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Abstract. Distributed systems are groups of networked computers, which have the same goal for their 
work. The terms "concurrent computing", "parallel computing", and "distributed computing" have a lot of 
overlap, and no clear distinction exists between them. The same system may be characterized both as 
"parallel" and "distributed"; the processors in a typical distributed system run concurrently in parallel. 
Parallel computing may be seen as a particular tightly coupled form of distributed computing, and 
distributed computing may be seen as a loosely coupled form of parallel computing. Nevertheless, it is 
possible to roughly classify concurrent systems as "parallel" or "distributed" using the following criteria. 
Philosophy is centrally concerned with arguments. The first question to be asked of any argument (or 
inference) is whether or not it is valid: that is, does its conclusion really follow from the cited premises? 
Validity of inference is the central problem of deductive logic. 

1 Introduction 
Recently, with the increasing demand benefit of 

using formal methods for modeling, we started seeing 
large number of applications using formal methods 
Examples of these methods include ASM (Borger & 
Stark, 2003), B (Abrial, 1996), and VDM (Jones, 1990). 
We have choosed Event-B as a formal method to show 
effectiveness of this method, which has possibility for 
developing system free of errors by verifying using 
Rodin model. 

Formal verification of a program is the 
mathematical proof that it does what is expected of it. 
The 21st century has seen a vast worldwide interest in 
formal methods [1-5].  
While Rigorous descriptions promise to improve system 
reliability, design time and comprehensibility, they do so 
at the cost of an increased learning curve; the 
mathematical disciplines used to formally describe 
computational systems are outside the domain of 
a traditional engineering education. In addition, the 
meta-models used by most formal methods are often 
limited in order to enhance provability. There is 
a notable tradeoff between the need for rigor and the 
ability to model all behaviors. 

1.1 Event-B method 

1.1.1 The Event-B formalism 

We present our formal development framework — 
Event-B (see Figure 1).  
The Event-B formalism is a state-based formal approach 
that promotes the correct-by-construction development 
paradigm and formal verification by theorem proving. 

Event-B has been specifically designed to model and 
reason about parallel, distributed and reactive systems. 

Fig. 1. Comparing event-based and state-based 
decomposition. 

Formal verification involves the application of 
mathematical proofs to every possible behavior allowed 
by a specification (Abrial, 1996). In a state-based 
specification the behavior is a transformation of the 
system moving from one state to another. Proof 
obligations are generated using the specification and the 
language rules  

These proof obligations then need to be discharged 
using properties of the specification. 
Event-B is a mathematical approach for developing 
formal models of systems (Abrial & Hallerstede, 2006) 
[11, 7]. An Event-B model is constructed from 
a collection of modelling elements. These elements 
include invariants, events, guards and actions. The 
modelling elements have attributes that can be based on 
set theory and predicate logic. Set theory is used to 
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represent data types and the manipulation of data. Logic 
is used to apply conditions on the data.

1.1.2 The development of an Event-B model

The development of an Event-B model goes 
through two stages; abstraction and refinement. The 
abstract machine specifies the initial requirements of the 
system0 Refinement is carried out in several steps with 
each step adding more detail to the system, generally, 
but not exclusively, in a top-down manner Reactive 
systems (Harel & Pnueli, 1985) are systems that 
continually respond to changes in their environment. The 
focus on atomic events in Event-B creates 
a representation of a reactive system (Jones, 2005). The 
model transitions are triggered by changes in the state of 
the model, which can represent the system’s 
environment. The guard on an event will allow or 
prevent an event from occurring depending on the state 
of the model. When none of the guards are true the 
system is deadlocked. Event-B is designed for modelling 
distributed systems (Abrial & Hallerstede, 2006). It 
implements the theory of discrete transition systems. 
Discrete transition systems, or action systems, model 
atomic actions that can be performed in parallel 
providing the actions do not affect the same state 
variables One method for specifying concurrency in 
Event-B is to model each update as a group of 
potentially interleaving atomic events (Edmunds & 
Butler, 2008) [1-5].

This allows the model to specify how concurrent 
execution can be dealt with by the system being 
modelled specifying a distributed system in Event-B
takes a global approach. Rather than creating 
a specification for each component of the system it is 
modelled as a whole along with its environment. The 
model is closed in that it reacts only to changes in its 
internal state. Initially states are modelled abstractly with 
the events that describes the main goal of the system. 

Fig. 2. Context Event-B.

Detail is added through refinement to describe the 
final distributed system. The ability to add new events 
and refine single events into multiple concrete events 
allows the functionality of the system to expand beyond 
that modelled in the abstract machine. Refinement 
ensures that the refined models are consistent with the 
abstract machine. 

1.2 Event-B model 

In Event-B, a system model is specified using the 
notion of an abstract state machine (Abrial, 2010) [6,8].
An abstract state machine encapsulates the model state 
represented as a collection of model variables, and 
defines operations on the state, i.e. it describes the 
dynamic behavior of the modelled system. A machine 
may also have the accompanying component, called 
context (see Figure 2). A context might include user-
defined carrier sets, constants and their properties, which 
are given as a list of model axioms. In Event-B, the 
model variables are strongly typed by the constraining 
predicates called invariants. Moreover, the invariants 
specify important properties that should be preserved 
during the system execution. A general form of Event-B
models is given in (see Figure 3).

The machine is uniquely identified by its name M. 
The state variables, v are declared in the Variables clause 
and initialised in the Init event. The variables are 
strongly typed by the constraining predicates. I given in 
the Invariants clause. The invariant clause might also 
contain other predicates defining properties that should 
be preserved during system execution.

The dynamic behavior of the system is defined by 
the set of atomic events specified in the Events clause. 
Generally, an event can be defined as follows 
introduction to the event-B method and the Rodin [12, 
13].

We outline the general structure of an Event-B
specification. A specification consists of a static part, 
specified in a context, and a dynamic part, specified in 
a machine.  

An Event-B machine M1 may be declared to be 
a refinement of some other Event-B machine M0. In this 
case we refer to M0 as the abstract machine and M1 as 
the refined machine. Machine M1 is said to be a correct 
refinement of M0 if any behavior that may be exhibited 
by M1 is also a possible behavior of M0. Refinement 
represents our expectation that the behavior of M1 
should conform to the behavior of M0. Of course 
declaring that M1 refines M0 does not on its own 
guarantee the correctness of a refinement. Rather the 
declaration gives rise to proof obligations that need to be 
discharged in order to guarantee the correctness of 
a refinement.  

Fig. 3. Machine and context relationship.

When refining a machine, it is common to specify 
new types and constants to be used in the refinement. 
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This is achieved by specifying a new context for the 
refined machine. If the specification of any new types 
and constants depend on the types and constants used by 
the abstract machine, the new context is declared to be 
an extension of the context of the abstract model. The 
relationships between a machine and its refinement, as 
well as their respective contexts, is illustrated by Figure 
2. This figure shows the refinement declaration from M1 
to M0, together with the relationships with their 
contexts. A refined context C1 is declared as an 
extension of the abstract context C0 meaning context C1 
may refer to types and constants specified in context C0. 
The dashed line from machine M1 to context C0 
indicates that M1 implicitly see definitions in C0 (via 
C1). 
An Event-B context contains the following elements: 
� Sets: Abstract types used in specification to 

distinguish various entities 
� Constants: Logical variables whose value remain 

constant 
� Axioms: Predicates that specify assumptions about 

the constants. 

An Event-B machine contains the following elements: 
� Variables: State variables whose values can change 
� Invariants: Predicates that specify properties about 

the variable that should always, remain true. 
� Initialization: Initial values for the abstract variables 
� Events: Guarded actions specifying ways in which 

the variables can change. Events may have 
parameters. 
A machine may see the static elements defined in 

a context meaning that these elements are visible within 
the machine. The structure of a specification is outlined 
(see Figure 3). 

2 Our proposed model  
Our model represent a client management model verified 
using Rodin too.

Fig. 4. Context in the machine m_0. Case study I — platform 
Rodin.

3 Conclusions  

Communication and negotiation are very important 
characteristics of distributed systems; and in this paper 
we have presented some of the basic concepts in formal 
method using Event-B also we have presented 
verification of protocols in distributed systems., so we 
can say, event-B allows us to define a kind of modeling 
methodology by write the correct mathematical notions; 

wherefore we can apply event-B in modeling many 
different complex projects, but we should choose 
carefully invariants and variables to ease effort of proof. 

As well as the Rodin tool offers reactive 
environment for constructing and analyzing models as 
do most modern integrated development environments, 
and provides integration between modeling and proving 
whereas this is important feature for the developers to 
focus on the modeling task without switch between 
different tools to check proving in same time. 

The intent of this paper to give some insights on 
modelling and formal reasoning using Event-B method 
in distributing systems. 
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Fig. 5. Invariants and initialization in the machine m_0. Case study I — platform Rodin. 

Fig. 6. Events in the machine m_0. Case study I — platform Rodin.
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