# Waste Processing Facility Location Problem by Stochastic Programming: Models and Solutions

Pavel Popela<sup>1</sup>, Dušan Hrabec<sup>2</sup>, Jakub Kůdela<sup>1</sup>, Radovan Šomplák<sup>1</sup>, Martin Pavlas<sup>1</sup>, Jan Roupec<sup>1</sup>, Jan Novotný<sup>1</sup>

<sup>1</sup> Brno University of Technology, Faculty of Mechanical Engineering, Technická 2, 616 69 Brno, Czech Republic {popela,roupec,pavlas}@fme.vutbr.cz, jakub.kudela89@gmail.com, somplak@upei.fme.vutbr.cz, iannovot@gmail.com
<sup>2</sup>Tomas Bata University, Faculty of Applied Informatics Nad Stráněmi 4511, 760 05 Zlín, Czech Republic hrabec@fai.utb.cz

Abstract. The paper deals with the so-called waste processing facility location problem (FLP), which asks for establishing a set of operational waste processing units, optimal against the total expected cost. We minimize the waste management (WM) expenditure of the waste producers, which is derived from the related waste processing, transportation, and investment costs. We use a stochastic programming approach in recognition of the inherent uncertainties in this area. Two relevant models are presented and discussed in the paper. Initially, we extend the common transportation network flow model with on-and-off wasteprocessing capacities in selected nodes, representing the facility location. Subsequently, we model the randomly-varying production of waste by a scenario-based two-stage stochastic integer linear program. Finally, we employ selected pricing ideas from revenue management to model the behavior of the waste producers, who we assume to be environmentally friendly. The modeling ideas are illustrated on an example of limited size solved in GAMS. Computations on larger instances were realized with traditional and heuristic algorithms, implemented within MATLAB.

**Keywords:** waste processing, facility location problem, stochastic programming, two decision stages, uncertainty modeling, scenarios, mathematical programming algorithms, heuristics, genetic algorithms, GAMS, MATLAB, pricing related ideas

## 1 Introduction

The growing concern for environment leads to integration of new solutions into traditional WM in practice. About 3 billion tonnes of waste are generated in the European Union countries yearly, see [2]. Moreover, due to the population increase, migration of non EU inhabitants, and economic development in the EU countries, the amount of waste generated is rapidly increasing [3, 6]. Therefore,

municipal solid waste producers often face problems of insufficiency in available facility capacities to meet future waste disposal demand [8].

Municipal WM consists of various activities that can be clustered into four processing steps: waste generation, collection, transformation, and disposal [5]. This paper deals with the second stage: collection that also involves waste transportation to waste processing units. Hence, we concern on mathematical modeling and related decision support computations for the optimal WM including facility location planning in this step, see, e.g., [6] for an extensive review of WM modeling, and see also [19] for the facility location in the context of so called waste-to-energy plant planning. So, WM decision making problems belong to the class of optimization problems, which importance recently significantly increases in practice. Therefore, mathematical modeling of particular situations and its computational support can help to decision makers with control of the WM as well as to achieve cost savings [4].

Existing modeling and solution challenges are related to the fact that the studied problems often combine deterministic and stochastic parameters together with nonlinear terms and both continuous and discrete decision variables. Since many parameters in such WM system can be uncertain, straightforward applicability of deterministic mathematical programming methods can be doubtful [8]. Thus, to model the real world requirements in a suitable way, stochastic programming approach has been selected and applied in the model building process.

Among the above mentioned problems, we focus on a so called waste processing FLP that defines the task to choose the set of open and running waste processing units in the best way from the total expected cost point of view. Thus, the facility location decisions must be made when a logistics system is started from scratch i.e. when new products or services are launched or when existing product distributions or services are expanded [4]. Specifically, in this paper, we deal only with the waste producer preferences, and so, we minimize the related processing, transportation, and investment costs.

In this paper, the FLP is considered within the transportation network. In general, network design of transportation problems still belongs to interesting research topics in transportation planning [9, 23]. Various approaches have been taken to solve network design problems, see [12] and [15] for a review of the network design problems and see [1] for a detailed review of solution techniques. See also [7] for our previous ideas and further references on a hybrid computational approach to network design problems where we deal mostly with switching on and off edges and arcs of the transportation network.

The next sections of the paper are organized as follows. Section 2 describes the developed FLP within waste transportation network design models. Two considered models are subsequently presented, described, and discussed. Firstly, a common transportation network flow is enriched with the on-off waste processing capacities in the chosen nodes to represent the facility location. Then, the randomly varying waste production is modeled by scenarios and two-stage stochastic integer linear program is obtained. As the second step, we suggest to

model environmental friendly behavior of waste producers by the ideas inspired by utilization pricing mechanisms in operations research problems. Discussed modeling ideas are explained by an explanatory example in Section 2 Results of computations that were realized for various larger instances with utilization of both traditional and heuristical algorithms by using model and algorithm implementations in GAMS and MATLAB are commented in Section 3. Finally, Section 4 concludes the paper and outlines future research directions and suggests some new computational and modeling ideas for future development.

# 2 Models and explanatory examples

In this section, we develop the cost-minimizing stochastic mixed integer nonlinear program for the above mentioned problem in two steps. The introduced models use the following sets of indices, parameters and decision variables. The sets of indices are as follows:

```
I: set of transportation network related nodes representing places, i \in I, J: set of transportation network related edges representing routes, j \in J,
```

S: set of included scenarios representing uncertainty,  $s \in S$ .

In this case, we can identify nodes with waste producers, transition places and waste processing units. In addition, we differ between existing processing units and those units that can be newly established. The edges model routes that may serve for transportation of waste. The structural information describing the network is completed with the following input parameters:

```
a_{i,j}: network description by node-edge incidence matrix, b_{i,s}^{-}: available amount of produced waste in node i for scenario s, b_{i}^{+}: available waste processing capacity in node i, c_{j}: cost per transported unit of waste by edge j, f_{i}: cost per processed unit of waste in node i,
```

 $f_i$ : cost per processed unit of waste in node i,  $g_i^-$ : cost per unprocessed waste left in node i,

 $g_i^+$ : cost per unit of unused capacity in node i,

 $h_i$ : cost per switched on processing unit in node i,

 $p_s$ : probability of achieving scenario s.

We further assume that waste producers considered in our model coordinate their decision steps and behave as one decision maker. So, among the model elements, the following decision variables are included:

```
x_{j,s}: waste transported by edge j for scenario s, bounded by x_{U,j},
```

 $y_{i,s}$ : amount of waste processed in node i by scenario s,

 $u_{i,s}^-$ : amount of untransported waste from node i for scenario s,

 $u_{i,s}^{\perp}$ : amount of unused processing capacity in node i for scenario s,

 $v_{i,s}^-$ : amount of waste transported from node i for scenario s (negative),

 $\boldsymbol{v}_{i,s}^+$  : amount of waste transported to node i for scenario s,

 $\delta_i$ : indicator of switching on-off extra waste processing capacity in i.

The first model is a scenario-based two-stage mixed integer linear program that is described as follows:

$$\min \sum_{s \in S} p_s \left( \sum_{j \in J} c_j x_{j,s} + \sum_{i \in I} (f_i y_{i,s} + g_i^- u_{i,s}^- + g_i^+ u_{i,s}^+) \right) + \sum_{i \in I} h_i \delta_i \tag{1}$$
s.t. 
$$\sum_{j \in J: a(i,j) > 0} a_{i,j} x_{j,s} = v_{i,s}^+, \qquad \forall i \in I, s \in S, \tag{2}$$

$$\sum_{j \in J: a(i,j) < 0} a_{i,j} x_{j,s} = -v_{i,s}^-, \qquad \forall i \in I, s \in S, \tag{3}$$

$$y_{i,s} + u_{i,s}^+ = b_i^+ \delta_i, \qquad \forall i \in I, s \in S, \tag{4}$$

$$-b_{i,s}^- + v_{i,s}^+ = v_{i,s}^- + y_{i,s} + u_{i,s}^-, \forall i \in I, s \in S, \tag{5}$$

$$x_{j,s}, y_{i,s}, u_{i,s}^-, u_{i,s}^+, v_{i,s}^-, v_{i,s}^+ \ge 0, \qquad \forall i \in I, j \in J, s \in S, \tag{6}$$

$$x_{j,s} \le x_{U,j}, \qquad \forall j \in J, s \in S, \tag{7}$$

$$\delta_i \in \{0,1\}, \qquad \forall i \in I. \tag{8}$$

s.t. 
$$\sum a_{i,j} x_{j,s} = v_{i,s}^+, \qquad \forall i \in I, s \in S,$$
 (2)

$$\sum_{i,j} a_{i,j} x_{j,s} = -v_{i,s}, \qquad \forall i \in I, s \in S,$$
(3)

$$y_{i,s} + u_{i,s}^{+} = b_i^{+} \delta_i, \qquad \forall i \in I, s \in S,$$

$$(4)$$

$$\begin{array}{lll}
 & b_{i,s} + v_{i,s} = v_{i,s} + y_{i,s} + u_{i,s}^{-}, & \forall i \in I, s \in S, \\
 & b_{i,s} + v_{i,s}^{+} = v_{i,s}^{-} + y_{i,s} + u_{i,s}^{-}, & \forall i \in I, s \in S,
\end{array} \tag{5}$$

$$x_{i,s}, y_{i,s}, u_{i,s}^-, u_{i,s}^+, v_{i,s}^-, v_{i,s}^+ \ge 0,$$
  $\forall i \in I, j \in J, s \in S,$  (6)

$$x_{i,s} \le x_{U,i}, \qquad \forall i \in J, s \in S,$$
 (7)

$$\delta_i \in \{0, 1\}, \qquad \forall i \in I. \tag{8}$$

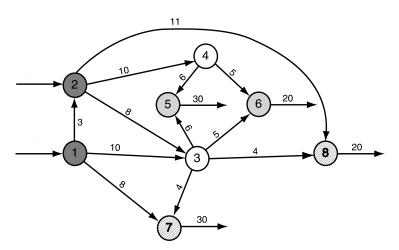



Fig. 1: Test network - visualization of simple input data

The objective function (1) minimizes the total cost that is a sum of scenariorelated costs involving transportation costs, processing costs, penalizing costs for left waste, penalizing costs for unused capacity and investment costs following the investment decisions that must be the same for all scenarios. Eq. (2) means that all flows entering node i are summarized to  $v_{i,s}^+$ . Similarly eq. (3) says that all flows leaving node i are summarized to  $v_{i,s}^-$ . Eq. (4) represents a constraint on the processed amount of waste that is bounded by processing unit capacity. This equation also allows to switch on new waste processing units. To make a difference between already built processing units and newly established ones the value of the first stage decision variables  $\delta_i$  can be fixed. So, the value 0 is used for transition nodes and value 1 is utilized for the existing processing units. Eq. (5) provides the balance constraint of inputs and outputs in node i. Finally, (6)–(8) specify domains of the decision variables. For the intial explanation, we have utilized the transportation network on Figure 1. Such a simple example can be solved almost intuitively for one scenario case. Therefore, we list the output for the single scenario in the form of GAMS result file that also contains all input data:

|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    | Input data and results for data case: 01 - mid waste production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                                                                                                                           | h*d<br>(gM*uM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =<br>=                                                                                                            | 60                                                                                                                                                          | 0.00 in                                                                                                                                                                                          | verage i                                                                                                                                                                                                                                                                                                                                                           | for unpi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rocessed                                                                                                                                                                                                                                                                                                                                                     | l waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |
| Partial optimal cost p* $(f*y)$ = 1100.00 average for processing was Partial optimal cost p* $(gP*uP)$ = 50.00 average for unused capacit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| S1 scenario optimal cost gM*uM = 0.00 p(S1 ) = 1.000000 scenario optimal cost c*x = 900.00                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| al cos                                                                                                                                    | t f*y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                                                                                 | 1100.00                                                                                                                                                     |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| scenario optimal cost gP*uP = 50.00                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| i                                                                                                                                         | N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N2                                                                                                                | N3                                                                                                                                                          | N4                                                                                                                                                                                               | N5                                                                                                                                                                                                                                                                                                                                                                 | N6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N7                                                                                                                                                                                                                                                                                                                                                           | N8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              | 600.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| Scenario S1 with probability p(S1 ) = 1.000000                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| i                                                                                                                                         | N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N2                                                                                                                | N3                                                                                                                                                          | N4                                                                                                                                                                                               | N5                                                                                                                                                                                                                                                                                                                                                                 | N6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N7                                                                                                                                                                                                                                                                                                                                                           | N8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| bM>=                                                                                                                                      | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0                                                                                                              | 0.0                                                                                                                                                         | 0.0                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| uM                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                               | 0.0                                                                                                                                                         | 0.0                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| gM                                                                                                                                        | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0                                                                                                             | 100.0                                                                                                                                                       | 100.0                                                                                                                                                                                            | 100.0                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0                                                                                                                                                                                                                                                                                                                                                        | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
| gMuM                                                                                                                                      | 0.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                               | 0.0                                                                                                                                                         | 0.0                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| vM  <br>-vM                                                                                                                               | 35.0<br>-35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.0<br>-30.0                                                                                                     | 45.0<br>-45.0                                                                                                                                               | 0.0                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           | ax(N1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ax(N2)                                                                                                            | ax(N3)                                                                                                                                                      | ax(N4)                                                                                                                                                                                           | ax(N5)                                                                                                                                                                                                                                                                                                                                                             | ax(N6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ax(N7)                                                                                                                                                                                                                                                                                                                                                       | ax(N8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
| 0.0                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                               | 0.0                                                                                                                                                         | 0.0                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| 35.0                                                                                                                                      | -35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                               | 35.0                                                                                                                                                        | 0.0                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| 25.0                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                               | -25.0                                                                                                                                                       | 0.0                                                                                                                                                                                              | 25.0                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| 20.0                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                               | -20.0                                                                                                                                                       | 0.0                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| 0.0                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                               | 0.0                                                                                                                                                         | 0.0                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                   |                                                                                                                                                             | 0.0                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| 0.0                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                               | 0.0                                                                                                                                                         | 0.0                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                               | 45 O                                                                                                                                                        | 0.0                                                                                                                                                                                              | 25.0                                                                                                                                                                                                                                                                                                                                                               | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                          | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| bP>=                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                               | 0.0                                                                                                                                                         | 0.0                                                                                                                                                                                              | 30.0                                                                                                                                                                                                                                                                                                                                                               | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0                                                                                                                                                                                                                                                                                                                                                         | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| uP                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                               | 0.0                                                                                                                                                         | 0.0                                                                                                                                                                                              | 5.0                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| у I                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                               | 0.0                                                                                                                                                         | 0.0                                                                                                                                                                                              | 25.0                                                                                                                                                                                                                                                                                                                                                               | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                          | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| f  <br>fy                                                                                                                                 | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0<br>0.0                                                                                                        | 0.0<br>0.0                                                                                                                                                  | 0.0<br>0.0                                                                                                                                                                                       | 20.0<br>500.0                                                                                                                                                                                                                                                                                                                                                      | 20.0<br>400.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0<br>0.0                                                                                                                                                                                                                                                                                                                                                  | 10.0<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
| gP  <br>gPuP                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0                                                                                                              | 10.0                                                                                                                                                        | 10.0                                                                                                                                                                                             | 10.0<br>50.0                                                                                                                                                                                                                                                                                                                                                       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0                                                                                                                                                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           | ost p* os | ost h*d ost p*(gM*uM) ost p* (cf*x) ost p* (ff*y) ost p*(ff*y) ost p*(gf*uP) ==================================== | ost h*d = ost p*(gM*uM) = ost p* (gM*uM) = ost p* (f*y) = ost p* (f*y) = ost p* (f*y) = ost p* (f*y) = ost p* (gP*uP) = = = = = = = = = = = = = = = = = = = | ost   **d =   60 ost p*(gM*uM) =   90 ost p* (c*x) =   90 ost p* (f*y) =   110 ost p*(g*y*uP) =   5  al cost gM*uM =   110 al cost gM*uM =   110 al cost f*y =   110 al cost gP*uP =   5  i   N1 | ost   h*d =   600.00 in ost p*(gM*uM) =   0.00 ar ost p* (c*x) =   900.00 ar ost p* (f*y) =   1100.00 ar ost p*(gP*uP) =   50.00 ar ost p*uP =   50.00 ar or | ost h*d = 600.00 investment ost p*(gM*uM) = 0.00 average in ost p* (c*x) = 900.00 average in ost p* (f*y) = 1100.00 average in ost p* (g*p*uP) = 50.00 average in overage in ov | ost p*(gM*uM) = 0.00 investment of nost p*(gM*uM) = 0.00 average for unpusost p* (c*x) = 900.00 average for unpusost p* (f*y) = 1100.00 average for process p*(gP*uP) = 50.00 average for unpusost p*(gP*uP) = 50.00 average for unpusoal cost gM*uM = 0.00 p(S1) = 1 all cost gM*uM = 0.00 p(S1) = 1 all cost gM*uM = 0.00 p(S1) = 1 all cost gP*uP = 50.00 | ost p*(gM*uM) = 0.00 average for unprocessed ost p* (c*x) = 900.00 average for unprocessed ost p* (f*y) = 1100.00 average for unprocessed ost p* (f*y) = 1100.00 average for processing ost p* (gP*uP) = 50.00 average for processing ost p* (gP*uP) = 50.00 average for unused cape all cost gM*uM = 0.00 p(S1) = 1.000000 all cost f*y = 1100.00 all cost gP*uP = 50.00 branch disp* (g*y*uP) = 50.00 average for unused cape in the process of the process of g*y*uP = 50.00 branch disp* (g*y*uP) = 50.00 branch disp* |  |  |  |  |  |  |  |  |  |  |

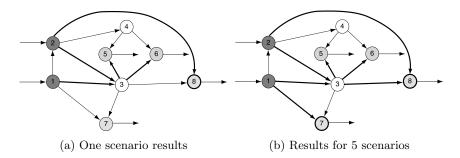



Fig. 2: Test network - visualization of results

Additionally, Figure 2a shows the effect of one scenario that leads to the additional switching on available capacity in node 7 (see boldface circle) and extra routes (see boldface edges) used for waste transport. More scenarios taken into the account obviously lead to the increase of newly used processing units (see both nodes 7 and 8) and more routes used for transportation, see Figure 2b.

To generalize our model, we introduce the pricing related ideas mentioned above in Section 1. Therefore, we assume that waste producers, who are trying to minimize their total cost can improve their behaviour and influence the amount of waste as the decision variable. Consequently, the prices may change. It is reasonable to assume the monopolistic type of behaviour from the set of waste processors and from the government who decide about the related prices. So, the second considered and generalized model is the following scenario-bases two-stage stochastic nonlinear mixed integer program:

$$\min \sum_{s \in S} p_s \left( \sum_{j \in J} c_j(x_{j,s}) x_{j,s} + \sum_{i \in I} (f_i(y_{i,s}) y_{i,s} + g_i^-(\bar{b}_i) u_{i,s}^- + g_i^+ u_{i,s}^+) \right) + \sum_{i \in I} h_i \delta_i$$
 (9)
s.t. 
$$\sum_{j \in J: a(i,j) > 0} a_{i,j} x_{j,s} = v_{i,s}^+, \quad \forall i \in I, s \in S,$$
 (10)
$$\sum_{j \in J: a(i,j) < 0} a_{i,j} x_{j,s} = -v_{i,s}^-, \quad \forall i \in I, s \in S,$$
 (11)
$$y_{i,s} + u_{i,s}^+ = b_i^+ \delta_i, \quad \forall i \in I, s \in S,$$
 (12)
$$-b_{i,s}^- + v_{i,s}^+ = v_{i,s}^- + y_{i,s} + u_{i,s}^-, \forall i \in I, s \in S,$$
 (13)
$$b_i + \varepsilon_{i,s} = b_{i,s}^-, \quad \forall i \in I, s \in S,$$
 (14)
$$x_{j,s}, y_{i,s}, u_{i,s}^-, u_{i,s}^+, v_{i,s}^-, v_{i,s}^+ \ge 0, \quad \forall i \in I, j \in J, s \in S,$$
 (15)
$$x_{j,s} \le x_{U,j}, \quad \forall j \in J, s \in S,$$
 (16)
$$\delta_i \in \{0,1\}, \quad \forall i \in I,$$
 (17)
$$b_{L,i} \le \bar{b}_i \le b_{U,i}, b_{i,s}^- \ge 0, \quad \forall i \in I, s \in S.$$
 (18)

In the second model (9)–(18), most of the constraints (see (10)–(13),(15)–(17) and compare it with (2)–(8)) remain the same, however, several important modifications have been included. The cost coefficients newly depend on decision variables (see the objective function (9)) and we have introduced functions  $c_j(x_{j,s})$ ,  $f_i(y_{i,s})$ , and  $g_i^-(\bar{b}_i)$  instead of coefficients  $c_j$ ,  $f_i$ , and  $g_i^-$  respectively. We also assume that the decrease of the amount transported or processed will lead to the increase of the related unit cost specified by the price coordinating processing units. Similarly, we assume that the unit governmental penalty for the unprocessed waste will increase with decreasing production of the waste. See Figure 3 for an example of  $f_i(y_{i,s})$  function.

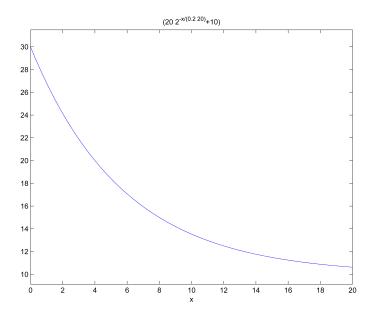
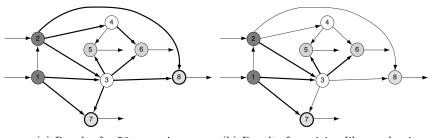




Fig. 3: Modeling pricing ideas

We suggest to notice that under the assumption of strict monotonicity of these functions, so traditional pricing related formulas can appear in the case that we decide to deal with inverse functions. However, the related interpretation derived from the viewpoint of the producers seems to be unrealistic for such case. Therefore, we have converted our original pricing ideas in the final ones that are included in the model. The decision of the waste producers about the amount of the waste delivered for the processing is denoted by  $\bar{b}_i$  and changes only within the bounds  $b_{L,i}$  and  $\leq b_{U,i}$  are allowed, see (18). We expect random disturbances following this decision modeled by  $\varepsilon_{i,s}$ . Then, the  $b_{i,s}^-$  is a dependent variable defined by (14).



(a) Results for 50 scenarios (b)

(b) Results for pricing-like mechanism

Fig. 4: Test network - visualization of results

The last figures in this section illustrate the effect of pricing ideas included, see model (9)–(18). Allowing price changes will motivate waste producers to increase, e.g., recycling attempts and it may also reduce their total costs, waste produced and waste processed. Specifically, lessprocessing units must be opened and less routes are used cf. Figures 4a involving solution for 50 scenarios for the first model (1)–(8) and 4b descirbing the results for the second model (9)–(18).

#### 3 Computations and results

We have programmed the abovementioned two models in GAMS and we have solved them by the use of BARON, MINOS and CPLEX solvers for small test instances obtaining acceptable results. The next computations were realized for larger instances of the model (9)–(18). However, the solution difficulties have appeared when the original GAMS code was applied as computations have led to increasing computational time needs. Therefore, heuristics have been discussed and the previous authors' ideas related to the suitable hybrid algorithm have been detailed, see [7]. Instead of previous implementations based on combination of the GAMS and C++ codes we have preferred the complete implementation in MATLAB. This implementation combines fmincon function with the genetic algorithm implementation to follow the algorithmic scheme:

- 1. Set up the instance of scenario-based two-stage mixed integer nonlinear program in MATLAB. Set up control parameters for the genetic algorithm implemented in MATLAB.
- 2. Create an initial population for GA instance. So, the initial values of 0-1 variables are generated and fixed to obtain a scenario-based (separable) nonlinear program.
- 3. Several runs of random generators are needed for a specified population size and number of considered scenarios. Repeatedly run fmincon procedure in MATLAB to obtain the set of scenario-related solutions. Each run solves the program for the fixed values of 0-1 variables.
- 4. The objective function values are computed, also for new individuals created by means of the genetic operators, initially in 2. and then in 3. Store the

- best results obtained from MATLAB (the optimal objective function values and optimal values of all variables for all scenarios) for comparisons.
- Test the algorithm termination rules and stop in case of their satisfaction. Otherwise continue till the moment when the last scenario solution is obtained.
- 6. Generate input values for the GA from fmincon results, see step 4. Specifically, the objective function values for each member of population of the GA are obtained from results of the runs in 3.
- 7. Run GA to update the set of 0-1 variables (population), see, e.g., [13] for details. Return to step 3.

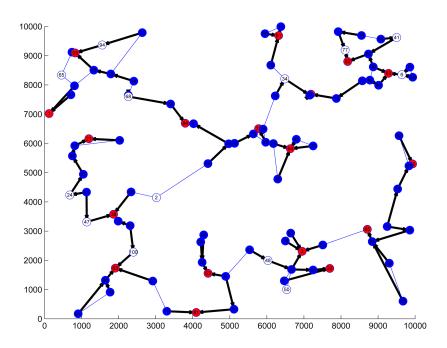



Fig. 5: Visualization of hybrid algorithm results

The results obtained by the hybrid algorithm implementation in MATLAB are illustrated for one instance of data and model (9)–(18) on Figure 5. A special postprocessing procedure dynamically supporting the visualization of the obtained results have been implemented in MATLAB as well. Red nodes represent built waste proceessing units (e.g., incinerators), then the blue nodes identify waste producers and white nodes are transition nodes. Let us empahsize that for these test computations to simplify the data instance coding we do not assume any already built waste processing units. Then, the edges are different by the flow. The black edge denotes a non-zero flow while the blue edge identifies a zero

flow. Similarly, the instances of the various size have been tested and the collected experience is contained in the Table 1. The average computational times show the expected increasing trends with the increase of number of nodes and number of scenarios.

Table 1: Test results

| Number of nodes                               |                                                  | 10                                           |                                                  | 20                                               |                                                                 | 40                                                | 50                                                 |
|-----------------------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Number of scenarios<br>Computational time [s] | $\left\ \begin{array}{c}1\\27\end{array}\right $ | $\begin{array}{ c c c } 5\\137\\\end{array}$ | 10   4                                           | $\begin{vmatrix} 1 & 1 \\ 46 & 10 \end{vmatrix}$ | $\begin{bmatrix} 5 \\ 70 \end{bmatrix}$                         | $\begin{vmatrix} 1 \\ 288 \end{vmatrix} 302$      | $\begin{array}{c c} 3 & 1 \\ 27 & 427 \end{array}$ |
| Number of nodes                               |                                                  | 12                                           |                                                  | 24                                               |                                                                 | 42                                                | 55                                                 |
| Number of scenarios<br>Computational time [s] |                                                  | 5<br>  151                                   | $\begin{array}{c c} 10 & \\ 193 & 6 \end{array}$ | $\begin{bmatrix} 1 & 1 \\ 62 & 11 \end{bmatrix}$ | $\begin{bmatrix} 5 \\ 22 \end{bmatrix}$ 3                       | $\begin{vmatrix} 1 \\ 309 \end{vmatrix} 322$      | $\begin{array}{c c} 3 & 1 \\ 27 & 493 \end{array}$ |
| Number of nodes                               |                                                  | 14                                           |                                                  | 28                                               |                                                                 | 44                                                | 60                                                 |
| Number of scenarios<br>Computational time [s] |                                                  | $\begin{array}{ c c } 5\\163\\\end{array}$   | $\begin{vmatrix} 10 \\ 205 \end{vmatrix}$        | 1  <br>71   11                                   | $\begin{bmatrix} 5 &   \\ 97 &   \end{bmatrix}$                 | $\begin{array}{c c} 1 & \\ 327 & 330 \end{array}$ | $\begin{array}{c c} 3 & 1 \\ 02 & 564 \end{array}$ |
| Number of nodes                               |                                                  | 16                                           |                                                  | 32                                               |                                                                 | 46                                                | 65                                                 |
| Number of scenarios<br>Computational time [s] |                                                  | $\begin{array}{ c c } 5\\182\\ \end{array}$  | 10   8<br>226   8                                | $\begin{bmatrix} 1 \\ 83 \end{bmatrix}$ 12       | $\begin{bmatrix} 5 & \parallel \\ 51 & \parallel \end{bmatrix}$ | 1  <br>339   341                                  | $\begin{array}{c c} 3 & 1 \\ 1 & 617 \end{array}$  |
| Number of nodes                               |                                                  | 18                                           |                                                  | 28                                               |                                                                 | 48                                                | 70                                                 |
| Number of scenarios<br>Computational time [s] | $ \begin{array}{c c} & 1 \\ 53 \end{array}$      | 5<br>199                                     | $\begin{array}{c c} 10 & \\ 245 & 9 \end{array}$ | $\begin{array}{c c} 1 & \\ 96 & 13 \end{array}$  | $\begin{bmatrix} 5 &   & 5 \\ 07 &   & 3 \end{bmatrix}$         | $\begin{array}{c c} 1 & \\ 378 & 357 \end{array}$ | $\begin{bmatrix} 3 & 1 \\ 71 & 691 \end{bmatrix}$  |

### 4 Conclusions and further research

In the presented paper we have generalized a well known facility location problem to the specific problems of waste processing, see [22] and [19]. We have adopted the standpoint of the waste producers and we minimize the waste-management cost which they face, and which is derived from the related processing, transportation, and investment costs. We have built two stochastic programs starting from the transportation network flow model with on-and-off waste-processing capacities in selected nodes and randomly-varying waste production modelled by scenarios. Then, the pricing ideas from revenue management have been utilized to allow environmentally friendly behaviour of waste producers. For computational purposes a modified hybrid algorithm is implemented in MATLAB and obtained results are visualized.

Further research will lead to adoptation of the models and the algorithm to the case of real-world data and to the viewpoint of the waste processors, see Figure 6. In general, similar mixed integer (either linear, bilinear or nonlinear) stochastic programs may appear in many application areas including design problems [20] and [10], control problems [21] or vehicle routing problems [16]. Moreover, a use of more advanced evolutionary algorithms seems to be necessary in further research. Therefore, we refer to genetic [13], differential evolution [17], particle swarm [14] and ant colony [18] optimization algorithms.

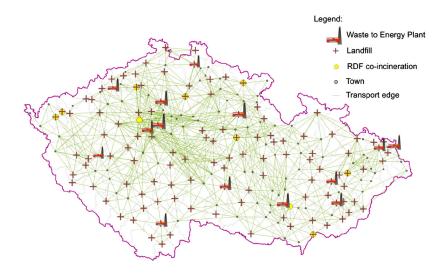



Fig. 6: Real-world transportation network for the Czech Republic

Acknowledgments. This work was supported by the Programme EEA and Norway Grants for funding via grant on Institutional cooperation project nr. NF-CZ07-ICP-4-345-2016 and by the specific research project "Modern Methods of Applied Mathematics for the Use in Technical Sciences", no. FSI-S-14-2290, id. code 25053. The authors gratefully acknowledge further support from the NETME CENTRE PLUS under the National Sustainability Programme I (Project LO1202) and support provided by Technology Agency of the Czech Republic within the research project No. TE02000236 "Waste-to-Energy (WtE) Competence Centre.

## References

- Babazadeh, A., Poorzahedy, H., and Nikoosokhan, S.: Application of Particle Swarm Optimization to Transportation Network Design Problem. Journal of King Saud University - Science 23, 293–300 (2011)
- Blumenthal, K.: Generation and Treatment of Municipal Waste. Technical Report KS-SF-11-031 (2011)
- 3. Eiselt, H.A., and Marianov, V.: Location modeling for municipal solid waste facilities. Computers & Operations Research 62, 305–315 (2015)
- 4. Ghiani, G., Laporte, G., and Musmanno, R.: Introduction to Logistic Systems Planning and Control, *Wiley-interscience series in systems and optimization*, John Wiley & Sons, Chichester (2004)

- Ghiani, G. et al.: Capacitated location of collection sites in an urban waste management system. Waste Management 32, 1291–1296 (2012)
- Ghiani, G., Lagana, D., Manni, E., Musmanno, R., and Vigo, D.: Operations research in solid waste management: a survey of strategic and tactical issues. Computers & Operations Research 44, 22–32 (2014)
- Hrabec, D., Popela, P., Roupec, J. et al.: Hybrid algorithm for wait-and-see network design problem. 20th International Conference on Soft Computing MENDEL 2014, 97–104. Brno University of Technology, VUT Press, Brno (2014)
- 8. Huang, G.H., Baetz, B.W., Patry, G.G., and Terluk, V.: Capacity planning for an integrated waste management system under uncertainty: A North American case study. Waste Management & Research 15, 523–546 (1997)
- 9. Kaya, O., and Urek, B.: A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain. Computers & Operations Research 65, 93–103 (2016)
- Lániková, I. et al.: Optimized design of concrete structures considering environmental aspects. Advances in Structural Engineering 17(4), 495–511 (2014)
- LeBlanc, L.J.: An Algorithm for Discrete Network Design Problem. Transportation Science 9, 183–199 (1975)
- Magnanti, T.L., Wong, R.T.: Network Design and Transportation Planning: Models and Algorithms. Transportation Science 18, 1–55 (1984)
- 13. Matoušek, R., and Žampachová, E.: Promising GAHC and HC12 algorithms in global optimization tasks. Optimization Methods & Software 26(3), 405–419 (2011)
- Pluháček, M., Šenkeřík, R., and Zelinka, I.: Particle swarm optimization algorithm driven by multichaotic number generator. Soft Computing 18(4), 631–639 (2014)
- Steenbrink, P.A.: Optimization of Transport Network. John Wiley, New York, USA (1974)
- Stodola, P., Mazal, J., Podhorec, M., and Litvaj, O.:Using the ant colony optimization algorithm for the capacitated vehicle routing problem. 16th International Conference on Mechatronics Mechatronika (ME), 503–510 (2014)
- 17. Šenkeřík, R., Pluháček, M., Davendra, D., Zelinka, I., and Janoštík, J.: New adaptive approach for multi-chaotic differential evolution concept. Hybrid Artificial Intelligent Systems, 234–243, Springer International Publishing (2015)
- Šoustek, P., Matoušek, R., Dvořák, J., and Bednář, J.: Canadian traveller problem: A solution using ant colony optimization. 19th International Conference on Soft Computing MENDEL 2013, 439–444. Brno, Czech Republic (2013)
- 19. Šomplák, R., Pavlas, M., Kropác, J., Putna, O., and Procházka, V.: Logistic model-based tool for policy-making towards sustainable waste management. Clean Technologies and Environmental Policy 16(7), 1275–1286 (2014)
- Štěpánek, P., Lániková, I., Šimůnek, P., and Girgle, F.: Probability based optimized design of concrete structures. In Life-Cycle and Sustainability of Civil Infrastructure System. London, Taylor & Francis Group, 2345–2350 (2012)
- 21. Štětina, J., Klimeš, L., Mauder, T., and Kavička, F.: Final-structure prediction of continuously cast billets. Materiali in tehnologije 46(2), 155–160 (2012)
- Yo, H., and Solvang, W.D.: A general reverse logistics network design model for product reuse and recycling with environmental considerations. International Journal of Advanced Manufacturing Technology, 1–19 (2016)
- Zhao, J., Huang, L., Lee, D.-H., and Peng, Q.: Improved approaches to the network design problem in regional hazardous waste management systems. Transportation Research Part E 88, 52–75 (2016)