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Abstract

In this paper, a direct computational method for the searching and determination of stability
switching delays is introduced. The primary procedure is applicable to retarded linear time-
invariant time-delay systems and it is based on the iterative (successive) estimation of the
dominant pole of the infinite system spectrum by means of the Taylor’s series expansion in
every node of the selected grid of discrete delay values. Whenever a crossing of the stability
border is detected, the switching pole loci and the corresponding set of switching delays are
further enhanced. To perform it, a linear Regula Falsi interpolation has been used in the
original version. Here, two versions of the use of root tendency property are applied and

compared. Root tendency expresses the change in the pole position with respect to the



infinitesimal change in delays, i.e. the complex valued gradient. Once a finite set of stability
switching delays’ values is determined these delays can be joined so that infinitely many
switching delays are obtained. In this paper, the linear and the quadratic interpolations are
compared in addition. The whole procedure is simply implementable by using standard
software tools and it does not require special ones; neither a deep mathematical knowledge is
required, which is favorable for the practice. A numerical example performed in
MATLAB/Simulink environment demonstrates the accuracy of the algorithm and its
substrategies compared to a well-established method for the delay-dependent stability
analysis. Some beneficial and worthwhile ideas how to cope with neutral delay systems are

given and supported by an example as well.
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Abstract

In this paper, a direct computational method for the searching and determination of stability
switching delays is introduced. The primary procedure is applicable to retarded linear time-
invariant time-delay systems and it is based on the iterative (successive) estimation of the
dominant pole of the infinite system spectrum by means of the Taylor’s series expansion in
every node of the selected grid of discrete delay values. Whenever a crossing of the
stability border is detected, the switching pole loci and the corresponding set of switching
delays are further enhanced. To perform it, a linear Regula Falsi interpolation has been used
in the original version. Here, two versions of the use of root tendency property are applied
and compared. Root tendency expresses the change in the pole position with respect to the

infinitesimal change in delays, i.e. the complex valued gradient. Once a finite set of



stability switching delays’ values is determined these delays can be joined so that infinitely
many switching delays are obtained. In this paper, the linear and the quadratic
interpolations are compared in addition. The whole procedure is simply implementable by
using standard software tools and it does not require special ones; neither a deep
mathematical knowledge is required, which is favorable for the practice. A numerical
example performed in MATLAB/Simulink environment demonstrates the accuracy of the
algorithm and its substrategies compared to a well-established method for the delay-
dependent stability analysis. Some beneficial and worthwhile ideas how to cope with

neutral delay systems are given and supported by an example as well.
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Introduction

The dynamics of many systems including industrial, communication, economical,
biological ones, etc. is affected by delays or the aftereffect phenomenon as introduced in

(Chiasson and Loiseau, 2007; Richard, 2003; Sipahi et al., 2012). Delay has, i.a., a decisive



impact on system stability, and the studying of this influence is not usually mathematically
simple. Stability of linear time-invariant time delay systems (TDSs) with fixed parameters
has been a challenging and intensively studying research topic since the end of the last
century, e.g. by Gu et al. (2003), Michiels and Niculescu (2007), Walton and Marshal
(1987). Because of the stability dependence on delay values for many systems, the notion
of delay dependent stability (DDS) was introduced. It expresses the ability of a TDS to
remain stable for some delay intervals under the consideration of fixed or variable system
parameters, see (Hertz et al., 1984; Moon et al., 2001; Sipahi and Olgac, 2005; Sénmez et
al., 2015; Xu and Lam, 2005). The goal of the DDS analysis is, hence, to determine all
stabilizing delay values’ windows.

Much effort has been made to analyze the infinite spectrum of TDSs or their
stability switching properties. Two basic families of DDS methods for computing the delay
stability margins prevail in the literature; namely, time-domain indirect and frequency-
domain direct methods. The former group, suffering from significant computational
burdens and providing purely theoretical and rather conservative results (Kwon et al., 2012)
can be based on various principles, for instance, Lyapunov-Krasovskii or Lyapunov-
Razumikhin approaches (Pepe and Jiang, 2006) — developed even for discrete-time or time-

varying delays (Liu et al., 2017; Phat and Ratchagit, 2011; Ratchagit, 2014), Jensen



inequality approach (Zhu and Yang, 2008), etc. The latter - usually better implementable
and applicable - family includes approaches based on various principles, see the work of
Sonmez et al. (2015) for their listing. They were successfully applied to investigate the
stability of communication (Sonmez et al., 2015), power (Ayasun and Gelen, 2010),
electromechanical (Ji, 2003) and many other systems with constant time delays. However,
their underlying idea consists in the determination of all stability switching system poles
(i.e. the characteristic quasipolynomial zeros) located exactly on the imaginary axis that
expresses the stability margin. In fact, only the rightmost subset of the spectrum makes the
system switching from/to stability/instability, respectively. The necessary condition for the
existence of roots crossing the imaginary axis is that the so-called root tendency (RT), i.e.
the sensitivity of poles loci in the real axis to delay values, is nonzero (Delice and Sipahi,
2012).

Pekaft and Prokop (2015) presented a preliminary study to a numerical gridding
method for the determination of switching delays and poles via successive (iterative)
polynomial approximation of the characteristic quasipolynomial by means of the Taylor’s
series expansion in each grid node represented by a particular delay values vector, followed
by the Regula Falsi (RF) interpolation to get a more precise stability switching delay

estimation. The linear connection of the eventual delay values enables to obtain the stability



margin with infinitely many switching delays. The procedure is simple, easily
programmable and applicable to even TDSs with multiple and non-commensurate delays;
however, only retarded systems have been considered to be dealt with in the cited paper. It
enables to determine positions of switching poles; purely analytic methods are capable to
give this information mostly for commensurate delays (Delice and Sipahi, 2012). However,
only upper and lower bounds on imaginary parts of such switching poles can be deduced by
frequency-domain methods for non-commensurate delays - as summarized in (Sonmez et
al., 2015), or there is a need of some additional numerical procedures to determine the
switching subset of the set of all (imaginary-axis) crossing poles (Sipahi and Olgac, 2005).
This study is primarily motivated by the endeavour to provide the reader with a
sufficiently simple and easily programmable numerical procedure for the sufficiently
accurate estimation of stability windows of delay values, without the necessity to determine
the complete set of crossing delays first. It is supposed that many engineers and
practitioners are not familiar with or favour of deeper mathematic operations. The aim of
this contribution is to suggest and verify some ideas that significantly improve, complete
and extend the preliminary results. Namely, as first, once the imaginary axis is crossed, the
zero in the real axis can also be estimated by using the RT calculated in the nearest stable

and unstable delay values, and by the consequential use of the Newton’s zero point



estimations and their averaging, instead of the RF interpolation. As second, we benchmark
the quadratic polynomial interpolation against the linear one when connecting eventual
switching delays.

The procedure, its ideas and theoretical results are validated and verified by means
of a simulation example performed in the MATLAB/Simulink environment. A model of a
skater on the swaying bow controlled by a generalized proportional-integral-derivative
controller is employed, which yields a 7th order characteristic quasipolynomial including
two cross-talking delays. The results are compared to the use of the well-established Cluster
Treatment of the Characteristic Roots (CTCR) algorithm (Sipahi and Olgac, 2005), where
the exact root-loci for the benchmark are computed by using the numerical Quasi-
Polynomial mapping based Rootfinder (QPmR) method (Vyhlidal and Zitek, 2014).

Last but not least, since the quasipolynomial approximation plays a crucial role in
the methodology, another contributive idea lies in the primordial proposal how neutral
quasipolynomials might be approximated by the extrapolation method transforming non-
commensurate delays to commensurate ones that can be analyzed by known exact methods.
This procedure is simply implementable again without excessive or complex computations
but sufficiently accurate, and it is demonstrated via a concise example.

Some deficiencies of the methodology are critically discussed in Conclusions.



Preliminaries

Throughout the paper, C, R, N and N, denote the sets of complex, real, integer and
natural numbers, respectively, R is the n-dimensional Euclidean space of positive real-
valued vectors. For (-)e C, Re(-) denotes the real part of (-), the imaginary unit is denoted
as j. The zero vector or the matrix is denoted as 0. F(x| p) means a function of variable(s)

x parameterized by p. The estimate of x is denoted as X.

Selected Spectral and Stability TDS Properties

Let a single-input single-output (SISO) TDS be governed by the transfer function
G(s)=N(s,7)/D(s, 1) (1)
where N(s,t), D(s, ) are quasipolynomials of the general form

X(s,7)=s"+21 > s exp(— SZQMM) inwhich t=(z,,7,,..,7, )€ R", represent

=1 Nij

independent delays, 4;, € N, determines the order of commensuracy and x; € R. Hence,

every exponential term in the quasipolynomial includes delay ; = >, A7, and a real-

ij. |
valued coefficient has simply 4;, =0 forall I.

Definition 1. A TDS has commensurate delays if ; = 4;7,, 4; e N, forall i, j and some

(fixed) base delay 7, .



The associated exponential polynomial related to X(s,r) IS
X, (s,7)=1+2" %, exp(— SY i AT ) If D,(s,t)eR, system (1) is called as retarded

(RTDS); otherwise, the system is of a neutral type (NTDS).

In the further text, we assume that are no common roots of N(s,t), D(s,t). Then,
the spectrum of a TDS and its essential spectrum read
>:={s:D(s,)=0},%, = {s: D,(s,")= 0} (2)
respectively.

Under the assumption above, it holds the following.

Property 1. For RTDS (1) it can be deduced that (Hale and VVerduyn Lunel, 1993; Michiels

and Niculescu, 2007):
(1) If there exist i, j, | such that {d;, 4;, {0, 7, >0, then |5|=0.
(2) For any B eR with |ﬂ|<oo, only finitely many poles are located in the half-plane

Res> f.

(3) Isolated poles behave continuously and smoothly with respect to T on X.
For a NTDS, however, item (2) of Property 1 does not hold yet the following basic

properties can be deduced:



Property 2. It holds for a NTDS (1) that (Hale and Verduyn Lunel, 1993; Michiels and
Vyhlidal, 2005):
(1) Define y:=supReZX,. Then there exists a subset X< ¥ such that lim,_ _ Res, =y,

lim_,, Ims, = for[s|<|s|.s €Z.

(2) Let s €Z, s, €2, =X, with [s, | <]s,|,

Sey1| <[se|- Then for any &> 0, there exist

Se,I

K, L, such that |s, —s,,

< ¢ for every corresponding pair k > K,I > L. Thus, system’s
and essential poles constitute vertical strips at high frequencies.
(3) In the half-plane Res > y, there may lie infinitely many system poles, as shown e.g. by

Bonnet et al. (2011).

(4) The value of y is not continuous with respect to <.

Consider item (4) of Property 2 and an infinitesimally small change in the delay

vector. For such the corresponding perturbed value y , the safe upper bound estimation €

on y (that is continuous with respect to delays) can be introduced as

EER:Z:":l

see e.g. (Vyhlidal and Zitek, 2014). Thus, it hold that € >y, and only a finite number of

exp(C ) rl)zl 3)

—17njl

dy;

isolated poles are located in the half-plane Res>cC.



Definition 2. The spectral abscissa can be defined as a(t):=T > supReX.
Property 3. For a(r) of system (1) it holds the following (Sipahi et al., 2012; Vanbiervliet
et al., 2008):
(1) 1t may be non-smooth and hence not differentiable; e.g. in points with more than one
real pole or conjugate pairs with the same maximum real part.
(2) It is non-Lipschitz; for instance, at points where the maximum real part has multiplicity
greater than one.
Concerning exponential stability of system (1), it can be given by the condition:

a(-)< —¢&,&>0. Strong stability of a NTDS represents somewhat more specific notion
expressing that y <0.
Proposition 1. The system is strongly stable if

g = Z‘J/n:l <1 4)

dy;

Proof. The reader is referred e.g. to (Vyhlidal and Zitek, 2014) and references therein for
details.

Hence, exponential stability can be studied by the determination of the rightmost

(leading, dominant) pole s, or a pair. Whenever the imaginary axis is reached for a

particular switching delay vector, T, the corresponding leading pair of poles becomes the



switching one, S, = jo, §,,, =—j®,® € R. Due to Property 3, possible (but rare) jumps in
a(-) are to be taken into consideration. Moreover, when dealing with a NTDS, one has to
be careful about the value of y, 7, or € and the shape of the rightmost infinite vertical
bunch of poles — see items (1) and (2) of Property 2. For instance, if equation (4) is not
satisfied, even an exponentially stable TDS with y <0 cannot be considered as stable one

from the complex point of view.

The necessary condition for the existence of switching delays (poles) is that the so-
called root tendency (RT) is nonzero, i.e.
RT(S,,T,)# 0, RT := sgn Re{grads(t)}

For poles with multiplicity one, it can be calculated

RT,(s,7)~ Re(— M(% D(s, T)T} l e[l L]

or,

Original Stability Switching Delays Searching Algorithm
According to the authors' best knowledge, there is a lack of practically implementable
delay-dependent stability algorithm for TDS. Pekat and Prokop (2015) have proposed a

gridding successive procedure to determine the set of pairs {§, T } within sets T := {1},

T :={s} for RTDSs. It can be formulated, in a concise form, as follows.



Algorithm 1.
Step 1: For the given D(s,t), define the mesh grid ¢, ,, =7, , + Az, ;, 7,, =0,
l €L L], je[0,N—1] for aselected delay range, initialize the counter i =0 and choose
£>0. Set estimations T=3 = .
Step 2: Compute §, ,=s, ,={argmaxRes: D(s,0)=0}.
Step 3: For (j, =0..N -1, for ( j, =0..N -1, etc. (for j, =0...N —1 do Steps 4 to 9.
Step 4: If j, =0, VI, the inner loop is finished; else, define M = max{l D) # O} and

set T= (Tl,jl ) 2—2’]2 ey TL’]'L )! S0|¢;| = SO = Sjl,__.,jMfl,jM -1,0.0"

Step 5: Compute the polynomial estimation D(s|t,$,) of D(s,t) via the Taylor’s
series expansion in §, and find its roots, s, . Calculate § =argmin|s, —$,|.

Step 6: While |§, — §,| > &, set §, =$, and go to Step 5.

Step 7:Set §,, =8, . =8, i i o0=5If sgn(Re§,,, )=sgn(Re s, ) the
inner loop is finished (see Step 3); else, i=i+1.

Step 8: Calculate the switching delay estimation 7,, =7,, (7M,1M-1’ Sord» §new) by

using the linear interpolation (RF) as



v =Twm (TM,jM 17 So1d » Snew)

()

M~ "My
Re§,, —ReS

=Ty}, — R€Sq

Step 9: For =M -1,..,1 do: If j =0, set 7; =7, , and go back to Step 9; else set

A

$o =S,y and

new

Tog = (71,11 s T j1s Tstoeees T ,0,...,0),

T= (rlyjl,..., Ty Dlstrees T ,0,...,0)
and compute the leading root §, from [3(3 | T,4.$,) @s in Steps 5 and 6. Update values
Sea =S =9§, and find the leading root §, of Iﬁ(s | 1-,§0) and update the value S, =, .

Then calculate 7, =7, (Tl,j|—1’ Soid §new) via the RF function defined in (5).
Step 10: Consolidate 7, =(7,,...7,,,0,...0), update §, =$,., , T= %ufi. Compute

iteratively the leading zero § =$, of D(s|7,,$,) and set T =3 US; .

Hence, the procedure is based on the iterative computation of the leading root
estimation (§,) in the vicinity of the preceding point (S, ) in the grid and on the repeated use
of the RF. It is supposed that there exists §, close to §, in Algorithm 1. A problem can
emerge due to a discontinuity of a(‘r) as in Property 3. Nevertheless, such a case for roots

near the imaginary axis is rare, and with respect to root continuity, this issue can be omitted



in practice. If, however, the rightmost poles with very close mutual values of imaginary
parts appear, the leading pole determination should be reset. It is also worth noting that the

value of y does not depend on delay values, see Proposition 1.

Note that infinitely many switching delays can be obtained by e.g. linear

interpolation of entries of T as done in (Pekat and Prokop, 2015).

Algorithm Improvements

To significantly improve the preliminary results, we attack Algorithm 1 and consequent
computations presented in Pekat and Prokop (2015) for RTDSs in two points. Namely, the
RF is attempted to be substituted by the calculation of RT values followed by Newton’s
method and arithmetic mean value calculation in Steps 8 and 9, and we also benchmark the

quadratic interpolation of eventual switching delays.

RT Averaging

Consider function r, (t):=1+> Res, forany pole s, . Ifapole s, lies near the imaginary

axis for the corresponding , the zero point =, of r, (1:) can be extrapolated by Newton’s

method as

r, (7)

W,I et L] (6)

To) =7 —



In Steps 8 and 9 of Algorithm 1, two zero point estimations are then calculated, i.e.

for Sy .+ Spew: @nd the mean value, 7, ..., =7, of both is eventually taken as the result. The

new ?

whole idea yielding 7, o; ..., COMpared to the linear interpolation via the RF (7, .. ) is

depicted in Fig. 1.
Compared to RF, the advantage of the extrapolation is that the only one point for

the approximation is needed. Hence, the iterative use of Newton’s method at 7 gr o, MAy

give better results, which is, however, compensated for a longer computation time.

, (t)

|
|
|
|
| .
I (rl -7, (t ))
|
|

[

|

To o
| 0.RT . mean

7.7, (7))

1 | 1 1 1 1

-
-

Fig. 1. The zero point via RF (7, ge) vs. via the value of RT (74 g1 mean )-



Quadratic Interpolation
Once the set T is found, its entries T, can be joined by means of the quadratic
interpolation as in (7).

- —2 —
7, —aZTl +alz'l+a0
a. = (T|,i+2 T XT:L,Hl ~ i )_ (T|,i+1 — T X71,i+2 - Tl,i)
R o ) o
Trive ~T1i AToivt — T Toivt — Toi Noyjiv2 — Ty
- - —2 —2
T — 0 — (71,i+1 — Ty )
a, = — —
(Tl,m — Ty )
- _ _2
Ay =Ty — Ty — A7y

7| € [fl,i'fl,nz ]' 7| € [fl,i ' Tlis2 ]!I € [2' L]’i € [Limax - 2]

()

where 7, is taken as the independent variable and i, stands for the eventual value of i
after the run of Algorithm 1. In fact, there is an intersection of values of 7, for every pair

i,i+1; hence, the arithmetical mean value can be eventually taken. Alternatively, only odd

values if i may be considered. The quadratic method is supposed to be more accurate

compared to simple linear-wise connections of switching delays estimations.



Example 1
As the controlled RTDS, let a model of a skater on the remotely controlled swaying bow be

considered (see Fig. 2). The model can be governed by the transfer function

o) Y(s) _ bexp(-(z +7,)s)
6(s) U(s) s2(s? +aexp(-1z,s)) ®

which expresses the relation between the horizontal angle deviation remotely driven by the
skater and the output angle between the skater and the bow symmetry axis, see details in

(Zitek et al., 2008). In (8), delay 7, expresses the skater’s reaction time and 7, means the

seric ey, Apparently, both delays are independent and without commensurate
CoRERICRS I RIRICIOSSREIRIBHEEH ominal controlled system parameters and delay

values may read, for instance, a=-1, b=0.2, 7, =0.3, 7, =0.1 as given in the cited
literature. It can be computed that for such nominal parameters the controlled TDS is

unstable with the spectral abscissa value of o =0.9534.

Fig. 2. A schematic drawing of a skater on the controlled swaying bow.



Consider the simple control feedback loop equipped with a finite-dimensional linear

controller

Cc(s)= 200 9)

RN
where p;, q, are real-valued parameters.

Then the characteristic retarded quasipolynomial reads
D(s,(r, 7, )= 5(s? + aexp(- rzs)Xs3 +>7 ps’ )+ bexp(—(z, + 7, )s)(ziio g;s' ) (10)

Controller parameters can by optimally tuned e.g. by the spectral abscissa
minimization, see details in (Pekafi and Prokop, 2013). For such optimized parameters the
nominal spectral abscissa of the control feedback loop reads «((0.3,0.1)) = —1.4454 while
the delay-free case gives «((0,0))=0.1323. This i.a. implies that there must exist some sets

of nonzero [[IB8IBNE) delay vectors stabilizing the control feedback loop.

Compare now the use of Algorithm 1 applying the RF against the utilization of RT

averaging HGNNINCHESIISGIVERIBYNREICHORIGHMR. e use of one-step

additional iteration of Newton’s method at 7, or .., iS denoted as RT". Let the particular
region be selected as R, =z, xz, €[0,0.8]x[0,0.8] with Az =0.01, i.e. N =80, and

£ =107 In Fig. 3, these results are given to the reader and compared with the



stable/unstable region calculated by the QPmR of a rough delay resolution of Az =0.01.

Found switching delays estimations are joined by the simple linear interpolation. Note that
the QPmR (Vyhlidal and Zitek, 2014) serves for a numerical computation of
quasipolynomial roots within the selected region as some other software toolboxes do, for
instance DDE-BIFTOOL (Engelborghs et al., 2001) or TDS_STABIL that enables to
perform spectral abscissa optimization in addition (Michiels, 2011). The QPmR s,
however, not suitable for the switching delays estimation since it requires a rather long
lasting computation for a sufficiently high precision and, moreover, the searching s-region

has to be a priori selected.

0.8
0.7
0.6 i

0.5 F

Stable region

0.2 0.3 0.4 . 0.5 0.6 0.7 0.8
1

Fig. 3. Switching delays found by using the RF (o), RT (o) and RT* (A) vs. the stability

region found by the QPmR (A7 =0.01).






The plots in [FIGSHGIANEN are almost indistinguishable by sight; hence, another

benchmark is presented in Fig. I where absolute values of real parts of dominant poles (s, )

found by the QPmR with the precision of 10~ are displayed, expressing the estimation

error.

0.8
0.7
0.6

0.5 F

Stable region




0 10 20 30 40 50 60
Number of the switching delay estimation

Fig. 5. Switching delay values error in R, measured by |Re sy| found by the QPmR.

As can be seen [HGIIBGIMGEEE, the simple use of the RT value with consequent
averaging does not bring an improvement compared to the RF method; however, the one-step

additional use of Newton’s method (RT*) gives better switching delay estimation. [RESHIES

Let us now select the subset of T from inside the region

R, =17, x 7, €[0.150.25]x[0.3,0.5] [CoUISIINCHBIRIRANOIGHER . 2nd compare the

linear and quadratic interpolations, respectively. The particular comparison is depicted in Fig.



6 where |Re so| computed by using the QPmR is taken as the benchmark measure again.

Apparently, [ERIGINOINCIRIEISUDSHateay cven though the estimation between originally

found delays is (one to four orders) worse than in the interpolated points for both the cases,

the quadratic interpolation gives much better results compared to the linear one. SEBHSINGINA

0 [ R R S 0 _
TRy Sy Iy Ty Ry Sy Ry IRy Sy, 5y,
o] oo oo [eo] Q0o (o] oo Q0o [e.0] 00 [o]
o s s XMX Lales ><>e<’°°$<><
10 " W # s
‘ N s T L T
= e T T R
= M* * * &
* Y * ® @ ® .
]
e e ©
@ @ O RT" - linear
@ & @ " )
#* RT" - quadratic
Lo ¢ CTCR - linear
& ) ) ) % CTCR - quadratic
0 20 40 60 80 100

Number of the switching delay estimation

Fig. 6. Switching delay values error for linear and quadratic interpolations in R,,

respectively, measured by the corresponding values of |Re so| found by the QPmR.






NTDS Case

When dealing with a neutral characteristic quasipolynomial it is necessary to be aware of
the existence of the rightmost infinite vertical chain of roots of the essential spectrum ie
and that of the spectrum itself £ - see (1) and (2) of Property 2, and the sensitivity to small
delay changes expressed by the values y and ¢ given by (3). Algorithm 1 for a RTDS is
based on the tracking of the estimation of the rightmost pole ($,); hence, whenever one
intends to extend it to NTDSs, it is desirable to have this leading pole right from 7, or

practically more suitably, right from the value of C. The pole (or a pair) §, may be isolated

or§, € ¥ ; however, it always lies in the finite subset as introduced in the paragraph below

(3). As mentioned above, it is reasonable to study exponential stability only if strong

stability condition (4) independent of delays is satisfied. On the other hand, the measure of



strong stability, T, is affected by delay values; hence, there is usually a conservatism such
that € >y . To sum up, if (4) does not hold, Algorithm 1 can be given up. Otherwise, in
every loop (for a discrete delay value) of the algorithm, the value of C is evaluated and
only pole estimations in the half-plane Res >C can be considered to decide about stability.
In some cases (for instance, due to the above introduce conservatism of ¢ ) it is
desirable to know £ completely or at least to get a sufficiently accurate information about
the rightmost subset of X. Moreover, it is questionable if the polynomial approximation

presented in Steps 5 and 6 of Algorithm 1 is suitable for D, (s) as well. Actually, any
finite dimensional approximation of D,(s,-) does not result in an infinite chain of
approximating roots and thus it can not express the factual root loci distribution.

A good choice how to cope with this task would be to approximate a general

D, (s,-) by an exponential polynomial D, (s,-) with commensurate delays (see Definition

1) since its spectrum X, can be analytically deduced.

For instance, consider a quasipolynomial or an exponential polynomial with
commensurate delays as in Definition 1 and its spectrum X, then it is easy to prove that if

S, € 2. then

2k

To

S, =Sp ] ex (12)



Proposition 2. Let q = exp(-sz,) and

DA(S’TO):1+Z‘;n=ldA,J exp(— 5j z—0)<::’ DA(Q):]-+ z‘}n:ldA,jqj (12)
be associated exponential polynomial related to the denominator of (1). Then there exist

chains of poles asymptotically approaching the vertical lines

Re(s)= —M (13)

Ty
where p is any root of (12).
Proof. Details about Proposition 2 can be found in (Rabah et al., 2005) and references
therein.
Corollary 1. The value of y is determined by p with the minimum modulus.
In addition, positions and shapes of the rightmost subset of the spectrum for NTDSs
with commensurate delays have been derived for neutral quasipolynomials in (Bonnet et

al., 2011). Consider the characteristic quasipolynomial

Dy (3770): SnDA(SfTo)+ D (S’To)

n- Vi i (14)
Dy (s,7,) = Zizgzjzldmjs exp(- AT, ) A; €N



where Dy(s,7,) expresses the retarded part. In the cited reference, exact relations between
¥ and coefficients dpj dgj,i=n-1Ln-2 and the value of z,, are derived. These formulas

are valid also for D(s,0) and thus they can be applied to polynomials as well.

Extrapolation Method for the Associated Exponential Polynomial
Approximation

In this subsection, a possible simple solution of the task of the approximation of a general

(non-commensurate) D,(s,-) by D,(s,z,) is suggested.

Consider g defined in Proposition 2 that can be viewed as the shifting operator of a
time-domain function x(t) as "X (g) x(t —mz, ), meR. Then the following lemma can
be deduced.

Lemma 1. Let be given q" with m=1+& where meR, A€ N, § €(0,1) and some

suitable p, € C. Then g™ can be approximated as

q" ~05(2-5)1-5)pga” +5(2-5)pg "a*" +0.56(6 ~1)p; *q*?

) . (15)
= aoq/1 +a1ql ! ‘*‘azq/1 ?

Proof. We write ™ =q*q° and employ the Taylor’s series expansion in the

neighbourhood of p, as



5 _ 5 3
qé = ;005 + 5p§ l(q _/00)+ 0-55(5_1)/03 2(q _/00)2 + C|qo _po|
for some ¢ eC\oo and g, e C such that [o, — p,| < |0 — p,|. The cubic term can be
cancelled from the expansion for q sufficiently close to p,, and after some simple

calculations, (15) is eventually obtained.
Prior to the introduction of the complete approximation algorithm, let us add some
notes and remarks on Lemma 1.

Remark 2. The key task is a suitable setting of the base delay 7, deciding i.a. about the
order of the polynomial D,(q), i.e. about the order of the commensuracy of D,(s,z, ).
The shifting operator q can be considered in terms of the z-transform as q =z, and the
value of 7, as the sampling period, the recommended value of which can be formulated by

means of the system eigenfrequency or the absolute value of the dominant (rightmost) pair

of poles (s, ). Hence, consider 7, in the following form

1

_ 16
Ao (1o

To

where a suitable value of f, € R can be found by numerical experiments. In addition, a
natural requirement is that the minimum delay in D,(s,), 7., equals an integer multiple

of z,; thus, we minimize



Tmin 1

 Solsd|

Ny = Minarg 17)

for a suitable g, .

Remark 3. As the initial dominant pole estimation, it is possible to adopt a simple linear
interpolation expressed by

exp(— 95) ~ a, exp(— Az ,,;,s)+a, exp(— (1 +1)r,,;,S) (18)
or equivalently

917 in

q”™ =q" ~a,q" +a,q""
a,=1-6,8 =0

where A7, <9< (1+1)r;,, 1€ N, and § € (0,1) have the same meaning as in Lemma
1. Denote the spectrum of D,(q) as =, . Then

po=minfz, | (19)
that corresponds to the estimation S via the relation

§, =—-75,"Inp, (20)
Whenever D A(q) and its spectrum are computed in every iteration step, the current

estimation p, can be made as

Py = mpin|p - ,bo|’ PEXp, (21)



where p, is the previous estimation of p,, which prevents the dominant pole estimation
from the possible existence of parasitic roots of DA(q) not having counterparts in X, .
Again, it is consequently set p, = p, in (15).
Remark 4. It can easily be verified that the measure of strong stability, &, defined in (4) is
preserved under the use of (15) only for p, =1, i.e. s, =1.

The algorithm of the approximation D,(s,-) — D,(s,z, ) follows.

Algorithm 2.

Step 1: Let be given D,(s,). If (4) does not hold, abandon the algorithm; otherwise,
find the initial estimation of p, by using (18) and (19), and select £ >0.
Step 2: Set 7, =7,,, and compute S, according to (20).

Step 3: Calculate n,, asin (17) and the corresponding z,= Ny, 7 i, - S€t Oy = Py -

opt
Step 4: Use (15) with m = 9/, for every delay 9 in D,(s,") to get D,(q), and
compute X, . and p, by using (21).
Step 5: While |5, — po| > &, set p, = p, and go to Step 4.
Algorithms 1 and 2 are eventually combined in the way such that Algorithm 2 is

performed (for a particular t) between Steps 4 and 5 of Algorithm 1 which is, however,



not used for the whole D(s,-) but only for the retarded quasipolynomial
Da(s:)=s"+ Yo dys' exp(— S ATy ) (except for Steps 1 and 2). The polynomial
D A(s, 7, ) received from Algorithm 2 can be consequently analysed via (13) to get the

value of y, or together with the polynomial approximation of 5R(s,-) by means of (14) and

formulas introduced in (Bonnet et al., 2011) to get the complete system spectrum
estimation, which should be considered whenever the decision about stability is made (see

Step 7 of Algorithm 1).

Example 2

Assume strongly stable

D, (s,(0.9,2/37)) =1+ 0.5exp(— 0.95)—0.4exp(—2§s) (22)

and hence 7,,;, = 0.9, which yields the initial estimation
D,(5,0.9) =1+ 0.5exp(~ 0.9s)—0.2692exp(—1.8s) — 0.1308exp(— 2.75)
or equivalently

D,(q)=1+0.5q-0.26929% —0.1308)°



It can be computed that p, = p, = —1.7582 which agrees with
$, =—0.627-3.4907j. By numerical experiments it was chosen that S, =1, which results
in n,, =3.1.e. eventually 7, =0.3.

The iterative use of Steps 4 and 5 of Algorithm 2 yields the following final
quadratic extrapolation

D,(s,0.3) =1+ 0.5exp(—0.95)+ (—0.0024+ 0.0031i)exp(-1.8s)

23
+(~0.3996-0.0071i)exp(~ 2.1s)+(0.002+ 0.0029i)exp(~ 2.4s) @)

The rightmost part of both the spectra, Z,,%,, are displayed in Fig. 6. Spectral and
stability measures of D,(s,(0.9,2/37)) and D,(s,0.3) are, respectively, the following:
a=-0.1074, £ =0.9, ¢ =-0.073, and a =-0.1074, £ =0.9071, T =-0.0701, see (3),
(4) and Definition 2.

The disadvantage of the proposed method is apparent from (23); the eventual
exponential polynomial has complex-values coefficients in general. However, from the
point of view of the purpose of Algorithm 2 it is not a flaw. If it is necessary to get real-
valued coefficients, one can take absolute values of complex-valued ones taking into

account the sign of the real part, which preserves & at least.
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Fig. 7. Pole loci of Z, (circle) and X, (plus) for (22) and (23), respectively, with 7, =0.3.

Conclusions

The presentation of the leading idea, improvements and significant extensions of a novel
gridding multiple stability switching delays seeking algorithm have been main objectives of
the presented paper. The original DDS algorithm can be fitted in a group of frequency-
domain direct methods that are based on the effort to find all characteristic roots (poles)
located on the stability border, and it can deal with non-commensurate and cross-talking
delays more effectively omitting a complex mathematical apparatus. The algorithm is
simply implementable by standard software tools. The linear Regula Falsi interpolation has

been compared to the use of the root tendency expressing the sensitivity of the leading



pole’s on infinitesimal changes in delays. In addition, a one-step iterative Newton’s method
has been used to enhance the switching delays estimation. Once a finite set of stability
switching delays’ values are determined, they can be joined by a linear or a quadratic
interpolation procedure. We have shown by simulations (when controlling a model of a
skater on the swaying bow) that the quadratic one gives better results compared to the
linear one. As the benchmark measure, the closeness to the imaginary axis computed by the
QPmR algorithm has been utilized. Moreover, the method has been compared to results
given by a well-established numeric-analytical method. Via this example, the algorithm
proved to be easily implementable and sufficiently accurate for engineering computing. In
the contrary, it must be critically stated that there are some deficiencies in the speed of the
dominant poles searching and the necessity to determine the searching region a priori. A
preliminary possible idea how to approximate general exponential polynomials for NTDS
by those with commensurate delays has also been provided to the reader. This technique
enables to determine pole loci of the dominant spectrum subset in the neighbourhood of the
rightmost infinite vertical strip of poles by analytic formulas. A concise example is added
as well. The future extension of this work may lie in a complete commensurate or a finite-

dimensional (polynomial) approximation of the whole characteristic quasipolynomial.



Funding Statement
This work was supported by the European Regional Development Fund under the project
CEBIA-Tech Instrumentation No. CZ.1.05/2.1.00/19.0376. The authors received no other

financial support for the research, authorship, and/or publication of this article.

References

Ayasun S and Gelen A (2010) Stability analysis of a generator excitation control system
with time delays. Electrical Engineering 91: 347-355.

Bonnet C, Fioravanti AR and Partington JR (2011) Stability of neutral systems with
commensurate delays and poles asymptotic to the imaginary axis. SIAM Journal on
Control and Optimization 49(2): 498-516.

Chiasson J and Loiseau JJ (2007) Applications of Time Delay Systems. New York:
Springer.

Delice Il. and Sipahi R (2012) Delay-independent stability test for systems with multiple-
delays. IEEE Transactions on Automatic Control 57(4): 963-972.

Engelborghs K, Luzyanina T and Samaye G (2001) DDE-BIFTOOL v. 2.00: A Matlab
package for bifurcation analysis of delay differential equations. Technical report TW-

330, Department of Computer Science, K. U. Leuven, Leuven, Belgium.



Gu K, Kharitonov VL and Chen J (2003) Stability of Time-Delay Systems. Boston:
Birkhiuser.

Hale JK and Verduyn Lunel SM (1993) Introduction to Functional Differential Equations
New York: Springer.

Hertz D, Jury El and Zeheb E (1984) Stability independent and dependent of delay for
delay differential systems. Journal of the Franklin Institute 318(3): 143-150.

Ji JC (2003) Stability and bifurcation in an electromechanical system with time delays.
Mechanics Research Communications 30(3): 217-225.

Liu T, Wu B, Wang Y-E and Liu L (2017) New stabilization results for discrete-time
positive switched systems with forward mode-dependent average dwell time.
Transactions of the Institute of Measurement and Control 39(2): 224-229.

Kwon OM, Park MJ, Park JH, Lee SM and Cha EJ (2012) Improved robust stability criteria
for uncertain discrete-time systems with interval time-varying delays via new zero
equalities. IET Control Theory & Applications 6(16): 2567-2575.

Michiels W (2011) Spectrum-based stability analysis and stabilisation of systems described
by delay differential algebraic equations. IET Control Theory & Applications 5(16):

1829-1842



Michiels W and Niculescu SI (2007) Stability and Stabilization of Time-Delay Systems.
Philadelphia: SIAM.

Michiels W and Vyhlidal T (2005) An eigenvalue based approach for the stabilization of
linear time-delay systems of neutral type. Automatica 41(6): 991-998.

Moon YS, Park P, Kwon WH and Lee YS (2001) Delay dependent robust stabilization of
uncertain state-delayed systems. International Journal of Control 74(14): 1447-1455.
Pekai L and Prokop R (2013) Algebraic optimal control in RMS ring: A case study.

International Journal of Mathematics and Computers in Simulation 7(1): 59-68.

Pekat L and Prokop R (2015) On delay (in)dependent stability for TDS. In: 2015 7th
International Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT), Brno, Czech Republic, 6-8 October 2015, pp.73-78. Brno: Brno
University of Technology.

Pepe P and Jiang ZP (2006) A Lyapunov-Krasovskii methodology for ISS and iISS of
time-delay systems. Systems & Control Letters 55(12): 1006-1014.

Phat VN, Ratchagit K (2011) Stability and stabilization of switched linear discrete-time
systems with interval time-varying delay. Nonlinear Analysis: Hybrid Systems 5(4):

605-612.



Rabah R, Skylar GM and Rezounenko AV (2005) Stability analysis of neutral type systems
in Hilbert space. Journal of Differential Equations 214: 391-428.

Ratchakit G (2014a) Switching design for the robust stability of nonlinear uncertain
stochastic switched discrete-time systems with interval time-varying delay. Journal of
Computational Analysis & Applications 16(1): 10-19.

Richard JP (2003) Time-delay systems: An overview of some recent advances and open
problems. Automatica 39(10): 1667-1694.

Sipahi R and Olgac N (2005) Complete stability robustness of third-order LTI multiple
time-delay systems. Automatica 41(8): 1413-1422.

Sipahi R, Vyhlidal T, Niculescu Sl and Pepe P (2012) Time Delay Systems: Methods,
Applications and New Trends. New York: Springer.

Sonmez S, Ayasun S and Nwankpa CO (2015) An exact method for computing delay
margin for stability of load frequency control systems with constant communication
delays. IEEE Transactions on Power Systems 31(1): 370-377.

Vanbiervliet T, Verheyden K, Michiels W and Vandewalle S (2008) A nonsmooth
optimization approach for the stabilization of time-delay systems. ESAIM: Control,

Optimisation and Calculus of Variation 14(3): 478-493.



Vyhlidal T and Zitek P (2014) QPmR - Quasi-polynomial root-finder: Algorithm update
and examples. In: Vyhlidal T, Lafay JF and Sipahi R (eds) Delay Systems: From Theory
to Numerics and Applications. New York: Springer, pp. 299-312.

Walton KE and Marshall JE (1987) Direct method for TDS stability analysis. IEE
Proceedings-Control Theory and Applications 134(2): 101-107.

Xu S and Lam J (2005) Improved delay-dependent stability criteria for time delay systems.
IEEE Transactions on Automatic Control 50(3): 384-387.

Zhu XL and Yang GH (2008) Jensen inequality approach to stability analysis of discrete-
time systems with time-varying delay. In: Proceedings of the 2008 American Control
Conference, Seattle, Washington, USA, 11-13 June 2008, pp.1644-1649. Seattle: IFAC.

Zitek P, Kucera V and Vyhlidal T (2008) Meromorphic observer-based pole assignment in

time delay systems. Kybernetika 44(5): 633-648.



