiport diagram of the
o 3 w | ® | 2 |i° rotating satellite with linear friction and the angular
-% HEN 1B § variance control to zero by means of a comparator.
I L S EE

Fig.31 Block diagram of simplified satellite with ‘
linear friction angular position control *

o(t)
Now for the frequency characteristic of the linear ! /\
part is valid /\ /\
1 1 v/\v/\vl\vl‘\ | AA AR

= Gy, G(*)): J

_ J _
G\in(s)—s +% o w+%—

ISR A R B - B
- T R 212 4 12
w[ﬁ E(lo+%) w D +b oo[ﬁu) J°+b ) e e
Comparator describing function is again Fig.34 Time dependencies under non-zero initial
N(A, &)= N(A)zl[ﬂbﬁ i&l)zﬁ _4aM conditions.
That i int A A TA Fig. 34 shows the time dependencies of the system
atis again true response to non-zero initial conditions. They can see
__ 1 _ -A gi __TiA confirmation of analysis made by frequency analysis
N(A) b, 4M (modified Nyquist criterion). Under any initial con-

ditions different from zero, there is an oscillating
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transient phenomenon that ends at a stable "cycle" The paper is second part of an analysis of non-linear
point. systems, where in this part is the application of de-
It is better to see this in Fig. 35, where the phase scribing functionsthe so-calledrequency lineari-

portrait is presented zation-to the existence and basic parameters of the

[rad/s]

(1]
o(p)

(2]

¢[rad]

—_—

[3]

Fig.35 Phase portrait of system response under non-
zero initial conditions

(4]
6 Conclusions

The general mathematical description of the
mechatronic systems dynamic behavior as artificial [5]
systems with purposeful motion control, in which
one part is a subsystem with the motion of [6]
interconnected bodies with non-zero resting mass,
necessarily leads to a nonlinear system.

The primary cause of its nonlinearity is the exist-
ence of the Coriolis type forces (forces dependent
on the product of the bonded bodies’ motion
speeds). But even if in the case of slow movements [8]
these elements of the dynamic description are ne-
glected in the design of control laws (we consider
these forces as disturbances), in the real systems[®]
remain the effects of the so-called hard nonlineari-
ties that are part of both mechanical subsystems
(friction, backlash, hysteresis) and the control sys-
tem (saturation, hysteresis).

These nonlinearities can cause both desirable and
undesired phenomena where their most significant
manifestation is the existence of limit cycles.

This article follows up on the previous paper [11],
where it's describe how we can obtain a describing
function for a non-linear system containing one such
non-linear element. This will allow us to further
analyse the existence of limit cycles based on the
representation of the non-linear element by describ-
ing function.

The basic approach for this prediction is based on
the application of the extended version of the crite-
ria based on Cauchy's lemma from complex analysis
(Nyquist criterion known from the linear control
theory) to the equivalent system obtained by a de-
scribing function application.
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