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Abstract: This paper deals with solution of invariancy. It 

describes two methods of its using a school-example of double-

variable control circuit. The first method solves the invariancy 

by using so called adapted biding controllers Ru(s) and the 

second method solves the invariancy by means of correction 

members KC(s). The paper deals with difficulties of the first 

method and with benefits of the second method. Results of both 

methods are supported by verifying simulation. The verifying 

simulations were carried out at both methods on two control 

schemes of a double-variable control circuit. 
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1. INVARIANCY OF CONTROL CIRCUIT 
 

The aim of invariancy solution is to eliminate influence of a 

failure affecting the control circuit; generally to achieve that the 

control circuit eliminates the influence of failure affections and 

therefore that these failures do not affect control process of a 

controlled system (Åström & Hägglund, 1994). For objective 

information we use double-variable control circuit (see Fig. 1). 

Fig. 1. Double-variable control circuit 

Transfers of intrinsic (on the main diagonal) and extrinsic (out 

of the main diagonal) action variables are given for this double-

variable control circuit (1) 
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and transfers of main controllers (on the main diagonal) (2), 

which have been calculated by the method of dynamics 

inversion (Vítečková, 2000; Wagnerová & Minář, 2000). 
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R12(s) and R21(s) are binding controllers (controllers out of the 

main diagonal) complying with the condition of autonomy. 

Vector of a failure variable is given by 
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This model of double-variable control circuit serves as a 

school-example with the given matrix of action variable GS(s) 

(1) and the failure v(s) (3). 

2. METHODS OF INVARIANCY SOLUTION 

INCLUDING VERIFYING THE RESULTS OF 

SIMULATIONS 
 

Two approaches to invariancy solution of double-variable 

control circuit were used. 

 

2.1 Using so called adapted binding controllers R
u

12(s) and 

R
u

21(s) 

Transfers of adapted binding controllers R
u
12(s) (8) and R

u
21(s) 

(10) are calculated on the base of invariancy requirement (7),(9). 

For determining the condition of circuit invariancy with regard 

to a failure v we adapt the system of equations of the double-

variable control circuit 
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in such way that we carry out a separation of variables i.e. that 

controlled variables are on the left and failure variable and required 

values of controlled variables are on the right sides of equations. 

If we designate various factors in equation (4) 
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then the solution of this system of equations is 
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The condition of circuit invariancy with regard to the failure v(s) is 

obvious from these equations i.e. the circuit is invariant provided 

the factors in the bracket at the failure variable v(s) in the equation 

for the respective variable yi equal to zero. Then it holds: 

 for independence of y1 with regard to the failure v 
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From the equation (7) it is possible to determine the transfer of 

the adapted binding controller R
u
12(s): 
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 for independence of y2 with regard to the failure v 
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From the equation (9) it is possible to determine the transfer of 

the adapted binding controller R
u
21(s): 
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By fulfilling one of both conditions (7) and (9) double-variable 

control circuit with both controlled variables y1 and y2 comes into 

being. One of these controlled variable i.e. y1 or y2 (but only one 

of them) is statically (in stabilized state) and also dynamically 

(during transition process) independent on effect of failure 

variable v. The circuit is therefore absolutely invariant only for 

one selected controlled variable (Balátě, 1996). 



At the calculation according to the theory of adapted binding 

controllers Ru
12(s) (8) and Ru

21(s) (10) we have met a difficulty: 

1. We remind that by described adaptation for double-parameter 

control circuit it is possible to ensure the invariancy of only 

one (selected) controlled variable, i.e. the influence only to 

one element of the failure vector v(s) is eliminated. 

2. Fulfilling of the physical feasibility condition is a further 

difficulty. It was not possible to work with the selected 

adapted binding controller Ru
21(s) (10), because as it is 

obvious the condition of physical feasibility was not 

fulfilled, because the digit position of the polynomial grade 

of denominator was lower than of numerator. Due to this 

reason it was necessary to extend the polynomial grade of 

denominator by a member with first grade inertia 1/(s+1) 

and thus at least weak condition of physical feasibility was 

achieved. After extending by the member with first grade 

inertia, the adapted binding controller has this form 
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Verifying function of double-variable control circuit 

invariancy (method 1) 

The second binding controller R12(s) was gained on the base of 

the autonomy condition 
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Verifying simulation of the invariancy function was carried out 

on the connection of double-variable control circuit (in the 

environment MATLAB-Simulink) according to the Fig. 2. 

Fig. 2. Connection of double-variable control circuit with 

adapted binding controller Ru
21(s) 

For an analysis and better comparison of functional operation 

of the control circuit connected according to Fig. 2, yet another 

control circuit was used, which differed from the preceding in 

such way that binding controller R21(s) was used in place of 

adapted binding controller Ru
21(s) which was determined from 

the condition of autonomy and is identical with binding controller 

R12(s) (12) due to symmetrical form of transfer matrix of action 

variables (1). Connection of this control circuit is in the Fig. 3. 

Fig. 3. Connection of double-variable control circuit 

By means of this verifying simulation on these connections we 

tried to find out how the adapted binding controller influences 

invariancy and how autonomy is displayed when using the 

adapted binding controller. Influence of the adapted binding 

controller on invariancy is shown in the Fig. 4 where required 

values w1 and w2 of the controlled variable are set to the 

value = 0 and the failure variable v is set to the value = 1. 

Fig. 4. Influence of the adapted binding controller on 

invariancy (w1 = w2 = 0 and v = 1) 

It is obvious from Fig. 4 that influence of the failure variable 

was not eliminated in case of y1(R12) because it is nearly 

identical with the course of controlled variable y1; that shows 

the difficulty described in the point 1. Effect of the failure 

variable was not eliminated even in case of y2(Ru
21). 

Influence of adapted binding controller on autonomy is shown in the 

Fig. 5 where on the contrary the required values w1 and w2 are set to 

the required value = 1 and the failure variable v is set to the value = 0. 

Fig. 5. Influence of the adapted binding controller on 

autonomy (w1 = w2 = 1 and v = 0) 

It is obvious from Fig. 5 that due to adapted binding controller Ru
21(s) 

there occurred a disorder of autonomy, because the courses of output 

(controlled) variable y2(R
u
21) and y2 are not identical (they do not 

cover one another) as it is in case of y1 and y1(R12), which cover one 

another and therefore there autonomy was not infringed. 

Fig. 6 displays both cases, the adapted binding controller influence 

on invariancy, as well as on autonomy. There the required values 

and also the failure variable are set to the value = 1. 

Fig. 6. Influence of the adapted binding controller on 

autonomy and on invariancy (w1 = w2 = 1 and v = 1) 

It is obvious from Fig. 6 that no suppression of failure variable 

occurred and that substantial disorder of autonomy occurred 

particularly at y2(R
u
21). 
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methods are supported by verifying simulation. The verifying 

simulations were carried out at both methods on two control 
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2.2 Using correction members 

The preceding approach to invariancy solution of double-

variable control circuit has shown difficulties of using adapted 

binding controllers Ru(s). These difficulties have guided to an 

idea to look for another solution. An idea came into being to 

use an analogy of single-variable branched control circuit 

with assigning of a failure variable (see Fig. 7) for the solution 

of invariancy (Balátě, 1996;Balátě, 2002). 

Fig. 7. Block scheme of single-variable control circuit with 

assigning of failure variable 

For the single-variable branched control circuit with assigning 

of the failure variable (Fig. 7), the condition for calculation of 

correction member transfer function must be valid (13) 
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in order to eliminate influence of the failure (Balátě, 1996) 

      sGsGsG KCSSV   (14) 

where GKC(s) is the transfer function of correction member. 

For comparability of results there was used for solution the 

double-variable control circuit with given matrix of action 

variables GS(s) (1), failure vector v(s) (3) and calculated matrix 

controller GR(s) (2). 

On the base of the condition (14) for a single-variable branched 

control circuit with assigning of a failure variable there were 

designed correction members 
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and 
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The result conducts to more simple calculation of correction 

members and at it the resulting form of correction members is 

also more simpler. At this method there can not occur 

originating of negative coefficients in the denominator 

KC(s). 

It is necessary to pay attention to fulfilling the condition of 

these members physical feasibility. Also in this example this 

problem occurred namely in case of the correction member 

KC1(s). It was necessary to extend this correction member at 

least by a member with first grade inertia. Thus the weak 

condition of physical feasibility was achieved 
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Advantage of this method is that there does not occur the 

influence of autonomy by adapted binding controller Ru(s) 

(what we have observed at the first described method). 

At this method correction member KC1(s), KC2(s) are assigned 

into the control circuit. Binding controllers R12(s), R21(s) are 

designed by means of the condition of autonomy and are of the 

type (12). This condition is displayed in the Fig. 8. 

Fig. 8. Connection of double-variable control circuit with 

correction members KC1(s) and KC2(s) 

Verifying of the function of double-variable control circuit 

invariancy (method 2) 

Verifying was carried out on the connection of double-variable 

control circuit according to the Fig. 8 in the environment 

MATLAB-Simulink. For an analysis and better comparison 

there was used the connection of double-variable control circuit 

without correction member KC1(s), KC2(s) (see Fig. 9). Again 

we have been finding out how the correction members 

influence invariancy and how autonomy. 

Fig. 9. Connection of double-variable control circuit 

Influence of correction members on invariancy is displayed in 

the Fig. 10 where the required values w1 and w2 are set to zero 

and the failure variable v is set to one. 

It is obvious from Fig. 10 that the failure variable is partially 

eliminated due to the influence of KC(s). This elimination is 

substantial in case of the course of controlled variable y2(KC2). 

 

 

 

 



This elimination of the failure variable is worse in case of 

y1(KC1) and this is caused by infringing the condition (14), 

because KC1(s) is extended by the member with first grade due 

to the requirement of physical feasibility. 

Fig. 10. Influence of correction members KC(s) on invariancy 

(w1 = w2 = 0 and v = 1) 

Influence of KC(s) on autonomy is displayed in the Fig. 11 

where the required values w1, w2 are set to the required value 1 

and the failure variable v is set to 0. 

Fig. 11. Influence correction members KC(s) on autonomy 

(w1 = w2 = 1 and v = 0) 

It is obvious from Fig. 11 that there the condition of autonomy 

is fulfilled, because the courses of controlled (output) variables 

cover one another (they are identical). 

Fig. 12 records the influence of KC(s) on invariancy and on 

autonomy. The required values w1, w2 and also the failure 

variable v are there set to the value 1. 

Fig. 12. Influence of the KC(s) on autonomy and on invariancy 

(w1 = w2 = 1 and v = 1) 

It is obvious from Fig. 12 that a failure is partially eliminated in 

double-variable control circuit and the control circuit is nearly 

autonomous (autonomy is infringed by the effect of failure 

variable). 

 

3. PRESENT SITUATION 
 

At present we are involved in solution of invariancy at triple-

variable control circuit, which is characterized by a real two-

off-take steam turbine and mathematic model of controlled 

system corresponds to the above mentioned limits i.e. that 

failures are measurable 

- MG change of load with influence on angular speed  of  

 a turbo-set and 

- change of weight-flow of off-take steam 
E1mΔ , 

E2mΔ  on 

steam pressure in corresponding off-takes 
E1pΔ , 

E2pΔ  

 

4. EVALUATION AND CONCLUSION 
 

It results from the above outcomes that the first method i.e. 

using adapted binding controllers Ru(s) does not bring expected 

results for solution of invariancy of double-variable control 

circuit. It is more advantageous to use the second method of 

solution where correction members KC(s) are used. This 

method eliminates better the failure variable v, correction 

members do not influence autonomy and there is no danger of 

originating negative coefficients in denominators of these 

KC(s) and thus negative coefficients can not originate in the 

characteristic equation of closed control circuit. 

The method of invariancy solution appears as being well useful 

also for multi-variable control circuits in case when separate 

failures are important always for one of vector elements of 

controlled variables. 
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