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Abstract. Demand for affordable and sustainable energy is growing. Even though the technology of 
construction and insulation of buildings is continuously improving, heating is still a significant issue 
for large part of Europe. Building modern heating systems as well as upgrading existing ones requires 
incorporating new technology and smart control systems with sophisticated control algorithms. An 
essential part of the control systems are models that allow the simulation to verify proposed actions or 
use series of simulation experiments to find the optimal solution. Several simulation tools are 
specializing in the field of energy already, and some general tools can also be used. This article shows 
two methods of own prediction mechanism of the heat demand of individual consumers (buildings). 
Modelling of individual buildings is the basis of the simulation model of district heating which is 
being developed. The fundamental idea is to build a modular model for specific district heating and 
start from the endpoints - from the individual consumption objects that will be interconnected through 
the distribution model with other parts of district heating system such as other consumers and 
producers. It is assumed that the heat demand is the most challenging part of the prediction, and 
therefore the accuracy and quality of these models will be the most significant to the accuracy of the 
entire future result. 

1 Introduction  
District heating and cooling systems (DHCS) are 
relatively large energy consumers, especially in 
countries geographically located in areas where colder 
periods occur when the outside temperature drops to 
values that are difficult for humans without heating to 
live in or it is not at all possible. In the context of the 
current situation where the requirements for energy 
consumption in general are rising, and with the prospect 
that classical resources are limited, the solution is, on the 
one hand, to use conventional resources as efficiently as 
possible, and on the other hand use more alternative 
resources, especially renewable. 
Of course, these requirements also affect DHCS by: 
- to use the energy produced most efficiently, i.e., to 

minimize its losses, 
- by changing the structure of the DHCS to achieve 

more significant use of alternative sources. 
This requirements dramatically affects the management 
of the entire DHCS, and the inclusion of these new 
trends leads to new approaches and the use of modern 
methods for creation and use of DHC control system [1]. 

2 Heat demand models  

The article shows a partial output of the project, which 
aims, among other things, to prepare a heat flow model 
for district heating system. Such a model will consist of 
modules (sub-models) of heat sources, distribution 

system, and consumers. The article will deal with the 
preparation and verification of the consumption model. 

The expected goal of such consumption model is to 
offer the most accurate prediction of heat demand for a 
given consumption object. 

For optimal heat source operation, especially CHP 
plant, the ability to predict the heat demand is necessary. 
In the past many methods have been proposed for heat 
demand prediction (forecasting):  
• ARX models [2],  
• Box-Jenkins [3], 
• SARIMA [4], 
• Neural networks [5, 6], 
• Machine learning [7, 8], 
• Particle Swarm Optimization [9]. 
 
ARX, Box-Jenkins, and SARIMA belong to the class of 
statistical methods with the main benefit being the 
linearity of the model. Many researchers use neural 
networks for modelling the nonlinearity of heat demand 
temperature dependence. Another large class of methods 
are methods using the machine learning technique to 
identify patterns in the heat demand. 

2.1 ARX model of the heat demand 

As mentioned earlier, the ARX model is used for 
modelling and prediction of the heat demand. The 
ambient temperature is measured at the location of the 
producer or consumer. The ambient temperature together 
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with social behavior of the consumers influences the 
demand more significantly while other weather 
conditions like wind or global radiation have an only 
minimal effect. The equation for ARX model can be 
written as: 

𝑦𝑦(𝑘𝑘) = 𝐵𝐵(𝑧𝑧−1)
𝐴𝐴(𝑧𝑧−1) 𝑢𝑢(𝑘𝑘) + 1

𝐴𝐴(𝑧𝑧−1) 𝑒𝑒(𝑘𝑘)  (1) 

𝐴𝐴(𝑧𝑧−1) and 𝐵𝐵(𝑧𝑧−1) are polynomial with respect to the 
backward shift operator 𝑧𝑧−1and defined by the following 
equations: 

𝐴𝐴(𝑧𝑧−1) = 1 + 𝑎𝑎1𝑧𝑧−1 + ⋯ + 𝑎𝑎𝑛𝑛𝑛𝑛𝑧𝑧−𝑛𝑛𝑛𝑛  (2) 

𝐵𝐵(𝑧𝑧−1) = 𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 + ⋯ + 𝑏𝑏𝑛𝑛𝑛𝑛−1𝑧𝑧−𝑛𝑛𝑛𝑛+1 (3) 

The important characteristic of the model is its 
linearity in all estimated parameters. The output signal y 
is the heat demand, and u stands for an input signal 
which is ambient temperature. The output can be written 

𝑦𝑦(𝑘𝑘) = 𝑏𝑏0𝑢𝑢(𝑘𝑘) + 𝑏𝑏1𝑢𝑢(𝑘𝑘 − 1) + ⋯ + 𝑏𝑏𝑛𝑛𝑛𝑛−1𝑢𝑢(𝑘𝑘 − 𝑛𝑛𝑛𝑛 +
1) + 𝑎𝑎1𝑦𝑦(𝑘𝑘 − 1) + ⋯ + 𝑎𝑎𝑛𝑛𝑛𝑛𝑦𝑦(𝑘𝑘 − 𝑛𝑛𝑛𝑛) (4) 

The above formula provides a direct description of 
one-step-ahead prediction. The parameters of 
polynomials 𝐴𝐴(𝑧𝑧−1) and 𝐵𝐵(𝑧𝑧−1) can be chosen so that 
the model fits data as much as possible in the least 
squares sense. The polynomial 𝐴𝐴(𝑧𝑧−1) of na order is the 
complete set of estimated parameters related to the AR 
part of the ARX model. This part of the model captures 
the social behavior of the consumers. The influence of 
the ambient temperature is described by the parameters 
of the polynomial 𝐵𝐵(𝑧𝑧−1).  

In the calibration phase, the regression vector 
contains the historical measurements of the ambient 
temperature. Once the model is calibrated, it can be used 
for simulation and prediction and forecasted ambient 
temperature provided by any meteorological model is 
used instead of the historical data in the regression 
vector. 

2.2 PSO model 

The second approach is an iterative model whose 
parameters were searched by the optimization algorithm 
PSO. The Particle swarm algorithm (PSO) [10, 11] was 
chosen as the numeric optimization algorithm suitable 
for problems without the explicit knowledge of the 
gradient of the function to be optimized. Traditional PSO 
(TPSO) should be written in this form: 

𝑉𝑉𝑖𝑖𝑖𝑖(𝑘𝑘 + 1) = 𝜔𝜔𝑉𝑉𝑖𝑖𝑖𝑖(𝑘𝑘) + 𝑐𝑐1𝑟𝑟1(𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖(𝑘𝑘) − 𝑋𝑋𝑖𝑖𝑖𝑖(𝑘𝑘)) 

+𝑐𝑐2𝑟𝑟2(𝐺𝐺𝐺𝐺𝑑𝑑(𝑘𝑘) − 𝑋𝑋𝑖𝑖𝑖𝑖(𝑘𝑘))  (5) 

𝑋𝑋𝑖𝑖𝑖𝑖(𝑘𝑘 + 1) = 𝑋𝑋𝑖𝑖𝑖𝑖(𝑘𝑘) + 𝑉𝑉𝑖𝑖𝑖𝑖(𝑘𝑘)   (6) 

where: 

𝑖𝑖 represents the particle index  
i = 1,2, … 𝑁𝑁𝑁𝑁, 

NP represents the number of particles in 

swarm, 
d represents the dimension index 𝑑𝑑 =

1,2, … 𝐷𝐷, 
𝐷𝐷 represents the dimension of the solution 

space, 
𝑘𝑘 represent the index of iteration, 
𝑋𝑋𝑖𝑖𝑖𝑖(𝑘𝑘) represents the particle position, 
𝑉𝑉𝑖𝑖𝑖𝑖(𝑘𝑘) represents particle velocity 
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖(𝑘𝑘) represents the particle best position, 
𝐺𝐺𝐺𝐺𝑑𝑑(𝑘𝑘) represents the swarm best position, 
𝜔𝜔 represents the inertia component, 
𝑐𝑐1 represents the social component, 
𝑐𝑐2 represents the cognitive component, 
𝑟𝑟1, 𝑟𝑟2 are uniformly distributed random 

numbers in the interval [0, 1]. 
The particle velocity is limited to 

𝑉𝑉𝑖𝑖𝑖𝑖(𝑘𝑘) ∈  [−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚],    (7) 

where: 

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum particle velocity. 

The number of particles NP is usually set at two times 
more than the dimension 𝐷𝐷. 

The implementation of PSO algorithm approximates the 
heat demand as follows and under these conditions: 

The proposed version of the algorithm does not take 
into account other consumption than the heating, e.g., 
energy to prepare hot tap water. 

The measured parameters are heat demand, outdoor 
temperature, and supply temperature on the primary side 
of the heat exchanger. Given parameters are required 
plus maximum indoor and secondary side supply 
temperature. The calculated parameters are indoor 
temperature and the output temperature of the heat 
exchanger secondary side.   

 
 
 
 
 
 
 
Fig. 1. Schema of basic model parameters. 
 
The algorithm is based on the balance of the 

temperature loss according to the outdoor temperature 
(8) and the indoor temperature gains (10) from 
secondary supply temperature. Similarly, the updated 
secondary side temperature (13) and heat load (14) are 
calculated using the difference between required and 
actual secondary side temperature multiplied by the 
difference between the primary side supply temperatures 
and decreased secondary side supply temperature. 

𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑 =  𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖−1) − 𝑐𝑐1( 𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖−1) −  𝜗𝜗𝑒𝑒𝑒𝑒(𝑡𝑡𝑖𝑖)) (8) 

∆𝑆𝑆= ( 𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑

𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 ) (𝜗𝜗𝑆𝑆(𝑡𝑡𝑖𝑖−1) − 𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑) (9) 

 𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =   𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑐𝑐2∆𝑆𝑆 (10) 

𝜗𝜗𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑 =   𝜗𝜗𝑆𝑆(𝑡𝑡𝑖𝑖−1) − 𝑐𝑐3∆𝑆𝑆 (11) 

𝜗𝜗𝑆𝑆 𝜗𝜗𝑃𝑃 

Producer 

Heat 
Exchanger 

 𝜗𝜗𝑖𝑖𝑖𝑖 
Consumer 

 𝜗𝜗𝑒𝑒𝑒𝑒 
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∆𝑃𝑃= ( 𝜗𝜗𝑆𝑆
𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜗𝜗𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑

𝜗𝜗𝑆𝑆
𝑚𝑚𝑚𝑚𝑚𝑚 ) (𝜗𝜗𝑃𝑃(𝑡𝑡𝑖𝑖) − 𝜗𝜗𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑) (12) 

𝜗𝜗𝑆𝑆(𝑡𝑡𝑖𝑖) =   𝜗𝜗𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑐𝑐4∆𝑃𝑃 (13) 

𝑄𝑄(𝑡𝑡𝑖𝑖) =   𝑐𝑐5∆𝑃𝑃 (14) 

where: 

𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑 represents the decreased indoor temperature, 

 𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖 represents the indoor temperature, 
 𝜗𝜗𝑒𝑒𝑒𝑒 represents the outdoor temperature, 

𝜗𝜗𝑆𝑆 represents the secondary side supply 
temperature, 

∆𝑆𝑆 represents the secondary side temperature 
difference, 

𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 represents the required indoor temperature, 

𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 represents the maximum indoor temperature, 

𝜗𝜗𝑆𝑆 represents the secondary side supply 
temperature, 

𝜗𝜗𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑 represents the decreased secondary side 

supply temperature, 

∆𝑃𝑃 represents the primary side temperature 
difference, 

𝜗𝜗𝑆𝑆
𝑟𝑟𝑟𝑟𝑟𝑟  represents the required secondary side supply 

temperature, 

𝜗𝜗𝑆𝑆
𝑚𝑚𝑚𝑚𝑚𝑚  represents the maximum secondary side 

supply temperature, 

𝜗𝜗𝑃𝑃 represents the primary side supply 
temperature, 

𝑄𝑄 represents the head load, 

𝑐𝑐1 represents the indoor temperature loss 
coefficient, 

𝑐𝑐2 represents the indoor temperature gain 
coefficient, 

𝑐𝑐3 represents the secondary side temperature 
loss coefficient, 

𝑐𝑐4 represents the secondary side temperature 
gain coefficient, 

𝑐𝑐5 represents the head load coefficient. 

3 Real data prediction results 
Both models were tested for accuracy in prediction of 
future heat demand. The data source was selected 
location in the Czech Republic. 

This article will show the results of prediction for 
two selected apartment buildings – examining the 
January 2018. In detail, the course of two days (23rd and 
24th January) will also be shown. 

3.1 Conditions for the experiment 

Both buildings are of the same construction, size, and 
they are also located close together. Even though the 
houses are identical, heat demand behavior is different. 
The total amount of heat consumed during the day is 
similar, but the time course differs. The main reason is 
that the control system of the first building, unlike that in 
the second building, is set for a pronounced overnight 
temperature setback. This intervention leads to lower 
heat demand at night but causes a significant jump in 

heat demand at the moment, when the setback mode 
turns into ordinary, can be seen in Figure. 4. 

The source for the forecast of the ambient 
temperature was Yr.no (Norwegian weather forecasting). 

For ARX model, the regression vector contains 
historical values of ambient temperature and heat 
demand from the previous three days with a sampling 
period of 15 minutes ( na,nb = 3*24*4). The regression 
vector was limited to historical values from the previous 
three days as no further improvement in prediction 
accuracy was achieved with the regression vector with 
data from longer period. 

The ambient temperature during the reference period 
(January 2018) is shown in Figure 2. Figure 3 shows the 
ambient temperature in a more detailed period (The 
period for which the prediction was evaluated in more 
detail – January 23-24. 2018). 

 

 
Fig. 2. Ambient temperature in January 2018. 

 

 
Fig. 3. Ambient temperature on January 23-24, 2018. 

3.2 Experiment results 

Table 1 shows the total heat consumed in the selected 
building during January compared to the heat obtained 
from the individual prediction models. In this overall 
view, it may seem that the results are excellent. 

Table 1. Total heat consumption in January 2018 

Building 
measured 

consumption 
[GJ] 

predicted 
consumption 

[GJ] 

error 
[%] 

 
ARX PSO ARX PSO 

A 118.4 118.8 118.1 0.3 0.3 

B 130.6 131.8 129.9 0.9 0.5 
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Table 2 shows the sum of heat demand in day period for 
the days analyzed in more detail in next text.  

Table 2. Total heat consumption in period 23rd and 24th 
January 

Building 
measured 

consumption 
[GJ] 

predicted 
consumption 

[GJ] 

error 
[%] 

 
ARX PSO ARX PSO 

A 8.32 8.21 8.41 1.3 1.1 

B 9.27 9.12 9.28 1.6 0.1 

 
The results for the whole month are however just a 

basic observation of the quality of the model. Also the 
results for the day period show quite higher error, but 
they are still more than good. 

To evaluate the usefulness of the methods for the 
application in whole district heating simulation means to 
examine the compliance in a much shorter period - the 
model must capture the heat demand in the different 
periods of the single days. Such detailed view is shown 
in Figure 4 and 5. The images show how both models are 
able to predict day course of heat demand. As already 
mentioned, the detail view is created from January 23rd 
to January 25th. 
 

 
Fig. 4. Prediction and measurement for building A. 

 
Fig. 5. Prediction and measurement for building B. 

 

 

3.2.1 Evaluation of results 

The following common criteria were used to evaluate the 
quality of the prediction. 

The Mean Absolute Error (MAE) was determined by 
(15), and Normalized Mean Absolute Error (NMEA) 
(16). 

𝑀𝑀𝑀𝑀𝑀𝑀 =   
∑ |𝑦̂𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑁𝑁

𝑖𝑖=1
𝑁𝑁  (15) 

  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =   𝑀𝑀𝑀𝑀𝑀𝑀
𝑦̅𝑦 . 100 (16) 

where: 
  𝑦𝑦𝑖̂𝑖  depict the predicted value, 
  𝑦𝑦𝑖𝑖  presents the measured value, and 
  N   indicates the total number of samples. 
  𝑦̅𝑦    is the mean value of evaluated, measured values. 

Table 3. Evaluation of prediction results for 23rd and 24th 
January 

Building 

MAE 
[kW] 

NMAE 
[%] 

 
ARX PSO ARX PSO 

A 7.9 10.2 16.6 21.5 

B 4.8 5.0 9.1 9.5 

 
The normalized (percentage) mean absolute error 

does not go too well, but in a visual comparison of 
predicted and measured data (especially ARX model) the 
result seems fairly satisfactory. 

For practical use from the heating plant point of 
view, it is not necessary to monitor the variance of each 
sample (specimen 15 min. period), but more important 
is, for example, the accuracy of the consumption 
estimation in the hour period. The course of the error in 
the hour period is shown in Figure 6 and 7. 

 

 
Fig. 6. Propagation of hour error for building A. 
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Fig. 7. Propagation of hour error for building B. 

4 Conclusion 
Heat demand modeling and the ability to predict it is 
significant for effective planning and optimization of 
heat production and distribution. In production planning, 
it is important to realize in which time frame (resolution) 
it is meaningful to work. As the results presented in this 
article have shown, it is more difficult to predict 
behaviors in short periods, but with the widening of the 
time window the stochastic behavior is compensated, 
and the accuracy of the prediction increases. In this 
direction, further research will be undertaken - the 
suitable length of the time period for which the DHC 
model will be discretized will be sought. 
 This article showed two methods of heat demand 
prediction presented for two residential buildings. The 
ARX model showed better results on the presented data, 
but unlike the PSO model, ARX does not offer much 
room for modification. For example, for the consumers 
where the heating mode is not periodically clear to the 
exact time or outside temperature, the quality of the 
result will be significantly worse than the present 
courses. 
 For the next stages of the district heating model 
development, it is advisable to continue work with more 
models (methods) and, if appropriate, use the one with 
better results for a particular consumer. A suitable 
prediction method for each type of consumer (residential 
houses, schools, offices,...) will be sought and applied in 
other parts of the DHC model. 
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