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Abstract 

In this paper, a direct computational method for the searching and determination of stability 

switching delays is introduced. The primary procedure is applicable to retarded linear time-

invariant time-delay systems and it is based on the iterative (successive) estimation of the 

dominant pole of the infinite system spectrum by means of the Taylor’s series expansion in 

every node of the selected grid of discrete delay values. Whenever a crossing of the stability 

border is detected, the switching pole loci and the corresponding set of switching delays are 

further enhanced. To perform it, a linear Regula Falsi interpolation has been used in the 

original version. Here, two versions of the use of root tendency property are applied and 

compared. Root tendency expresses the change in the pole position with respect to the 



infinitesimal change in delays, i.e. the complex valued gradient. Once a finite set of stability 

switching delays’ values is determined these delays can be joined so that infinitely many 

switching delays are obtained. In this paper, the linear and the quadratic interpolations are 

compared in addition. The whole procedure is simply implementable by using standard 

software tools and it does not require special ones; neither a deep mathematical knowledge is 

required, which is favorable for the practice. A numerical example performed in 

MATLAB/Simulink environment demonstrates the accuracy of the algorithm and its 

substrategies compared to a well-established method for the delay-dependent stability 

analysis. Some beneficial and worthwhile ideas how to cope with neutral delay systems are 

given and supported by an example as well. 
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Introduction 

The dynamics of many systems including industrial, communication, economical, 

biological ones, etc. is affected by delays or the aftereffect phenomenon as introduced in 

(Chiasson and Loiseau, 2007; Richard, 2003; Sipahi et al., 2012). Delay has, i.a., a decisive 



impact on system stability, and the studying of this influence is not usually mathematically 

simple. Stability of linear time-invariant time delay systems (TDSs) with fixed parameters 

has been a challenging and intensively studying research topic since the end of the last 

century, e.g. by Gu et al. (2003), Michiels and Niculescu (2007), Walton and Marshal 

(1987). Because of the stability dependence on delay values for many systems, the notion 

of delay dependent stability (DDS) was introduced. It expresses the ability of a TDS to 

remain stable for some delay intervals under the consideration of fixed or variable system 

parameters, see (Hertz et al., 1984; Moon et al., 2001; Sipahi and Olgac, 2005; Sönmez et 

al., 2015; Xu and Lam, 2005). The goal of the DDS analysis is, hence, to determine all 

stabilizing delay values’ windows. 

Much effort has been made to analyze the infinite spectrum of TDSs or their 

stability switching properties. Two basic families of DDS methods for computing the delay 

stability margins prevail in the literature; namely, time-domain indirect and frequency-

domain direct methods. The former group, suffering from significant computational 

burdens and providing purely theoretical and rather conservative results (Kwon et al., 2012) 

can be based on various principles, for instance, Lyapunov-Krasovskii or Lyapunov-

Razumikhin approaches (Pepe and Jiang, 2006) – developed even for discrete-time or time-

varying delays (Liu et al., 2017; Phat and Ratchagit, 2011; Ratchagit, 2014), Jensen 



inequality approach (Zhu and Yang, 2008), etc. The latter - usually better implementable 

and applicable - family includes approaches based on various principles, see the work of 

Sönmez et al. (2015) for their listing. They were successfully applied to investigate the 

stability of communication (Sönmez et al., 2015), power (Ayasun and Gelen, 2010), 

electromechanical (Ji, 2003) and many other systems with constant time delays. However, 

their underlying idea consists in the determination of all stability switching system poles 

(i.e. the characteristic quasipolynomial zeros) located exactly on the imaginary axis that 

expresses the stability margin. In fact, only the rightmost subset of the spectrum makes the 

system switching from/to stability/instability, respectively. The necessary condition for the 

existence of roots crossing the imaginary axis is that the so-called root tendency (RT), i.e. 

the sensitivity of poles loci in the real axis to delay values, is nonzero (Delice and Sipahi, 

2012). 

Pekař and Prokop (2015) presented a preliminary study to a numerical gridding 

method for the determination of switching delays and poles via successive (iterative) 

polynomial approximation of the characteristic quasipolynomial by means of the Taylor’s 

series expansion in each grid node represented by a particular delay values vector, followed 

by the Regula Falsi (RF) interpolation to get a more precise stability switching delay 

estimation. The linear connection of the eventual delay values enables to obtain the stability 



margin with infinitely many switching delays. The procedure is simple, easily 

programmable and applicable to even TDSs with multiple and non-commensurate delays; 

however, only retarded systems have been considered to be dealt with in the cited paper. It 

enables to determine positions of switching poles; purely analytic methods are capable to 

give this information mostly for commensurate delays (Delice and Sipahi, 2012). However, 

only upper and lower bounds on imaginary parts of such switching poles can be deduced by 

frequency-domain methods for non-commensurate delays - as summarized in (Sönmez et 

al., 2015), or there is a need of some additional numerical procedures to determine the 

switching subset of the set of all (imaginary-axis) crossing poles (Sipahi and Olgac, 2005). 

This study is primarily motivated by the endeavour to provide the reader with a 

sufficiently simple and easily programmable numerical procedure for the sufficiently 

accurate estimation of stability windows of delay values, without the necessity to determine 

the complete set of crossing delays first. It is supposed that many engineers and 

practitioners are not familiar with or favour of deeper mathematic operations. The aim of 

this contribution is to suggest and verify some ideas that significantly improve, complete 

and extend the preliminary results. Namely, as first, once the imaginary axis is crossed, the 

zero in the real axis can also be estimated by using the RT calculated in the nearest stable 

and unstable delay values, and by the consequential use of the Newton’s zero point 



estimations and their averaging, instead of the RF interpolation. As second, we benchmark 

the quadratic polynomial interpolation against the linear one when connecting eventual 

switching delays. 

The procedure, its ideas and theoretical results are validated and verified by means 

of a simulation example performed in the MATLAB/Simulink environment. A model of a 

skater on the swaying bow controlled by a generalized proportional-integral-derivative 

controller is employed, which yields a 7th order characteristic quasipolynomial including 

two cross-talking delays. The results are compared to the use of the well-established Cluster 

Treatment of the Characteristic Roots (CTCR) algorithm (Sipahi and Olgac, 2005), where 

the exact root-loci for the benchmark are computed by using the numerical Quasi-

Polynomial mapping based Rootfinder (QPmR) method (Vyhlídal and Zítek, 2014). 

Last but not least, since the quasipolynomial approximation plays a crucial role in 

the methodology, another contributive idea lies in the primordial proposal how neutral 

quasipolynomials might be approximated by the extrapolation method transforming non-

commensurate delays to commensurate ones that can be analyzed by known exact methods. 

This procedure is simply implementable again without excessive or complex computations 

but sufficiently accurate, and it is demonstrated via a concise example.  

Some deficiencies of the methodology are critically discussed in Conclusions. 



Preliminaries 

Throughout the paper, C , R , N  and 0N  denote the sets of complex, real, integer and 

natural numbers, respectively, n

R  is the n-dimensional Euclidean space of positive real-

valued vectors. For   C ,  Re  denotes the real part of   , the imaginary unit is denoted 

as j. The zero vector or the matrix is denoted as 0.  pxF |  means a function of variable(s) 

x parameterized by p. The estimate of x  is denoted as x̂ . 

Selected Spectral and Stability TDS Properties 

Let a single-input single-output (SISO) TDS be governed by the transfer function 

     ττ ,/, sDsNsG   (1) 

where  τ,sN ,  τ,sD  are quasipolynomials of the general form 
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τ  in which   L

L  R ,...,, 21τ , represent 

independent delays, 0, Nlij  determines the order of commensuracy and Rijx . Hence, 

every exponential term in the quasipolynomial includes delay  


L

l llijij 1 ,  , and a real-

valued coefficient has simply 0, lij  for all l.  

Definition 1. A TDS has commensurate delays if 0 ijij  , Nij , for all i, j and some 

(fixed) base delay 0 . 



The associated exponential polynomial related to  τ,sX  is 

     
 n

j

L

l llnjnja sxsX



1 1 ,exp1, τ . If   Rτ,sDa , system (1) is called as retarded 

(RTDS); otherwise, the system is of a neutral type (NTDS).  

In the further text, we assume that are no common roots of  τ,sN ,  τ,sD . Then, 

the spectrum of a TDS and its essential spectrum read 

     0,::,0,::  sDssDs ae  (2) 

respectively. 

Under the assumption above, it holds the following. 

Property 1. For RTDS (1) it can be deduced that (Hale and Verduyn Lunel, 1993; Michiels 

and Niculescu, 2007): 

(1) If there exist i, j, l such that   0, , lijijd  , 0l , then  . 

(2) For any R  with  , only finitely many poles are located in the half-plane 

sRe . 

(3) Isolated poles behave continuously and smoothly with respect to τ  on . 

For a NTDS, however, item (2) of Property 1 does not hold yet the following basic 

properties can be deduced: 



Property 2. It holds for a NTDS (1) that (Hale and Verduyn Lunel, 1993; Michiels and 

Vyhlídal, 2005): 

(1) Define e Resup: . Then there exists a subset 


 such that  kk sRelim , 

 kk sImlim  for 


kkk sss ,1 . 

(2) Let 


ks , eeles 


,  with kk ss 1 , lele ss ,1,  . Then for any 0 , there exist 

K, L, such that  lek ss ,
 for every corresponding pair LlKk  , . Thus, system’s 

and essential poles constitute vertical strips at high frequencies. 

(3) In the half-plane sRe , there may lie infinitely many system poles, as shown e.g. by 

Bonnet et al. (2011). 

(4) The value of   is not continuous with respect to τ . 

 

Consider item (4) of Property 2 and an infinitesimally small change in the delay 

vector. For such the corresponding perturbed value ~ , the safe upper bound estimation c  

on ~  (that is continuous with respect to delays) can be introduced as 

   


n

j

L

l llnjnj cdc



1 1 , 1exp:R  (3) 

see e.g. (Vyhlídal and Zítek, 2014). Thus, it hold that ~c , and only a finite number of 

isolated poles are located in the half-plane cs Re . 



Definition 2. The spectral abscissa can be defined as    Resup: ττ . 

Property 3. For  τ  of system (1) it holds the following (Sipahi et al., 2012; Vanbiervliet 

et al., 2008): 

(1) It may be non-smooth and hence not differentiable; e.g. in points with more than one 

real pole or conjugate pairs with the same maximum real part. 

(2) It is non-Lipschitz; for instance, at points where the maximum real part has multiplicity 

greater than one. 

Concerning exponential stability of system (1), it can be given by the condition: 

  0,   . Strong stability of a NTDS represents somewhat more specific notion 

expressing that 0~  . 

Proposition 1. The system is strongly stable if 

1:
1

 
n

j njd


  (4) 

Proof. The reader is referred e.g. to (Vyhlídal and Zítek, 2014) and references therein for 

details. 

Hence, exponential stability can be studied by the determination of the rightmost 

(leading, dominant) pole 0s  or a pair. Whenever the imaginary axis is reached for a 

particular switching delay vector, τ , the corresponding leading pair of poles becomes the 



switching one, jks , R  ,j1ks . Due to Property 3, possible (but rare) jumps in 

   are to be taken into consideration. Moreover, when dealing with a NTDS, one has to 

be careful about the value of  , ~ , or c  and the shape of the rightmost infinite vertical 

bunch of poles – see items (1) and (2) of Property 2. For instance, if equation (4) is not 

satisfied, even an exponentially stable TDS with 0  cannot be considered as stable one 

from the complex point of view. 

The necessary condition for the existence of switching delays (poles) is that the so-

called root tendency (RT) is nonzero, i.e. 

    τ0τ sRTsRT kk gradResgn:,,   

For poles with multiplicity one, it can be calculated 
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Original Stability Switching Delays Searching Algorithm 

According to the authors' best knowledge, there is a lack of practically implementable 

delay-dependent stability algorithm for TDS. Pekař and Prokop (2015) have proposed a 

gridding successive procedure to determine the set of pairs { s , τ } within sets  τ : , 

 s :  for RTDSs. It can be formulated, in a concise form, as follows. 



Algorithm 1. 

Step 1: For the given  τ,sD , define the mesh grid 
jljljl ,,1,  
, 00, l , 

 Ll ,1 ,  1,0  Nj  for a selected delay range, initialize the counter 0i  and choose 

0 . Set estimations  ˆˆ . 

Step 2: Compute 
0,...,00,...,0

ˆ ss    0,:Remaxarg  0sDs . 

Step 3: For ( 1...01  Nj , for ( 1...02  Nj , etc. (for 1...0  NjL  do Steps 4 to 9. 

Step 4: If ljl  ,0 , the inner loop is finished; else, define  0:max:  ljlM  and 

set  
LjLjj ,,2,1 ...,,

21
τ , 0...0,1,,...,0 11

ˆˆˆ



MM jjjold sss . 

Step 5: Compute the polynomial estimation  0
ˆ,|ˆ ssD τ  of  τ,sD  via the Taylor’s 

series expansion in 0ŝ  and find its roots, ks . Calculate 01
ˆminargˆ sss k  . 

Step 6: While  01
ˆˆ ss , set 10

ˆˆ ss   and go to Step 5. 

Step 7: Set 10...0,,,...,,...,
ˆ:ˆˆˆ

111
ssss

MML jjjjjnew 


. If    oldnew ss ˆResgnˆResgn   the 

inner loop is finished (see Step 3); else, 1 ii . 

Step 8: Calculate the switching delay estimation   newoldjMMM ss
M

ˆ,ˆ,1,    by 

using the linear interpolation (RF) as 
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 (5) 

Step 9: For 1,...,1 Ml  do: If 0lj , set 
0,ll    and go back to Step 9; else set 

newss ˆˆ
0   and  

 
 0,...,0,,...,,,...,

,0,...,0,,...,,,...,

1,,1

11,,1
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and compute the leading root 1̂s  from  0
ˆ,|ˆ ssD oldτ  as in Steps 5 and 6. Update values 

10
ˆ:ˆˆ sssold   and find the leading root 1ŝ  of  0

ˆ,|ˆ ssD τ  and update the value 1̂
ˆ ssnew  . 

Then calculate  newoldjlll ss
l

ˆ,ˆ,1,    via the RF function defined in (5). 

Step 10: Consolidate  0,...0,,...1 Mk τ , update newss ˆˆ
0  , iτ ˆˆ . Compute 

iteratively the leading zero 1̂ssi   of  0
ˆ,|ˆ ssD iτ  and set is ˆˆ . 

Hence, the procedure is based on the iterative computation of the leading root 

estimation ( 1̂s ) in the vicinity of the preceding point ( 0ŝ ) in the grid and on the repeated use 

of the RF. It is supposed that there exists 1̂s  close to 0ŝ  in Algorithm 1. A problem can 

emerge due to a discontinuity of  τ  as in Property 3. Nevertheless, such a case for roots 

near the imaginary axis is rare, and with respect to root continuity, this issue can be omitted 



in practice. If, however, the rightmost poles with very close mutual values of imaginary 

parts appear, the leading pole determination should be reset. It is also worth noting that the 

value of ~  does not depend on delay values, see Proposition 1. 

Note that infinitely many switching delays can be obtained by e.g. linear 

interpolation of entries of ̂  as done in (Pekař and Prokop, 2015). 

Algorithm Improvements 

To significantly improve the preliminary results, we attack Algorithm 1 and consequent 

computations presented in Pekař and Prokop (2015) for RTDSs in two points. Namely, the 

RF is attempted to be substituted by the calculation of RT values followed by Newton’s 

method and arithmetic mean value calculation in Steps 8 and 9, and we also benchmark the 

quadratic interpolation of eventual switching delays. 

RT Averaging 

Consider function   ks sr
k

Re: ττ   for any pole ks . If a pole ks  lies near the imaginary 

axis for the corresponding τ , the zero point 0τ  of  τ
ks

r  can be extrapolated by Newton’s 

method as 

 
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 Ll

sRT

r
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s
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k ,1,

,
,0 

τ

τ
  (6) 



In Steps 8 and 9 of Algorithm 1, two zero point estimations are then calculated, i.e. 

for oldŝ , newŝ , and the mean value, 
lmeanl  ,,0
, of both is eventually taken as the result. The 

whole idea yielding 
meanRT ,,0  compared to the linear interpolation via the RF (

RF,0 ) is 

depicted in Fig. 1. 

Compared to RF, the advantage of the extrapolation is that the only one point for 

the approximation is needed. Hence, the iterative use of Newton’s method at 
meanRT ,,0  may 

give better results, which is, however, compensated for a longer computation time. 

 

 

Fig. 1.  The zero point via RF ( RF,0 ) vs. via the value of RT ( meanRT ,,0 ). 



Quadratic Interpolation 

Once the set ̂  is found, its entries iτ  can be joined by means of the quadratic 

interpolation as in (7). 
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 (7) 

where 1  is taken as the independent variable and maxi  stands for the eventual value of i  

after the run of Algorithm 1. In fact, there is an intersection of values of l  for every pair 

1, ii ; hence, the arithmetical mean value can be eventually taken. Alternatively, only odd 

values if i  may be considered. The quadratic method is supposed to be more accurate 

compared to simple linear-wise connections of switching delays estimations. 

The following example intends to compare the ideas above with the use of the well-

established CTCR method (Sipahi and Olgac, 2005). Unlike the cited reference, the 7th 

order instead of a 3rd order system is considered. If necessary, basic steps of the CTCR are 

recalled in the example. 



Example 1 

As the controlled RTDS, let a model of a skater on the remotely controlled swaying bow be 

considered (see Fig. 2). The model can be governed by the transfer function 

 
 
 

  
  sass
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sY
sG
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22

21

exp

exp








  (8) 

which expresses the relation between the horizontal angle deviation remotely driven by the 

skater and the output angle between the skater and the bow symmetry axis, see details in 

(Zítek et al., 2008). In (8), delay 1  expresses the skater’s reaction time and 2  means the 

servo latency. Apparently, both delays are independent and without commensurate 

companions, yet with a cross-talk effect. Nominal controlled system parameters and delay 

values may read, for instance, 1a , 2.0b , 3.01  , 1.02   as given in the cited 

literature. It can be computed that for such nominal parameters the controlled TDS is 

unstable with the spectral abscissa value of 9534.0 . 

 

Fig. 2.  A schematic drawing of a skater on the controlled swaying bow. 



Consider the simple control feedback loop equipped with a finite-dimensional linear 

controller 
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where ip , iq  are real-valued parameters. 

Then the characteristic retarded quasipolynomial reads 
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Controller parameters can by optimally tuned e.g. by the spectral abscissa 

minimization, see details in (Pekař and Prokop, 2013). For such optimized parameters the 

nominal spectral abscissa of the control feedback loop reads    4454.11.0,3.0   while 

the delay-free case gives    1323.00,0  . This i.a. implies that there must exist some sets 

of nonzero (positive) delay vectors stabilizing the control feedback loop. 

Compare now the use of Algorithm 1 applying the RF against the utilization of RT 

averaging, and with the results given by the CTCR algorithm. The use of one-step 

additional iteration of Newton’s method at meanRT ,,0  is denoted as RT+. Let the particular 

region be selected as    8.0,08.0,0: 211  R  with 01.0  , i.e. 80N , and 

610 . In Fig. 3, these results are given to the reader and compared with the 



stable/unstable region calculated by the QPmR of a rough delay resolution of 01.0  . 

Found switching delays estimations are joined by the simple linear interpolation. Note that 

the QPmR (Vyhlídal and Zítek, 2014) serves for a numerical computation of 

quasipolynomial roots within the selected region as some other software toolboxes do, for 

instance DDE-BIFTOOL (Engelborghs et al., 2001) or TDS_STABIL that enables to 

perform spectral abscissa optimization in addition (Michiels, 2011). The QPmR is, 

however, not suitable for the switching delays estimation since it requires a rather long 

lasting computation for a sufficiently high precision and, moreover, the searching s-region 

has to be a priori selected. 

 

Fig. 3.  Switching delays found by using the RF (○), RT (□) and RT+ (∆) vs. the stability 

region found by the QPmR ( 01.0  ). 



The average computation time of the programme created in the Matlab/Simulink 

environment (R2016a) has taken 2067.4 s on a laptop equipped with an Intel Core i3-

4000M CPU @ 2.40 GHz, 4 GB RAM. The number of 61 switching delay pairs has been 

found. The CTCR algorithm has been programmed and tested as the benchmark as well. It 

is worth noting that even the CTCR is presented as the analytic method, it requires numeric 

(discrete-valued) computations; hence, it is a discrete-analytic in fact. Once the Rekasius 

substitution       2,1,,1/1exp  iTsTsTs iiii R  is applied, the eventual 

corresponding characteristic polynomial is subjected to the well-known Routh’s array 

scheme. After that, two conditions (an auxiliary equation and an inequality) are obtained; 

these conditions require to solve a 9th order parametric polynomial in T1 or T2 to get so-

called kernel curves and the corresponding offspring curves that agree with crossing delays 

values. However, it is not possible to get exact analytic root loci for the equation that 

concurrently satisfy the inequality; therefore, parameter values are to be discretized first. 

Let us denote this discretization step as T . The CTCR algorithm programmed by the 

authors has taken 103.8, 909.1, 8957.5 s for 001.0,01.0,1.0T , respectively, giving rise 

to 9, 52 and 495 switching delay pairs. Apparently, the CTCR (in the authors’ 

implementation) is approximately twice faster to give the corresponding number of the 

switching delays – the result for 01.0T  is eventually taken for the comparison and 



displayed in Fig. 4. Note that the long computational time is mainly due to the use of 

symbolic operations. Anyway, the authors believe that this can be improved and depends 

strongly a programmer’s abilities. 

The plots in Figs. 3 and 4 are almost indistinguishable by sight; hence, another 

benchmark is presented in Fig. 5 where absolute values of real parts of dominant poles ( 0s ) 

found by the QPmR with the precision of 
910

 are displayed, expressing the estimation 

error. 

 

Fig. 4.  Switching delays found by using the CTCR (x) with 01.0T  vs. the stability 

region found by the QPmR. 

  

  



 

Fig. 5.  Switching delay values error in 1R  measured by 0Re s  found by the QPmR. 

As can be seen from the figure, the simple use of the RT value with consequent 

averaging does not bring an improvement compared to the RF method; however, the one-step 

additional use of Newton’s method (RT+) gives better switching delay estimation. Results 

provided to the reader in Fig. 5 prove the fact that the CTCR method should give analytic 

results, since the computed switching delays yield the rightmost system poles closest to the 

imaginary axis compared to all the other strategies of our algorithm in most cases. However, 

the use of RT+ gives sufficiently accurate results for the practical use as well. 

Let us now select the subset of ̂  from inside the region 

   5.0,3.025.0,15.0: 212  R  for results given by RT+ and CTCR, and compare the 

linear and quadratic interpolations, respectively. The particular comparison is depicted in Fig. 



6 where 0Re s  computed by using the QPmR is taken as the benchmark measure again. 

Apparently, regarding the RT+ substrategy, even though the estimation between originally 

found delays is (one to four orders) worse than in the interpolated points for both the cases, 

the quadratic interpolation gives much better results compared to the linear one. Surprisingly, 

interpolated points from the ̂  set computed via the CTCR method gives worse values of the 

dominant poles than via the preceding methodology. This fact is likely due to relatively 

sparse number of found switching delay pairs. It means that when constructing curves of 

switching delays with hypothetically infinitely many points, the presented algorithm returns 

better estimation. 

 

Fig. 6.  Switching delay values error for linear and quadratic interpolations in 2R , 

respectively, measured by the corresponding values of 0Re s  found by the QPmR. 



Remark 1. Let us now summarize the findings about the algorithm, i.e. its strengths and 

weaknesses, deduced from Example 1. When programming, the algorithm has proven to be 

simply implementable even compared to the CTCR. However, as mentioned above, the 

user’s programming skills may affect this issue. The method is purely numerical giving rise 

to stability switching estimations, whereas the CTCR one yields theoretically exact results 

– however, in fact, it requires numeric-analytical computations. Because of that, the latter 

method gives more accurate stability window estimations in computed points; however, the 

example has proved a very good impact of the quadratic interpolation applied to RT+ where 

interpolated points has yielded more accurate results compared to those from the CTCR. 

The iterative use of the Newton’s method provides sufficiently accurate results that are 

comparable to the benchmark. While CTCR can provide an exhaustive detection of all 

switching delay trajectories (offspring curves), the presented algorithm requires a priori 

selection of the region in the delay domain to be analysed. Another deficiency can be seen 

in relatively long computational times; nevertheless, it can be improved by the use of 

suitable software and hardware tools and advanced programming skills. Moreover, the 

method is not supposed to be used primarily in real-time applications. Last but not least, 

both methods can cause an erroneous switching delays determination. Namely, the 

presented algorithm may suffer from incorrect computation of 0ŝ  (see Step 5 of Algorithm 



1), which needs to reset this estimation. The CTCR method incudes D-subdivision 

procedure that can miss the correct switching delay when going through the set of crossing 

delays if there is a sparse number of points lying in the latter set. 

In spite of some deficiencies, Algorithm 1 can be used to find sufficiently accurate 

stability switching delay values for engineering applications with higher order TDS 

including non-commensurate and cross-talking delays. 

NTDS Case 

When dealing with a neutral characteristic quasipolynomial it is necessary to be aware of 

the existence of the rightmost infinite vertical chain of roots of the essential spectrum e


 

and that of the spectrum itself 


 - see (1) and (2) of Property 2, and the sensitivity to small 

delay changes expressed by the values ~  and c  given by (3). Algorithm 1 for a RTDS is 

based on the tracking of the estimation of the rightmost pole ( 0ŝ ); hence, whenever one 

intends to extend it to NTDSs, it is desirable to have this leading pole right from ~ , or 

practically more suitably, right from the value of c . The pole (or a pair) 0ŝ  may be isolated 

or 


0ŝ ; however, it always lies in the finite subset as introduced in the paragraph below 

(3). As mentioned above, it is reasonable to study exponential stability only if strong 

stability condition (4) independent of delays is satisfied. On the other hand, the measure of 



strong stability, c , is affected by delay values; hence, there is usually a conservatism such 

that ~c . To sum up, if (4) does not hold, Algorithm 1 can be given up. Otherwise, in 

every loop (for a discrete delay value) of the algorithm, the value of c  is evaluated and 

only pole estimations in the half-plane cs Re  can be considered to decide about stability. 

In some cases (for instance, due to the above introduce conservatism of c ) it is 

desirable to know 


 completely or at least to get a sufficiently accurate information about 

the rightmost subset of  . Moreover, it is questionable if the polynomial approximation 

presented in Steps 5 and 6 of Algorithm 1 is suitable for  ,sDa  as well. Actually, any 

finite dimensional approximation of  ,sDa  does not result in an infinite chain of 

approximating roots and thus it can not express the factual root loci distribution. 

A good choice how to cope with this task would be to approximate a general 

 ,sDa  by an exponential polynomial  ,sDA  with commensurate delays (see Definition 

1) since its spectrum A  can be analytically deduced. 

For instance, consider a quasipolynomial or an exponential polynomial with 

commensurate delays as in Definition 1 and its spectrum  , then it is easy to prove that if 

0s  then 


0

0

2
j


k
ssk  (11) 



Proposition 2. Let  0exp sq   and 
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jAAj jAA qdqDsjdsD



1 ,1 0,0 1exp1,  (12) 

be associated exponential polynomial related to the denominator of (1). Then there exist 

chains of poles asymptotically approaching the vertical lines 

 
 

0

ln
Re




s  (13) 

where   is any root of (12). 

Proof. Details about Proposition 2 can be found in (Rabah et al., 2005) and references 

therein. 

Corollary 1. The value of   is determined by   with the minimum modulus. 

In addition, positions and shapes of the rightmost subset of the spectrum for NTDSs 

with commensurate delays have been derived for neutral quasipolynomials in (Bonnet et 

al., 2011). Consider the characteristic quasipolynomial 

     

    N



 


  ij

n

i j ij

i

ijRR

RA

n

N

i

ssdsD

sDsDssD






,exp,

,,,

1

0 1 0,0

000

 (14) 



where  0,sDR  expresses the retarded part. In the cited reference, exact relations between 




 and coefficients 2,1,, ,,  nnidd ijRjA
 and the value of 0  are derived. These formulas 

are valid also for  0,sDR  and thus they can be applied to polynomials as well. 

Extrapolation Method for the Associated Exponential Polynomial 

Approximation 

In this subsection, a possible simple solution of the task of the approximation of a general 

(non-commensurate)  ,sDa  by  0,sDA  is suggested. 

Consider q  defined in Proposition 2 that can be viewed as the shifting operator of a 

time-domain function  tx  as     R mmtxqXqm ,ˆ 0 . Then the following lemma can 

be deduced. 

Lemma 1. Let be given 
mq  with  m  where Rm , 0N ,  1,0  and some 

suitable C0 . Then 
mq  can be approximated as 
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Proof. We write 
qqqm   and employ the Taylor’s series expansion in the 

neighbourhood of 0  as 
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00 15.0     qcqqq   

for some  \Cc  and C0q  such that 000   qq . The cubic term can be 

cancelled from the expansion for q  sufficiently close to 0 , and after some simple 

calculations, (15) is eventually obtained. 

Prior to the introduction of the complete approximation algorithm, let us add some 

notes and remarks on Lemma 1. 

Remark 2. The key task is a suitable setting of the base delay 0  deciding i.a. about the 

order of the polynomial  qDA , i.e. about the order of the commensuracy of  0,sDA . 

The shifting operator q  can be considered in terms of the z-transform as 
1 zq , and the 

value of 0  as the sampling period, the recommended value of which can be formulated by 

means of the system eigenfrequency or the absolute value of the dominant (rightmost) pair 

of poles ( 0s ). Hence, consider 0  in the following form 

00

0

1

s
   (16) 

where a suitable value of R0  can be found by numerical experiments. In addition, a 

natural requirement is that the minimum delay in  ,sDa , min , equals an integer multiple 

of 0 ; thus, we minimize 
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n
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for a suitable 0 . 

Remark 3. As the initial dominant pole estimation, it is possible to adopt a simple linear 

interpolation expressed by 

      sasas min1min0 1expexpexp    (18) 
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where   minmin 1  , 0N  and  1,0  have the same meaning as in Lemma 

1. Denote the spectrum of  qDA  as qA, . Then 

qA,0 min:   (19) 

that corresponds to the estimation 0ŝ  via the relation 

0

1

00 lnˆ  s  (20) 

Whenever  qDA  and its spectrum are computed in every iteration step, the current 

estimation 1̂  can be made as 

qA,01 ,ˆminˆ  


 (21) 



where 0̂  is the previous estimation of 0 , which prevents the dominant pole estimation 

from the possible existence of parasitic roots of  qDA  not having counterparts in e . 

Again, it is consequently set 10 ̂   in (15). 

Remark 4. It can easily be verified that the measure of strong stability,  , defined in (4) is 

preserved under the use of (15) only for 10  , i.e. 10 s . 

The algorithm of the approximation    0,, sDsD Aa   follows. 

Algorithm 2. 

Step 1: Let be given  ,sDa . If (4) does not hold, abandon the algorithm; otherwise, 

find the initial estimation of 0  by using (18) and (19), and select 0 . 

Step 2: Set min0    and compute 0ŝ  according to (20). 

Step 3: Calculate optn  as in (17) and the corresponding min0  optn . Set 00
ˆ   . 

Step 4: Use (15) with 0/m  for every delay   in  ,sDa  to get  qDA , and 

compute qA,  and 1̂  by using (21). 

Step 5: While   01
ˆˆ , set 10

ˆˆ    and go to Step 4. 

Algorithms 1 and 2 are eventually combined in the way such that Algorithm 2 is 

performed (for a particular τ ) between Steps 4 and 5 of Algorithm 1 which is, however, 



not used for the whole  ,sD  but only for the retarded quasipolynomial 
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  (except for Steps 1 and 2). The polynomial 

 0,sDA  received from Algorithm 2 can be consequently analysed via (13) to get the 

value of  , or together with the polynomial approximation of  ,
~

sDR  by means of (14) and 

formulas introduced in (Bonnet et al., 2011) to get the complete system spectrum 

estimation, which should be considered whenever the decision about stability is made (see 

Step 7 of Algorithm 1). 

Example 2 

Assume strongly stable 

     







 sssDa

3

2
exp4.09.0exp0.513/2,9.0,


  (22) 

and hence 9.0min  , which yields the initial estimation 

       ssssDA 7.2exp1308.08.1exp2692.09.0exp0.519.0,   

or equivalently 

  32 1308.02692.00.51 qqqqDA   



It can be computed that 7582.1ˆ
00    which agrees with 

j4907.3627.0ˆ
0 s . By numerical experiments it was chosen that 10  , which results 

in 3optn . i.e. eventually 3.00  . 

The iterative use of Steps 4 and 5 of Algorithm 2 yields the following final 

quadratic extrapolation 

       

       ss

sssDA

4.2exp0.0029i+0.0021.2exp0.0071i0.3996

8.1exp0.0031i+0.00249.0exp0.513.0,




 (23) 

The rightmost part of both the spectra, Ae  , , are displayed in Fig. 6. Spectral and 

stability measures of   3/2,9.0,sDa  and  3.0,sDA  are, respectively, the following: 

0.1074 , 9.0 , 0.073c , and 0.1074 , 9071.0 , 0.0701c , see (3), 

(4) and Definition 2. 

The disadvantage of the proposed method is apparent from (23); the eventual 

exponential polynomial has complex-values coefficients in general. However, from the 

point of view of the purpose of Algorithm 2 it is not a flaw. If it is necessary to get real-

valued coefficients, one can take absolute values of complex-valued ones taking into 

account the sign of the real part, which preserves   at least. 

 



 

Fig. 7.  Pole loci of e  (circle) and A  (plus) for (22) and (23), respectively, with 3.00  . 

Conclusions 

The presentation of the leading idea, improvements and significant extensions of a novel 

gridding multiple stability switching delays seeking algorithm have been main objectives of 

the presented paper. The original DDS algorithm can be fitted in a group of frequency-

domain direct methods that are based on the effort to find all characteristic roots (poles) 

located on the stability border, and it can deal with non-commensurate and cross-talking 

delays more effectively omitting a complex mathematical apparatus. The algorithm is 

simply implementable by standard software tools. The linear Regula Falsi interpolation has 

been compared to the use of the root tendency expressing the sensitivity of the leading 



pole’s on infinitesimal changes in delays. In addition, a one-step iterative Newton’s method 

has been used to enhance the switching delays estimation. Once a finite set of stability 

switching delays’ values are determined, they can be joined by a linear or a quadratic 

interpolation procedure. We have shown by simulations (when controlling a model of a 

skater on the swaying bow) that the quadratic one gives better results compared to the 

linear one. As the benchmark measure, the closeness to the imaginary axis computed by the 

QPmR algorithm has been utilized. Moreover, the method has been compared to results 

given by a well-established numeric-analytical method. Via this example, the algorithm 

proved to be easily implementable and sufficiently accurate for engineering computing. In 

the contrary, it must be critically stated that there are some deficiencies in the speed of the 

dominant poles searching and the necessity to determine the searching region a priori. A 

preliminary possible idea how to approximate general exponential polynomials for NTDS 

by those with commensurate delays has also been provided to the reader. This technique 

enables to determine pole loci of the dominant spectrum subset in the neighbourhood of the 

rightmost infinite vertical strip of poles by analytic formulas. A concise example is added 

as well. The future extension of this work may lie in a complete commensurate or a finite-

dimensional (polynomial) approximation of the whole characteristic quasipolynomial.  
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