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Abstract: - In this paper the usability of the self-organizing migrating algorithm (SOMA) in a nonlinear system 

predictive control area is studied. Two approaches to model predictive control applied on a nonlinear system 

are compared here. Firstly, the SOMA was used to minimize the objective function, secondly, the fmicon 

function included in the MATLAB optimization toolbox was used for the same. The comparison itself was 

made from four points of view. Firstly, the value of the in-reactor temperature overshoot and the related quality 

of the in-reactor temperature course were observed. Secondly, the time of processing which is important for 

effectiveness of a real plant and also the course of the actuating signal that is important from the practical point 

of view were monitored. The input data used here to simulate the process were obtained from the real chemical 

exothermic process. 

 

Key-Words: - Semi-batch reactor; predictive control; MATLAB software; SOMA algorithm, nonlinear system, 

exothermic reaction 

 

 

1 Introduction 
Control of nonlinear systems brings challenges in 

the controller design. The current availability of 

powerful computing technologies enables 

application of complex computational methods. One 

of such complex method is also the self-organizing 

migrating algorithm (SOMA). This algorithm can be 

used for various optimization problems solving. 

Such optimization task to solve could be also the 

model predictive control (MPC). Here suitable 

algorithm minimizes an objective function which is 

based on the responses from a real system model 

and the real system itself. Minimizing the objective 

function using SOMA is studied here and the 

comparison with the MATLAB fmincon function 

minimization is also done to evaluate the SOMA 

control ability. Results obtained by the simulation 

means are than evaluated using suitable criterion 

which was defined for that purpose. The real 

process model on which the simulations are 

performed comes from leather waste recycling 

technology. Block diagram of this procedure named 

an enzymatic dechromation can be seen in the 

Figure 1.  

An enzymatic dechromation is a waste free 

technology which recycles waste originated during 

chrome tanning process and also waste generated at 

the end of the final product lifetime (used leather 

goods). Part of the recycling process includes also a 

strongly exothermic oxidation-reduction reaction 

which can be controlled by the chromium sludge 

(the waste produced by leather industry) into the hot 

reaction blend of chromium sulphate acid 

dosing [1]. The system itself, an exothermic semi-

batch reactor, exhibits nonlinear behavior. 

 

 

2 The nonlinear system to be 

controlled 
 

2.1 Semi-batch process 
As was already mentioned, the nonlinear system 

here represents the exothermic semi-batch reactor in 

which the chromium leather waste is recycled. The 

chemical reactor is a vessel with a double wall filed 

with a cooling medium. It has a filling opening, a 

discharge outlet, cooling medium openings and a 

stirrer. 

The reactor is filled with initial filling given by 

the solution of chemicals without the chromium 

sludge (filter cake). The sludge is fed into the 

reactor to control the developing heat since the 

temperature has to stay under a certain critical level 

(T(t) < 373.15K), otherwise the reactor could be 

destroyed. On the other hand, it is desirable 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubomír Macků, David Sámek

E-ISSN: 2224-2856 466 Volume 13, 2018



  
Fig. 1. Chromium waste recycling procedure 

 

to utilize the maximum capacity of the reactor 

to process the maximum amount of waste in 

the shortest possible time (higher temperature is 

desirable). Therefore, an optimal control strategy 

has to find a trade-off between these opposite 

requirements. 

 

 

2.2 System mathematical model 
Based on the balanced equations (the mass and heat 

balance), system mathematical model was derived 

[2]. The equations describing the system are 

displayed here (Eq. 1-4): 
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Individual symbols have the following meaning: m 

is the total weight of reaction components in the 

reactor, a is the mass concentration of the reaction  

component in the reactor, c = 4500 J·kg·K-1 is the 

specific heat capacity of the reactor content and T its 

temperature. FI, TI = 293.15 K and cI = 4400 

J·kg·K-1 are the reaction component input mass flow 

rate, temperature and specific heat capacity. FC = 1 

kg·s-1, TCI = 288.15 K, TC, cC = 4118 J·kg·K-1 and 

mC = 220 kg are the cooling water mass flow rate, 

input temperature, output temperature, specific heat 

capacity and weight of the cooling water in the 

cooling system of the reactor, respectively. Other 

constants: A = 219.588 s-1, E = 29967.5087 J·mol-1, 

R = 8.314 J·mol-1·K-1, ΔHr = 1392350 J·kg-1, 

K = 200 kg·s-3·K-1, S = 7.36 m2.  

The fed-batch reactor use jacket cooling, but the 

effective heat-transfer area (S = 7.36 m2) in the 

mathematical model was treated as constant, not 

time varying. The initial amount of material placed 

in the reactor takes about two-thirds of the in-reactor 

volume and the reactor is treated as ideally stirred, 

so we can do this simplification. 

Variables FI, FC, TI, TCI, can serve as 

manipulated signals. However, from practical point 

of view, only FI and FC are usable. The TI or TCI 

temperature change is inconvenient due to the 

economic reasons (great energy demands). 

 

 

2.3 System constrains and other limits 
The maximum reactor filling is limited by its 

volume to m = 2450 kg approximately. The process 

of the chromium sludge feeding FI has to be stopped 

by this value. Practically, the feeding FI can vary in 

the range 3;0IF  kg.s-1. As stated in the system 

description, the temperature T(t) must not exceed 

the limit 373.15 K; this temperature value holds also 

for the coolant (water) but it is not so critical in this 

case as shown by further experiments. 
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3 Control of the system 
Our nonlinear system here represents a chemical 

reactor. The state of art of chemical reactors control 

presents for example Luyben in [3] and [4], control 

and monitoring of batch reactors also describes 

Caccavale et al. in [5]. Generally, it can be stated 

that chemical reactors controllers use various 

control methods, such as PI controllers, adaptive 

control methods [6-8], robust approaches [9], 

predictive control and the like [10-19]. The model 

predictive control [20-22] [23-25] belongs to the 

one of the most popular and successful approaches 

for semi-batch reactors control. However, this 

methodology brings some difficulties in finding 

optimal control sequence especially when complex 

nonlinear model is utilized. Interesting way how to 

cope with the optimization problem offers the usage 

of evolutionary algorithms [26-27]. Some review of 

the recent state can be found for example in [28]. 

 

 

3.1 Model predictive control 
Two different approaches to the model predictive 

control of the given system are introduced in this 

paper. At first, the model predictive controller uses 

SOMA algorithm for the optimization of the control 

sequence. This methodology ensues from model 

predictive control method [29] while it uses same 

value of the control signal for whole control horizon 

in order to reduce computational demands of the 

controller. Secondly, the classic MPC controller, 

which uses Matlab Optimization Toolbox fmincon 

function, was used. 

The main idea of MPC algorithms is to use a 

dynamical model of process to predict the effect of 

future control actions on the output of the process. 

Hence, the controller calculates the control input 

that will optimize the performance criterion 

J (Eq. 5) over a specified future time horizon [30]: 
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where k is discrete time step, N1, N2 and Nu define 

horizons over which the tracking error and the 

control increments are evaluated. The ut variable is 

the tentative control signal, yr is the desired response 

and is the network model response. The parameters 

λ and ρ determine the contribution that the sums of 

the squares of the future control errors and control 

increments have on the performance index. 

Typically, the receding horizon principle is 

implemented, which means that after the 

computation of optimal control sequence only the 

first control action is applied. Then, the horizon is 

shifted forward one sampling instant and the 

optimization is again restarted with new information 

from measurements. Simplified structure of the 

MPC control strategy is depicted in the Figure 2. 

 

 
 

Fig. 2. Basic structure of the model predictive controller 
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3.2 Model predictive control using SOMA 
 

3.2.1 SOMA algorithm  

The Self-Organizing Migrating Algorithm (SOMA) 

is based on the self-organizing behavior of groups of 

individuals in a “social environment”. It can be 

classified in two ways – as an evolutionary 

algorithm or as a so called memetic algorithm. 

SOMA algorithm can be used for optimizing any 

problem which can be described by an objective 

function. This algorithm optimizes a problem by 

iteratively trying to improve a candidate solution, 

i.e. a possible solution to the given problem. The 

SOMA has been successfully utilized in many 

applications [31-33], while interesting comparison 

to with simulated annealing and differential 

evolution is provided by Nolle et al. in [34]. 

SOMA is based on the self-organizing behavior 

of groups of individuals in a “social environment”. 

It can be classified in two ways – as an evolutionary 

algorithm or as a socalled memetic algorithm. 

During a SOMA run, migration loops are performed 

causing individuals repositioning as in evolutionary 

algorithm. The position of the individuals in the 

search space is changed during a generation, called 

a ‘migration loop’. Individuals are generated by 

random according to what is called the ‘specimen of 

the individual’ principle. The specimen is in a 

vector, which comprises an exact definition of all 

those parameters that together lead to the creation of 

such individuals, including the appropriate 

constraints of the given parameters [35]. On the 

other hand, no new ‘children’ are created in the 

common ‘evolutionary’ way. The category of 

memetic algorithms covers a wide class of meta-

heuristic algorithms. We can say that memetic 

algorithms are classified as competitive-cooperative 

strategies showing synergetic attributes. SOMA 

shows these attributes as well. Because of this, it is 

more appropriate to classify SOMA as a memetic 

algorithm. 

 

3.2.2 SOMA simulations  

Simulations were performed in the Mathematica 8.0 

software. Here the algorithm SOMA was used for 

the cost function (5) minimization and was set as 

follows: Migrations = 25; AcceptedError = 0.1; NP 

= 20; Mass = 3; Step = 0.3; PRT = 0.1; Specimen = 

{0.0, 3.0, 0.0}; Algorithm strategy was chosen All 

To One. First two parameters serve for the 

algorithm ending. Parameter “Migrations” 

determines the number of migration loops, 

“AcceptedError” is the difference between the best 

and the worst individuals (algorithm accuracy). If 

the loops exceed the number set in “Migrations” or 

“AcceptedError” is larger than the difference 

between the best and the worst individuals, the 

algorithm stops. Other parameters influence the 

quality of the algorithm running. “NP” is the 

number of individuals in the population (its higher 

value implicates higher demands on computer 

hardware and can be set by user), “Mass” is the 

individual distance from the start point, “Step” is the 

step which uses the individual during the algorithm, 

“PRT” is a perturbation which is similar to 

hybridizing constant known from genetic algorithms 

or differential evolutions. “Specimen” is the 

definition of an exemplary individual for whole 

population. For details see [35]. 

Seven different simulations using SOMA 

algorithm were performed. First three simulations 

(SOMA1 – SOMA3) were done to study the control 

horizon Nu influence, next three (SOMA4 – 

SOMA6) the prediction horizon N2 influence and 

the last one (SOMA7) is the simulation with an 

optimal setting. All settings can be seen in Table 1. 

 

Table 1. SOMA controller settings. 

 λ ρ N2 Nu 

SOMA1 1 1 300 30 

SOMA2 1 1 300 60 

SOMA3 1 1 300 90 

SOMA4 1 1 200 60 

SOMA5 1 1 280 60 

SOMA6 1 1 360 60 

SOMA7 1 1 320 60 

 

The control horizon (Nu) actually means the time 

interval, for which the actuating variable (FI) has 

constant value. It is generally better to set it as short 

as possible because of more rapid influence on the 

system, but on the other hand the lower value 

increases the computing time during the 

calculations. So it is necessary to find the control 

horizon value, which balance between these two 

requirements. 

The prediction horizon (N2) determines how 

forward controller knows the system behavior. If the 

horizon is too short, the controller doesn’t react in 

time and the system may become uncontrollable. 

Long horizon means again the more demanding 

computation, i.e. the need of more powerful 

computer hardware. 

Graphical output of SOMA7 (the optimal 

settings) simulation is depicted in Figure 3. The two 

most important dependencies are here – the 

inreactor temperature and the chromium sludge 
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dosing development. As was already mentioned, the 

temperature has to stay under critical point 

373.15 K. The chromium sludge dosing shouldn’t 

embody any rapid changes. 

 

 
Fig. 3. Results of SOMA7 simulations. 

 

 

3.3 Conventional MPC approach 
This part was simulated using Matlab/Simulink, 

where the standard Matlab Optimization Toolbox 

function fmincon with receding control strategy was 

implemented. The fmincon function used trust-

region-reflective algorithm [36]. 

To get the similar settings as in the SOMA case 

(the constant control action for the whole length of 

the control horizon Nu = 60), the sample time was 

set to 60s. The control horizon Nu and the prediction 

horizon N2 were set to 10. The rest of the controller 

design remained same – the predictor was based on 

the white box model described by equations (1 – 4), 

objective function used by MATLAB was also the 

same (5). 

The first set of simulations showed that the 

control did not provide acceptable results. The 

permanent control error and/or controlled variable 

overshoot where not satisfactory here. It was found 

that the problems were located mainly in the 

beginning of the control process. The controller took 

enormous control actions there. This strange 

behaviour was result of reaction kinetics and 

strongly exothermic reaction combination. Even 

small concentration growth of the chromium sludge 

(the increase in actuating variable) causes steep rise 

of the temperature, but the reaction kinetics can 

cause a response delay to the dosing.  

To prevent this unwanted behaviour, new 

criterion based on the criterion (5) was defined. This 

enhanced criterion was able to penalize values of the 

control signal in the process start part. Also, at the 

same time the penalization has to decrease 

taperingly. The new enhanced criterion is described 

by equations (6-7) and the controller settings are 

placed in table 2. 

 

Table 2. Matlab controller settings. 

 λ ρ γ γc N1 N2 Nu 

MLB1 1 100 0 0 1 10 10 

MLB2 1 100 2000 100 1 10 10 

MLB3 1 100 2000 200 1 10 10 

MLB4 1 100 1500 100 1 10 10 
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The parameter γc defines here the speed of the 

decrement in γ. In this way we can influence the 

speed of the chromium sludge dosing, the actuating 

value. We can say that γ parameter defines 

penalization of the control signal, while the ratio γ/γc 

specifies the length of the penalization interval. Too 

high γ parameter or γ/γc ratio caused delays or 

oscillations (the settings MLB2 in Table 2). On the 

other hand, small γ/γc ratio led to overshoots of the 

temperature (the settings MLB3 in Table 2). The 

best result obtained using this approach was 

obtained for MLB4 settings and is displayed in 

Figure 4. 

 

 

3.4 Results comparison 
Results of the best SOMA and MATLAB 

simulations were selected for the comparison. To 

compare the control error, the criterion function Sy 

was defined (Eq. 8): 

                       
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Other criterion Su (Eq. 9) was defined to monitor 

the speed of the control signal changes. From the 

practical view, the monitoring of it is very 

important, because lifetime of the mud pump 
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Fig. 4. MATLAB simulations results. 

 

(actuator) that injects the chromium sludge to the 

reactor would be shortened significantly in case of 

steep changes. 
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The number of steps computed for the criterions 

Sy and Su is defined by tf and was set to 50 steps.  

Observed were also the maximum overshoot of the 

output value ymax and the time of the reaction 

(dosing) tb. 

For the reason that the plant is strongly 

exothermic and it is very sensitive to the exceeding 

of the desired value of the temperature (yr = 370K), 

it was necessary to observe the maximum overshoot 

of the output value ymax. Furthermore, it is essential 

to observe the time of the reaction (chromium 

sludge dosing) tb. The heating up and maintaining 

the system temperature usually takes about 3000s 

and after that only cooling is performed. 

In fact, there was not significant difference in the 

temperature overshoots between the SOMA and 

MATLAB, they were quite similar. Anyway, as can 

be seen in Table 3 the result obtained by SOMA was 

a bit better. Also the results provided by criterion Sy 

were in both cases close. The lower value is better 

value in case of Sy and again the SOMA control 

quality prevailed. The time of dosing achieved by 

SOMA was shorter approximately for one minute 

(58 seconds).  

On the other hand, the MATLAB gave better results 

for the Su criterion. The SOMA value 2.3200 was 

higher than the 1.5500 MATLAB value. The 

actuating device would last longer without servicing 

in MATLAB case. 

 

Table 3. Final comparison. 

 Sy [K2] Su[kg2·s-2] ymax[K] tb[s] 

SOMA7 9.257·103 2.3200 370.174 3242 

MLB4 1.033·104 1.5500 370.236 3300 

 

4 Conclusion 
Both the SOMA and MATLAB were able to control 

our complex nonlinear process here, but there were 

some differences. A surprising difference emerged 

when the MATLAB was not able to provide 

satisfactory control results using the same objective 

function as SOMA algorithm did. The controlled 

variable (the in-reactor temperature) showed an 

overshoot unfortunately. That is why the purpose 

function had to be changed for the MATLAB 

simulations. After this change, the comparison was 

made from four points of view. Firstly, the value of 

the in-reactor temperature overshoot and the related 

quality of the inreactor temperature course were 

observed. Secondly, the time of processing which is 

important for effectiveness of a real plant and also 

the course of the actuating signal that is important 

from the practical point of view were monitored. 

Although the results were similar, SOMA showed 

generally better results than MATLAB. The results 

show that the nonlinear system can be successfully 

controlled by evolutionary algorithms. 
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