
* Corresponding author: lazar@fmk.utb.cz

Using formal methods in distributed system design

Awwama Emad, Kadi Mohammad, Krayem Said, Lazar Ivo, Rihawi Ahmad

University UTB, FAI department, Nad Stráněmi 4511, 760 05 Zlín, Czech Republic

Abstract. Distributed systems are groups of networked computers, which have the same goal for their
work. The terms "concurrent computing", "parallel computing", and "distributed computing" have a lot of
overlap, and no clear distinction exists between them. The same system may be characterized both as
"parallel" and "distributed"; the processors in a typical distributed system run concurrently in parallel.
Parallel computing may be seen as a particular tightly coupled form of distributed computing, and
distributed computing may be seen as a loosely coupled form of parallel computing. Nevertheless, it is
possible to roughly classify concurrent systems as "parallel" or "distributed" using the following criteria.
Philosophy is centrally concerned with arguments. The first question to be asked of any argument (or
inference) is whether or not it is valid: that is, does its conclusion really follow from the cited premises?
Validity of inference is the central problem of deductive logic.

1 Introduction
Recently, with the increasing demand benefit of

using formal methods for modeling, we started seeing
large number of applications using formal methods
Examples of these methods include ASM (Borger &
Stark, 2003), B (Abrial, 1996), and VDM (Jones, 1990).
We have choosed Event-B as a formal method to show
effectiveness of this method, which has possibility for
developing system free of errors by verifying using
Rodin model.

Formal verification of a program is the
mathematical proof that it does what is expected of it.
The 21st century has seen a vast worldwide interest in
formal methods [1-5].
While Rigorous descriptions promise to improve system
reliability, design time and comprehensibility, they do so
at the cost of an increased learning curve; the
mathematical disciplines used to formally describe
computational systems are outside the domain of
a traditional engineering education. In addition, the
meta-models used by most formal methods are often
limited in order to enhance provability. There is
a notable tradeoff between the need for rigor and the
ability to model all behaviors.

1.1 Event-B method

1.1.1 The Event-B formalism

We present our formal development framework —
Event-B (see Figure 1).
The Event-B formalism is a state-based formal approach
that promotes the correct-by-construction development
paradigm and formal verification by theorem proving.

Event-B has been specifically designed to model and
reason about parallel, distributed and reactive systems.

Fig. 1. Comparing event-based and state-based
decomposition.

Formal verification involves the application of
mathematical proofs to every possible behavior allowed
by a specification (Abrial, 1996). In a state-based
specification the behavior is a transformation of the
system moving from one state to another. Proof
obligations are generated using the specification and the
language rules

These proof obligations then need to be discharged
using properties of the specification.
Event-B is a mathematical approach for developing
formal models of systems (Abrial & Hallerstede, 2006)
[11, 7]. An Event-B model is constructed from
a collection of modelling elements. These elements
include invariants, events, guards and actions. The
modelling elements have attributes that can be based on
set theory and predicate logic. Set theory is used to

�

DOI: 10.1051/, 02033 (2017) 712501MATEC Web of Conferences 25 matecconf/201
CSCC 2017

2033

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

represent data types and the manipulation of data. Logic
is used to apply conditions on the data.

1.1.2 The development of an Event-B model

The development of an Event-B model goes
through two stages; abstraction and refinement. The
abstract machine specifies the initial requirements of the
system0 Refinement is carried out in several steps with
each step adding more detail to the system, generally,
but not exclusively, in a top-down manner Reactive
systems (Harel & Pnueli, 1985) are systems that
continually respond to changes in their environment. The
focus on atomic events in Event-B creates
a representation of a reactive system (Jones, 2005). The
model transitions are triggered by changes in the state of
the model, which can represent the system’s
environment. The guard on an event will allow or
prevent an event from occurring depending on the state
of the model. When none of the guards are true the
system is deadlocked. Event-B is designed for modelling
distributed systems (Abrial & Hallerstede, 2006). It
implements the theory of discrete transition systems.
Discrete transition systems, or action systems, model
atomic actions that can be performed in parallel
providing the actions do not affect the same state
variables One method for specifying concurrency in
Event-B is to model each update as a group of
potentially interleaving atomic events (Edmunds &
Butler, 2008) [1-5].

This allows the model to specify how concurrent
execution can be dealt with by the system being
modelled specifying a distributed system in Event-B
takes a global approach. Rather than creating
a specification for each component of the system it is
modelled as a whole along with its environment. The
model is closed in that it reacts only to changes in its
internal state. Initially states are modelled abstractly with
the events that describes the main goal of the system.

Fig. 2. Context Event-B.

Detail is added through refinement to describe the
final distributed system. The ability to add new events
and refine single events into multiple concrete events
allows the functionality of the system to expand beyond
that modelled in the abstract machine. Refinement
ensures that the refined models are consistent with the
abstract machine.

1.2 Event-B model

In Event-B, a system model is specified using the
notion of an abstract state machine (Abrial, 2010) [6,8].
An abstract state machine encapsulates the model state
represented as a collection of model variables, and
defines operations on the state, i.e. it describes the
dynamic behavior of the modelled system. A machine
may also have the accompanying component, called
context (see Figure 2). A context might include user-
defined carrier sets, constants and their properties, which
are given as a list of model axioms. In Event-B, the
model variables are strongly typed by the constraining
predicates called invariants. Moreover, the invariants
specify important properties that should be preserved
during the system execution. A general form of Event-B
models is given in (see Figure 3).

The machine is uniquely identified by its name M.
The state variables, v are declared in the Variables clause
and initialised in the Init event. The variables are
strongly typed by the constraining predicates. I given in
the Invariants clause. The invariant clause might also
contain other predicates defining properties that should
be preserved during system execution.

The dynamic behavior of the system is defined by
the set of atomic events specified in the Events clause.
Generally, an event can be defined as follows
introduction to the event-B method and the Rodin [12,
13].

We outline the general structure of an Event-B
specification. A specification consists of a static part,
specified in a context, and a dynamic part, specified in
a machine.

An Event-B machine M1 may be declared to be
a refinement of some other Event-B machine M0. In this
case we refer to M0 as the abstract machine and M1 as
the refined machine. Machine M1 is said to be a correct
refinement of M0 if any behavior that may be exhibited
by M1 is also a possible behavior of M0. Refinement
represents our expectation that the behavior of M1
should conform to the behavior of M0. Of course
declaring that M1 refines M0 does not on its own
guarantee the correctness of a refinement. Rather the
declaration gives rise to proof obligations that need to be
discharged in order to guarantee the correctness of
a refinement.

Fig. 3. Machine and context relationship.

When refining a machine, it is common to specify
new types and constants to be used in the refinement.

�

DOI: 10.1051/, 02033 (2017) 712501MATEC Web of Conferences 25 matecconf/201
CSCC 2017

2033

2

This is achieved by specifying a new context for the
refined machine. If the specification of any new types
and constants depend on the types and constants used by
the abstract machine, the new context is declared to be
an extension of the context of the abstract model. The
relationships between a machine and its refinement, as
well as their respective contexts, is illustrated by Figure
2. This figure shows the refinement declaration from M1
to M0, together with the relationships with their
contexts. A refined context C1 is declared as an
extension of the abstract context C0 meaning context C1
may refer to types and constants specified in context C0.
The dashed line from machine M1 to context C0
indicates that M1 implicitly see definitions in C0 (via
C1).
An Event-B context contains the following elements:
� Sets: Abstract types used in specification to

distinguish various entities
� Constants: Logical variables whose value remain

constant
� Axioms: Predicates that specify assumptions about

the constants.

An Event-B machine contains the following elements:
� Variables: State variables whose values can change
� Invariants: Predicates that specify properties about

the variable that should always, remain true.
� Initialization: Initial values for the abstract variables
� Events: Guarded actions specifying ways in which

the variables can change. Events may have
parameters.
A machine may see the static elements defined in

a context meaning that these elements are visible within
the machine. The structure of a specification is outlined
(see Figure 3).

2 Our proposed model
Our model represent a client management model verified
using Rodin too.

Fig. 4. Context in the machine m_0. Case study I — platform
Rodin.

3 Conclusions

Communication and negotiation are very important
characteristics of distributed systems; and in this paper
we have presented some of the basic concepts in formal
method using Event-B also we have presented
verification of protocols in distributed systems., so we
can say, event-B allows us to define a kind of modeling
methodology by write the correct mathematical notions;

wherefore we can apply event-B in modeling many
different complex projects, but we should choose
carefully invariants and variables to ease effort of proof.

As well as the Rodin tool offers reactive
environment for constructing and analyzing models as
do most modern integrated development environments,
and provides integration between modeling and proving
whereas this is important feature for the developers to
focus on the modeling task without switch between
different tools to check proving in same time.

The intent of this paper to give some insights on
modelling and formal reasoning using Event-B method
in distributing systems.

References
1. E. Borger, R. Stark Abstract State Machines:

A Method for High-Level System Design and

Analysis. Springer, ISBN 978-3-642-18216-7.
(2003)

2. C.B Jones. Systematic software development

using VDM. New York: Prentice Hall ISBN:0-
13-880733-7, 2 (1990)

3. B. Meyer, B. In Advances in Object-Oriented
Software Engineering, D. Mandrioli and B.
Meyers, Eds. Prentice Hall, 1-50. (1991).

4. P. Behm, P. Benoit, A. Faivre, & Meynadier,
J.-M. météor: A successful application of B in
a large project. In World Congress on Formal

Methods, J. M. Wings, J. Woodcock, & J.
Davies, Eds. Lecture Notes in Computer
Science, vol. 1708. Springer, Berlin,
Heidelberg, 369–387. ISBN:3-540-66587-0, 1
(1999)

5. I. Houston, S. King, Experiences and results
from the use of Z in IBM. In VDM ’91:
Formal Software Development Methods.

Lecture Notes in Computer Science, vol 551.
Springer, Berlin, Heidelberg, 558–595.
(1991).

6. J.-R. Abrial. Modeling in Event-B, Swiss
Federal University (ETH), Zürich, 2010.
ISBN: 978-0-521-89556-9

7. J.-R. Abrial, M. Butler, S. Hallerstede, & L.
Voisin An open extensible tool environment
for Event-B, Springer, ofLNCS, 2006,
pp 588–605, ISSN 0302-9743. Vol. 4260

(2006)
8. J.-R. Abrial. Modeling in Event-B,

Cambridge, ISBN-13 978-0-511-72976-8,
CAMBRIDGE UNIVERSITY PRESS (2010)

9. M. Jastram, M. Butler. Rodin User's

Handbook: Covers Rodin v.2.8, CreateSpace
Independent Publishing Platform, ISBN 10:
1495438147 ISBN 13: 9781495438141, USA.
https://www3.hhu.de/stups/handbook/rodin/cu
rrent/pdf/rodin-doc.pdf. (2014)

10. Rodin User’s Handbook v. 2.8, Accessed on:
2014-02-04
https://www3.hhu.de/stups/handbook/rodin/cu
rrent/html/introduction.html.

�

DOI: 10.1051/, 02033 (2017) 712501MATEC Web of Conferences 25 matecconf/201
CSCC 2017

2033

3

11. Hallerstede, S. Justifications for the Event-B
Modelling Notation. B2007: Formal
Specification and Developmentin B, Springer,
Vol. 4355., pp 49-63., ISSN 0302-9743.
(2007)

12. http://wiki.event-
b.org/index.php/Rodin_Platform_3.2_Release_
NotesRodin Platform 3.2 Release Notes,
Accessed on: 2015-11-05

13. http://www.event-b.org

Fig. 5. Invariants and initialization in the machine m_0. Case study I — platform Rodin.

Fig. 6. Events in the machine m_0. Case study I — platform Rodin.

�

DOI: 10.1051/, 02033 (2017) 712501MATEC Web of Conferences 25 matecconf/201
CSCC 2017

2033

4

