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1 ABSTRACT 

In this work, effect of the second to first normal stress difference ratio at the die exit, 

−N2/N1, uniaxial extensional strain hardening, 
0

maxU,E,

3η

η
, planar-to-uniaxial extensional 

viscosity ratio, 
UE,

PE,

η

η
, and Deborah number, De, has been investigated via viscoelastic 

isothermal modeling utilizing 1D membrane model and a single-mode modified Leonov 

model as the constitutive equation. Based on the performed parametric study, it was found 

that there exists a threshold value for De and 
0

maxU,E,

3η

η
, above which, the neck-in starts to be 

strongly dependent on −N2/N1. It was found that such critical De decreases if −N2/N1, 

0

maxU,E,

3η

η
 increases and/or 

UE,

PE,

η

η
 decreases. Numerical solutions of the utilized model were 

successfully approximated by a dimensionless analytical equation relating the normalized 

maximum attainable neck-in with 
0

maxU,E,

3η

η
, 

UE,

PE,

η

η
, −N2/N1 and De. Suggested equation 

was tested by using literature experimental data considering that −N2/N1 depends on die exit 

shear rate, temperature and utilized constitutive model parameters for given polymer melt. It 

was found that approximate model predictions are in a very good agreement with the 

corresponding experimental data for low as well as very high Deborah numbers, at which 

neck-in strongly depends on −N2/N1. It is believed that the obtained knowledge together with 

the suggested simple model can be used for optimization of the extrusion die design 

(influencing flow history and thus die exit stress state), molecular architecture of polymer 

melts and processing conditions to suppress neck-in phenomenon in production of very thin 

polymeric flat films. 

 



 

2 INTRODUCTION 

The extrusion film casting technology is an industrially important process that has a firm 

position on the market due to its capability to produce high quality thin polymeric films at 

high production rates. Those films can be used in different applications such as wrapping 

materials, barriers reducing permeability for air and vapor, or as a separator membrane for 

rechargeable batteries in mobile devices and electric vehicles. 

In this technology, the polymer melt is extruded through a slit die to form a thick sheet 

that is subsequently intensively stretched in the axial direction, hauled off and quenched by 

a rotating drum stabilizing the film dimensions. [1,2] (Fig. 1). Except of an initial swelling, 

the thickness of the film decreases monotonically due to high Draw ratio (the haul off speed 

divided by the die exit velocity). In such a case, film width is gradually reduced toward the 

stretching/cooling roll, which is called neck-in phenomenon. 

Aside from that, the interrelated defect of edge-beads promotes the lateral portion of the 

film to being substantially thicker than its central part (Fig. 2). While the first phenomenon 

affects a production rate, the second calls for a post-production trimming since solely central 

portion of the film is uniform in thickness. Understanding the relationship between material 

parameters and processing conditions including the flow in the die might be the way to 

effectively control the extent of neck-in and edge-beading as even a small reduction of these 

defects may bring increased efficiency considering high production rates in this 

manufacturing process. 

Scientific investigation of the extrusion film casting process has been addressed in many 

works dealing with both a steady and transient approaches to the problem. Initial studies were 

dedicated to an investigation of the hydrodynamic instability observed during the production 

of fibers called draw resonance [3–5] and then expanded for films in [6] where the numerical 



modeling for film casting using the one-dimensional isothermal model of Newtonian fluid 

was utilized for the first time. Other authors followed and employed different constitutive 

equations for power-law [7], and viscoelastic fluids using modified convected-Maxwell [8] 

and modified Giesekus model [9,10]. Due to the assumed kinematics for the free surface flow 

at the drawing zone, the model could not capture edge-bead defect and contraction in film 

width. 

First efforts to overcome this limitation and to accommodate ability to predict neck-in 

were made for a Newtonian fluid at isothermal [11] and non-isothermal conditions [12–14]. 

Lately, improved isothermal two-dimensional membrane model having the capability to 

capture the development of edge-beads under the stationary conditions was released; 

isothermal Newtonian [15] and viscoelastic Maxwell and Giesekus fluid [16], and models 

that take thermal effects into account for Newtonian [17] and viscoelastic Larson fluid [18]. 

In the meantime, simplified one-dimensional membrane approach based on a supplementary 

kinematic hypothesis, that originally brought for a float glass stretching [19], was proposed 

[20] and an extended isothermal study on the influence of processing conditions on the film 

geometry for casting of Newtonian and Maxwell fluids was carried out. Owing to the 

assumed flow kinematics, this model could cover a film width reduction but was not able to 

predict edge-beading. This restriction was removed in the succeeding work [21]. 

A cutting-edge three-dimensional model for extrusion film casting simulation was further 

established for a steady Newtonian isothermal [22] and non-isothermal [23] fluid. 

A specific attention was given at certain aspects of the process. The effect of thermal 

conditions including crystallization [24–31] as well as influence of macromolecular 

architecture on the extent of neck-in [32–36] was put under research abundantly. More 

recently, a sequence of articles based on the one-dimensional membrane model [20] have 

been published dealing with both experimental and theoretical investigation of the effects of 



long chain branching and molecular weight distribution on the neck-in [37–39] (XPP and RP-

s), and discussing the role of individual viscoelastic relaxation modes of a polymer melt [40] 

(UCM and PTT). In the latest works of this series [41] and [42], the evaluation of a draw 

resonance onset with model based on PTT constitutive equation and neck-in degree 

simulation using two-dimensional model with UCM constitutive equation [33] was 

addressed, respectively. 

The key findings with respect to formation of edge-beads and neck-in were postulated in 

[43], where the authors pointed out that the deformation flow in the drawing zone comprises 

of two related regions and the extent of these phenomena is determined by the interplay 

between them through an edge stress effect, as illustrated in Fig. 3. Planar extensional 

deformation is experienced in a central region of the film and uniaxial extensional one in 

lateral parts. This led to that some authors have chosen an approach relating the level of 

the observed necking in terms of rheological parameters and reported that a degree of neck-in 

phenomenon may be depressed by a strain hardening in uniaxial extensional viscosity 

[16,18,44,45]. This conception was slightly more developed in the succeeding studies where 

the neck-in extent was connected with the ratio of planar viscosities in axial and transverse 

directions [33], and recently, with the ratio of planar to uniaxial extensional viscosity [46–48] 

reflecting the flow kinematics in a drawing zone according to [43]. 

In order to resolve the system of model equations proposed in above mentioned studies, it 

is necessary to have fully satisfied boundary conditions. This is problematic for the cases, in 

which viscoelastic constitutive equations are used because an additional boundary stress 

condition at the die exit must be specified. Its value should be determined by both, a polymer 

flow in the upstream and downstream region (i.e. depending on an in-die complex flow) and 

a extensional flow in the drawing zone [49]. Among the various authors, one can find 

following strategies on how to deal with this problem. First, all stress components are set to 



zero considering entire stress relaxation due to the die swell phenomenon ([16,17,50] and 

[51]). Second, at least one stress component is given by a Newtonian solution for downstream 

side independently on the utilized type of constitutive equation [18], [20,21], [39], [41], [52] 

and [53]. Third, two extra stress components are adjusted manually without more reasoning 

[37,38,40]. Fourth, the die exit stress state is given by axial upstream extra stress component 

[8], thickness to axial extra stress component ratio for upstream/downstream side [9,54] or by 

second to first normal stress difference ratio, −N2/N1, calculated from upstream side [55] by 

using viscoelastic constitutive equation. It has been found that if Deborah number is low 

(0.00161 [49]; 0.07 [20,21]; 0.1 [9,56]), the choice of the initial stress conditions at the die 

have only a little influence on the steady-state calculations. However, at high Deborah 

numbers (De = 0.124 [8]) it seems that the die exit stress state, which can be influenced for 

example by extrusion die design [57] starts to have a significant impact on the neck-in 

phenomenon.  

 

In this article, as a part of circumstantial set of our studies on the free-surface flow 

instabilities [58–60], the effect of die exit stress state, extensional rheology and Deborah 

number on the neck-in phenomenon is systematically investigated via viscoelastic isothermal 

modeling (utilizing 1D membrane model coupled with a single-mode modified Leonov 

model) and obtained results are compared with suitable literature experimental data.  

 

3 MATHEMATICAL MODELING 

3.1 Modified Leonov model 

The utilized modified Leonov model is based on heuristic thermodynamic arguments 

resulting from the theory of rubber elasticity [61–66]. In this constitutive equation, a fading 



memory of the melt is determined through an irreversible dissipation process driven by the 

dissipation term, b. From mathematical viewpoint, it is relating the stress and elastic strain 

stored in the material as: 
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where τ  is the stress, and W, the elastic potential, which depends on the invariants I1,c and I2,c 

of the recoverable Finger tensor c ,  
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where G denotes linear Hookean elastic modulus,  and n are numerical parameters. Leonov 

assumed that the dissipative process acts to produce an irreversible rate of strain ep  
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which spontaneously reduces the rate of elastic strain accumulation. Here, δ  is the unit 

tensor and b stands for dissipation function defined by Eq. 5. This elastic strain c  is related to 

the deformation rate tensor D  as follows 

 0ec2cDDcc
p




 (4) 

where 


c  is the Jaumann (corotational) time derivative of the recoverable Finger strain tensor. 

In this work, the Mooney potential (i.e. n = 0 in Eq. 2), and the dissipation function b 

proposed in [67] (see Eq. 5) have been employed. 
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Here,  and  are adjustable model parameters.  



3.2 Extrusion film casting model 

In this study, one-dimensional membrane model [20] was used to simulate the drawing 

process of a molten film in the post extrusion die area. The model is capable to predict film 

width shrinkage despite its dimensionality due to the applied flow kinematics assumptions 

[19] allowing principal velocity variation along the axial direction (Fig. 1) as follows 
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Here u, v and w stands for the velocities in axial, transversal and thickness direction, 

respectively. The membrane model comprises of equations for continuity and momentum 

conservation that are simultaneously solved with viscoelastic single-mode modified Leonov 

model as the constitutive equation. The main model equations are summarized below in 

dimensionless form utilizing dimensionless quantities provided in Table. 1 (having a similar 

form as in [20] to keep consistency with the open literature). 

In this table, iiτ  is the ii component of the extra stress tensor; F and E, drawing and 

dimensionless drawing force exerted onto film; DR, draw ratio; De, Deborah number; λ, 

relaxation time; G, elastic modulus; A, aspect ratio; X and x, drawing distance and actual axial 

position and L, e, u, are half-width, half-thickness and axial velocity of the film. The zero 

subscript and overbar sign denotes initial and dimensionless corresponding quantity, 

respectively. 

Mass conservation equation is given by the following equation 

 1uLe   (7) 

Considering the membrane approximation for a thin film in the presence of a constant 

drawing force, the momentum conservation equation yields 



   0uzzxx   (8) 

The kinematic free-surface and stress-free surface boundary condition allows determination 

of unknown functions appearing in Eq. 6. (i.e. f(x) and g(x)) and the film width-stress 

relationship at given dimensionless axial position, x , Eq. 9, respectively. 
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Differentiating Eqs. 7 and 8 with respect to x  variable and after algebraic rearrangement, 

the derivative of the dimensionless film half-thickness with respect to x  leads to 
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Utilization of Mooney potential in the modified Leonov model constitutive equation 

(i.e. when n = 0 and β ≠ 0 in Eq. 2), the relationship between the dimensionless stress 

and recoverable strain takes the following form  
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In combination of the membrane model and constitutive equation, the derivative of diagonal 

components of the recoverable strain tensor, cii, with respect to x  are given in form 
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where the dimensionless dissipation function, b ,  and iZ  are defined as 
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Combination of Eqs. 7, 8 and 11 leads to the dimensionless streamwise deformation rate, 

which takes the following form 
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Eqs. 9, 10, 12, 13, 14 and 17 represent the final set of equations for isothermal 

viscoelastic 1D membrane model utilized in this work. More detailed derivation of the model 

is provided in our previous work [55]. Note that due to a geometrical symmetry of the film, 

only 1/4th of the film cross-section can be used in the calculation as showed in [68]. 

3.3 Boundary Conditions 

In order to solve the model equations, boundary conditions for downstream, Eq. 18, and 

upstream region, Eq. 19, have to be provided. 

   DRXu   (18) 
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At the downstream region, draw ratio is prescribed as the desired value that is satisfied by 

a priori unknown magnitude of the drawing force. Upstream area (i.e. extrusion die exit 

region) is defined by the known average melt speed and die dimensions (gap size and width) 

whereas diagonal components of the extra stress tensor xxτ , yyτ  and zzτ   have to be calculated 



via Eq. 11 utilizing cxx, cyy and czz components of the recoverable strain tensor satisfying 

the following set of equations: 
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Eq. 20 arises from the momentum conservation equation (Eq. 8), Eq. 21 from the melt 

incompressibility assumption and Eq. 23 characterizes the polymer melt stress state at the die 

exit region as the ratio of the secondary to primary normal stress difference, −N2/N1. This 

ratio is calculated from the fully-developed slit flow at the extrusion die exit as follows 
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3.4 Numerical Scheme 

The entire set of the first-order ordinary differential equations, which comprises from 

equations for film half-width (Eq. 9), half-thickness (Eq. 10), velocity (Eq. 17), components 

of the recoverable elastic strain tensor (Eqs. 12-14) and boundary conditions (Eqs. 20-23), 

was solved by 4th order Runge-Kutta method implementing adaptive step-size control. At 

the beginning, take-up force was guessed and consequently increased or decreased for every 

following iteration until the given draw ratio was achieved. Solver was developed in 

the C++ programming language and coupled with GNUPLOT plotting software for automatic 

graph generation. Typical computational time for one calculation of prescribed DR was about 

2 minutes on the PC with the following hardware parameters: CPU: Intel Core 2 Quad 



Q9650 (3.00 GHz), RAM: 8 GB DDR2, GPU: Sapphire Radeon HD 3870, SSD: Crucial 

256 GB. 

4 RESULTS AND DISCUSSION 

4.1  Theoretical analysis of neck-in phenomenon 

4.1.1 The role of extensional rheology, Deborah number and −N2/N1 ratio at the die exit 

In order to understand the role of extensional rheology, Deborah number and die exit 

stress state on the maximum attainable neck-in, 3 groups of virtual materials having three 

different levels of uniaxial strain hardening defined by Eq. 24 were used. 
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Here, P,maxE,η  is the maximum steady uniaxial extensional viscosity and 0η  stands for 

the Newtonian viscosity. In each group, 5 virtual materials were generated having the same 

level of uniaxial extensional strain hardening (1.3, 3.4 and 7.1) but different level of planar 

extensional strain hardening (1.10-1.53, 2.9-4.2 and 6.2-7.9) and the zero-shear rate second to 

first normal stress difference ratio (0.3-0.6) defined by Eq. 25 and Eq. 26, respectively. 
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Here, P,maxE,η  is the maximum steady planar extensional viscosity, γ  is the shear rate, N1 and 

N2 is the first and second normal stress difference at the die exit defined (for the post-die 

coordinate system depicted in Fig. 1) as follows 
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 values are provided in Tab. 2 for the 15 utilized virtual polymer melts.  

 Deborah number was varied from 0.01 to 0.3 in the film casting model for all 15 virtual 

polymer melts changing the −N2/N1 ratio from 0.001 to 2. For each simulation case, the draw 

ratio was adjusted high enough (typically equal to 40) in order to reach a maximum and draw 

ratio independent neck-in value, NI. Note that the neck-in is defined as L0 − L(X), see Figures 

1-2. The maximum neck-in value was consequently normalized by the take-up length, X, as 

follows. 
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In order to visualize obtained trend, calculated maximum neck-in value NI* as a function of 

the square root of planar to uniaxial extensional viscosity ratio, 
UE,

PE,

η

η
, is provided in 

Figure 4 for three selected Deborah numbers (0.01, 0.05 and 0.3), two uniaxial extensional 

strain hardening values (1.3 and 7.1) and two −N2/N1 ratios (0.001 and 1). It is visible that 

firstly, an increase in the Deborah number and −N2/N1 ratio increases both, the normalized 

neck-in as well as its sensitivity to 
UE,

PE,

η

η
 and secondly, there exists threshold value for 

Deborah number and uniaxial extensional strain hardening, above which, the neck-in 

phenomenon starts to be dependent on the die exit stress state. Critical Deborah number was 

calculated for given −N2/N1 ratio, above which, a considerable deviation (more than 5 %) in 

the neck-in value starts to occur. Here, the neck-in at −N2/N1 = 0.001 was taken as the 



reference. The effect of −N2/N1 ratio and uniaxial extensional strain hardening, 
0

maxU,E,

3η

η
, 

(keeping the ratio of planar to uniaxial extensional strain hardening value, 
0

maxP,E,

4η

η
/

0

maxU,E,

3η

η
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the same, equal to one) on the critical Deborah number is provided in Figure 5a utilizing 

three virtual melts (namely Melt4_Low, Melt4_Middle, Melt4_High, see Table 2). In this 

image, area below the lines represents conditions, at which the −N2/N1 ratio has practically no 

effect (namely lower than 5 %) on the normalized maximum attainable neck-in, whereas 

above these lines, the −N2/N1 starts to have a considerable effect (more than 5 %) on the 

neck-in phenomenon. As it can be seen, firstly, the critical Deborah number decreases with 

increased −N2/N1 and secondly, an increase in 
0

maxU,E,

3η

η
 decreases the critical Deborah number 

for given value of −N2/N1. For example, adjusting −N2/N1 = 0.2 and changing 
0

maxU,E,

3η

η
 to 1.3, 

3.4 and 7.1 yields critical Deborah number equal to 0.158, 0.073 and 0.042, respectively. 

The effect of 
0

maxP,E,

4η

η
/

0

maxU,E,

3η

η
 (changing from 0.85 to 1.24) and 

0

maxU,E,

3η

η
 (changing from 

1.3 to 7.1) is visualized in Figure 5b)-5d). Here, it is visible that increase in 
0

maxP,E,

4η

η
/

0

maxU,E,

3η

η
 

increases the critical Deborah number for given 
0

maxU,E,

3η

η
 and −N2/N1 values. The effect was 

found to be more dominant for lower −N2/N1 and higher 
0

maxU,E,

3η

η
. 

From these results, it can be concluded that die exit stress state, characterized via −N2/N1 

ratio, has to be defined properly in order to predict the normalized maximum attainable 



neck-in correctly, especially at high Deborah numbers for polymer melts with high 
0

maxU,E,

3η

η
 

and low 
0

maxP,E,

4η

η
/

0

maxU,E,

3η

η
. 

Note that −N2/N1 can be viewed as the variable, which is inversely proportional to the 

melt planar pre-stretching at the die exit. Thus the basic trend depicted in Figure 5 can be 

physically interpreted as follows. If the level of planar pre-stretching decreases, its effect on 

the maximum attainable neck-in starts to occur at lower Deborah numbers. 

 

4.1.2 Analytical approximation for NI*  

All numerical predictions of the utilized viscoelastic film casting model for normalized 

neck-in value NI* vs. square root of planar to uniaxial extensional viscosity ratio 
UE,

PE,

η

η
 and 

considering different Deborah numbers (0.01-0.30), uniaxial extensional strain hardening 

(1.3-7.1) and −N2/N1 ratios (0.001-2) is provided in Figures 6-9 as the symbols. In our 

previous work [55], it has been found that numerical solution for NI* can be approximated by 

Eq. 30, if the role of −N2/N1 on the neck-in phenomenon is neglected. 
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where A1, α1, φ1, A2, α2, φ2 are model constants. In order to include the effect of −N2/N1 ratio 

on NI*, we have modified Eq. 30 for NI* introducing −N2/N1 ratio via specific type of 

δ function and utilizing five additional constants θ, ψ1, ψ2, ψ3 and ψ4. Suggested modified 

equation for the NI* is given by Eq. 31. 
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and Deborah number, De, is given by 
X

λu
De 0 . 

Eq. 31 was used to fit all numerical neck-in predictions for all considered planar to uniaxial 

extensional viscosity ratios, Deborah numbers, uniaxial extensional strain hardenings and 

−N2/N1 ratios, which are depicted in Figures 6-9. All identified constants of Eq. 31 together 

with Root Mean Square Error, RMSE, which characterizes the overall fitting error 

(see definition bellow), are provided in Table 3. 
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where sn  is the number of points whereas jy  and jŷ  represent given and predicted points, 

respectively. As it can be seen, the simple approximate solution model (Eq. 31) has very high 

capability to represent NI* predictions of the utilized 1D viscoelastic membrane model very 

well. 

4.1.3 Behavior of analytical approximation for NI* at high Deborah numbers 

For very high Deborah numbers, Eq. 31 for NI* simplifies to   
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Considering that A1 and A2 are identical during a fitting procedure utilizing Eq. 31, the 

change in RMSE is very small (from 0.020888 to 0.023903), which justifies to use this 

assumption to further simplify Eq. 34 as follows 
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where A1 = 0.493, θ = 7.65, ψ1 = 0.985, ψ2 = 0.812, ψ3 = 0.524. 

As it can be deduced from Eq. 35, a limiting value of NI* is a linear function of 
UE,

PE,

η

η
 with a 

slope of 

7.65

0

maxU,E,

3η

η

0.493
 and non-zero limiting NI* intercept value depending on −N2/N1 as well 

as 
0

maxU,E,

3η

η
. 

4.2 Analytical approximation for NI* vs. experimental data 

The approximate solution given by Eq. 31, utilizing constants provided in Table 3, was 

validated for 5 different polyethylenes with basic characteristics summarized in Table 4. 

In the first step, deformation rate dependent ‘steady state’ uniaxial extensional viscosity 

data (taken from the transient viscosity data peaks for given deformation rates, [60] and [69]) 

were fitted by the modified Leonov model (Eqs. 1-5) to identify its parameters, which are 

summarized in Table 5. It is important to note that in the case of LDPE 170A sample, even if 

it was possible to fit experimental points by 5 different sets of Leonov model parameters with 

a practically identical error (because number of experimental points was very low, see 

Figure 10a), corresponding model predictions for 
UE,

PE,

η

η
 and −N2/N1 were different 

(see Figure 10b-10c). This has a strong impact on the viscoelastic 1D membrane model 



predictions for dimensionless final film half-width vs. draw ratio, especially, for high 

Deborah numbers, at which −N2/N1 (calculated at the die exit for the given shear rate and 

considering fully developed slit flow) plays an important role (see Figure 10d). This suggests 

that the Leonov model parameters should be determined by using a uniaxial extensional 

viscosity data measured at very wide extensional strain rates and utilizing other properties 

such as planar extensional viscosity, N1 and N2, if they are available. A comparison between 

the uniaxial extensional viscosity data for all five polyethylene samples (taken from [18], 

[37,38,40] and [47]) and corresponding modified Leonov model predictions for uniaxial as 

well as planar extensional viscosities is provided in Figure 11. As it can be seen, single-mode 

modified Leonov model has a capability to describe uniaxial extensional viscosity for all 

samples. 

In the second step, material relaxation time, λ, mean extensional strain rate in the air gap, 

Mdx

du








, and shear rate at the die exit (corrected for the non-Newtonian behavior) [70,71] 

CORγ , were determined for processing conditions and summarized for all samples in Table 6 

as follows: 
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Here  0Tλ  represents relaxation time at the reference temperature, T0, (Table 5), Ea is the 

flow activation energy (Table 4), R is the universal gas constant equal to 8.3144598 J/K/mol, 

u is the take-up velocity, u0 is the die exit velocity, X is the air gap, Q is the overall 



volumetric flow rate, L0 is the die half-width, e0 is the die half-gap and n0 is the index of non-

Newtonian behavior (equal to 0.3464 as the typical value for LDPEs [72]). The exponential 

term in Eq. 36 represents Arrhenius shift factor [73,74] whereas the second term in Eq. 38 

represents Rabinowitsch correction for a rectangle channel [75]. All parameters appearing in 

Eq. 31 for the normalized maximum attainable normalized neck-in, NI*, (i.e. De, 
0

maxU,E,

3η

η
, 

UE,

PE,

η

η
 and −N2/N1 for given processing parameters and materials used) were calculated by 

using modified Leonov model utilizing λ, 
Mdx

du








 and CORγ  parameters determined via Eqs. 

36-38 (see their summarization in Table 7).  

 In the final step, measured values for NI*, provided in Table 6, were compared with 

corresponding predictions of approximate model (Eq. 31) utilizing constants and parameters 

provided in Table 3 and Table 7, respectively (see Figure 12a). As it can be seen, there is a 

very good agreement between the measured data and approximate model predictions within 

the whole range of Deborah numbers. If the −N2/N1 at the die exit region is considered to be 

unrealistically constant for all tested LDPEs (for example equal to 0.2 as the ‘typical value’ 

[76]), the model failed to predict NI* for Deborah numbers larger than 0.1 (see Figure 12b), 

which confirms existence of the critical Deborah number, above which, the neck-in 

phenomenon starts to be strongly dependent on the die exit stress state. 

 Based on the performed analysis, it can be concluded that the approximate model, 

which relates the normalized maximum attainable normalized neck-in with De, 
0

maxU,E,

3η

η
, 

UE,

PE,

η

η
 

and −N2/N1 according to Eq. 31, can be considered as a useful tool for material, processing 

and die design optimization in order to suppress unwanted neck-in phenomenon occurring 

during a production of thin flat films.  



5 CONCLUSIONS 

In this work, the effect of second to first normal stress difference ratio at the die exit, 

−N2/N1, uniaxial extensional strain hardening, 
0

maxU,E,

3η

η
, planar-to-uniaxial extensional 

viscosity ratio, 
UE,

PE,

η

η
, and Deborah number, De, has been investigated via viscoelastic 

isothermal modeling utilizing 1D membrane model and a single-mode modified Leonov 

model as the constitutive equation. Based on the performed parametric study, it was found 

that an increase in −N2/N1 ratio and De increases both, the neck-in as well as its sensitivity to 

UE,

PE,

η

η
. There exists a threshold value for Deborah number and 

0

maxU,E,

3η

η
, above which, 

the neck-in starts to be strongly dependent on the die exit stress state, −N2/N1. It was found 

that such critical De decreases if −N2/N1, 
0

maxU,E,

3η

η
 increases and/or 

0

maxP,E,

4η

η
/

0

maxU,E,

3η

η
 decreases. 

Numerical solutions of the 1D membrane viscoelastic model, utilizing modified single-mode 

Leonov model as the constitutive equation, were successfully approximated by 

a dimensionless analytical equation expressing the normalized maximum attainable neck-in 

with 
0

maxU,E,

3η

η
, 

UE,

PE,

η

η
, −N2/N1 and De. Suggested equation was tested by using the experimental 

data taken from [18], [37,38,40] and [47] for five different polyethylenes where 

0.253De0.011  , 1.910
η

η
0.825

UE,

PE,  , 10.096
3η

η
2.047

0

maxU,E,    and 

0.680
N

N
0.017

1

2  . It was found that approximate model predictions are in a very good 

agreement with the corresponding experimental data within the whole range of investigated 

Deborah numbers. Interestingly, the neck-in predictions for Deborah numbers larger than 



0.1 became unrealistic, if the −N2/N1 at the die exit region is not taken into account, which 

confirms the existence of critical Deborah number, above which, the neck-in phenomenon 

starts to be strongly dependent on the die exit stress state. It is believed that the obtained 

knowledge together with the suggested simple analytical model can be used for optimization 

of the extrusion die design (influencing flow history and thus die exit stress state), molecular 

architecture of polymer melts and processing conditions to suppress neck-in phenomenon in 

a production of very thin flat films. 
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6 LIST OF SYMBOLS 

A  Aspect ratio 1 

21 A,A  Fitting parameters of analytical model 1 

b  Dissipation term s-1 

b  Dimensionless dissipation term 1 

c  Recoverable Finger tensor 1 

1
c


 Inverse recoverable Finger tensor 1 

0

c  
Jaumann (corotational) time derivative of the 

recoverable Finger strain tensor 

s-1 

xxc  Normal component of the recoverable Finger tensor 

in axial x-direction 

1 

yyc  Normal component of the recoverable Finger tensor 

in transverse y-direction 

1 

zzc  Normal component of the recoverable Finger tensor 

in thickness z-direction 

1 

D  Deformation rate tensor s-1 

De  Deborah number 1 

DR  Draw ratio 1 

p
e  Irreversible rate of strain tensor s-1 

E  Dimensionless take-up force 1 

aE  Flow activation energy J·mol-1 

e  Half-thickness of the film at any x location mm 

0e  Die half-gap (half-thickness of the film at the die 

exit) 

mm 

e  Dimensionless half-thickness of the film at any x 

location 

1 

F  Take-up force (stretching force) N 

f  Rate of deformation in transverse y-direction s-1 

G  Linear Hookean elastic modulus Pa 

g  Rate of deformation in thickness z-direction s-1 



i  Index i, noting the spatial direction 1 

c,1I  First invariant of recoverable Finger tensor 1 

c,2I  Second invariant of recoverable Finger tensor 1 

j  Index j 1 

L  Half-width of the film at any x location mm 

0L  Half-width of the die (half-width of the film at the 

die exit) 

mm 

L  Dimensionless half-width of the film at any x 

location 

1 

MFI  Mass flow index g·10 min-1 

MFR  Mass flow rate kg·h-1 

nM  Number average molar mass g·mol-1 

wM  Mass average molar mass g·mol-1 

NI  Maximum attainable neck-in mm 

*NI  Normalized maximum attainable neck-in 1 

1N  First normal stress difference Pa 

2N  Second normal stress difference Pa 

n  Non-linear Leonov model parameter 1 

0n  Non-Newtonian index 1 

sn  Number of sample points 1 

Q  Volumetric flow rate m3·s-1 

R  Gas constant J·K-1·mol-1 

T  Melt temperature at the die °C 

0T  Reference temperature in the Arrhenius law °C 

u  Axial velocity component of the film at any 

x location 

mm·s-1 

)X(u  Chill roll speed mm·s-1 

0u  Axial velocity component at the die exit mm·s-1 

u  Dimensionless axial velocity component of the film 

at any x location 

1 



v  Transverse velocity component of the film at any 

x location 

mm·s-1 

W  Elastic potential Pa 

w  Thickness velocity component of the film at any 

x location 

mm·s-1 

X  Take-up length (stretching distance, air gap) mm 

x  Position in axial x-direction mm 

x  Dimensionless position in axial x-direction 1 

iy  Observed value 1 

iŷ  Predicted value 1 

z,y,x  Spatial coordinates in axial, transverse and thickness 

direction, respectively 

1 

zyx Z,Z,Z  Substitution variables 1 

Mdx

du








 

Mean value of extensional strain rate in the air gap s-1 

xd

dc
,

xd

dc
,

xd

dc zzyyxx
 

Derivative of Finger tensor components with respect 

to dimensionless x  position 

1 

xd

ed
,

xd

Ld
,

xd

ud
 

Derivative of dimensionless axial, transverse and 

thickness velocity component with respect to 

dimensionless x  position 

1 

   

Greek Symbols   

  Arrhenius law parameter K 

21 ,  Fitting parameters of analytical model 1 

  Non-linear Leonov model parameter 1 

CORγ  Corrected shear rate by Rabinowitsch correction for 

the rectangle channel 

s-1 

  Unit tensor (Kronecker delta) 1 

  δ shift function 1 

0  Newtonian viscosity Pa·s 

P,E  Steady planar extensional viscosity Pa·s 



max,P,E  Maximal steady planar extensional viscosity Pa·s 

U,E  Steady uniaxial extensional viscosity Pa·s 

max,U,E  Maximal steady uniaxial extensional viscosity Pa·s 

  Fitting parameters of analytical model 1 

  Relaxation time s 

  Non-linear Leonov model parameter 1 

  Non-linear Leonov model parameter 1 

  Polymer density g·cm-3 

  Extra stress tensor Pa 

xx  Normal stress in axial x-direction  Pa 

yy  Normal stress in transverse y-direction Pa 

zz  Normal stress in thickness z-direction Pa 

xx  Dimensionless normal stress in axial x-direction 1 

yy  Dimensionless normal stress in transverse 

y-direction 

1 

zz  Dimensionless normal stress in thickness z-direction 1 

21 ,  Fitting parameters of analytical model 1 

4321 ,,,   Fitting parameters of analytical model 1 
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8 TABLES 

Table 1. Summarization of utilized dimensionless quantities. 

Dimensionless component of stress tensor 

F

Le 00ii
ii


  

Dimensionless spatial dimensions and streamwise velocity 

X

x
x          

0e

e
e          

0L

L
L          

0u

u
u   

Dimensionless numbers 

0u

)X(u
DR          

X

u
De 0

         
0L

X
A          

000 uLeG

FX

E

1


  

 

Table 2.  Modified Leonov model parameters for the utilized virtual polymer melts having 

λ = 1.57 s and G = 85,982.61 Pa at 150 °C.  

Virtual Material 

Name 
ξ (1) ν (1) β (1) 

0

maxU,E,

3η

η
 

(1) 
0

maxP,E,

4η

η
 

(1) 














1

2

0γ N

N
lim


 

(1) 

Melt1_High 4.414 0.276 0.1 7.1 6.2 0.3 

Melt2_High 4.042 0.208 0.3 7.1 6.6 0.4 

Melt3_High 3.816 0.174 0.4 7.1 6.8 0.45 

Melt4_High 3.54 0.14 0.5 7.1 7.1 0.5 

Melt5_High 2.806 0.072 0.7 7.1 7.9 0.6 

Melt1_Middle 2.014 0.276 0.1 3.4 2.9 0.3 

Melt2_Middle 1.882 0.208 0.3 3.4 3.1 0.4 

Melt3_Middle 1.816 0.174 0.4 3.4 3.2 0.45 

Melt4_Middle 1.75 0.14 0.5 3.4 3.4 0.5 

Melt5_Middle 1.53 0.072 0.7 3.4 4.2 0.6 

Melt1_Low 0.338 0.276 0.1 1.3 1.10 0.3 

Melt2_Low 0.38 0.208 0.3 1.3 1.17 0.4 

Melt3_Low 0.4 0.174 0.4 1.3 1.22 0.45 

Melt4_Low 0.418 0.14 0.5 1.3 1.29 0.5 

Melt5_Low 0.426 0.072 0.7 1.3 1.53 0.6 

 



Table 3.  Summarization of all constants appearing in Eq. 31 for normalized maximum 

attainable neck-in, NI*, which was used to fit all numerical neck-in predictions. The root 

mean square error, RMSE, was equal to 0.020888 . 

θ A1 A2 α1 α2 φ1 φ2 Ψ1 Ψ2 Ψ3 Ψ4 

7.43 0.593 1.027 1073.742 0.849 2.113 0.514 1.027 0.849 0.514 3.953 

 

Table 4. Basic characteristics for tested polymeric samples. 

Polymer 

sample 

MFI 

(g/10 min) 
Mw 

(kg/mol) 
Mw/Mn 

(1) 

Newtonian 

viscosity, 

0 

(Pa·s) 

Temperature, 

T0 

(°C) 

Flow 

activation 

energy, Ea 
(kJ/mol) 

Reference 

LDPE 

170A 
0.7 185.9 6.07 134,992 150 40 [38,40] 

PE-A 6.7 163 9.1 16,220 130 49.887# [47] 

PE-B 4.1 102 6.6 37,720 130 49.887# [47] 

PE-C 4.3 85 6.0 36,033 130 49.887# [47] 

LDPE C 8.07 554 26 21,970 125 52.020## [18] 

# Note, that Ea was calculated here as Ea = αR, where α is the Arrhenius law parameter equal 

to 6000 K provided in [47] and R is the universal gas constant equal to 8.3144598 J/K/mol. 

## Converted from Kcal/mol. 

 

Table 5. Modified Leonov model parameters for polymeric materials with basic 

characteristics provided in Table 4. 

Polymer sample λ (s) G (Pa) ξ (1) ν (1) β (1) T0 (°C) 

LDPE 170A 1.57 85,982.61 1.53 0.072 0.7 150 

PE-A# 9.5 1,707.37 0.41 0.0015 0.4 130 

PE-B# 15 2,514.67 0.29 0.0034 0.4 130 

PE-C# 30 1,201.10 0.09 0.0013 0.5 130 

LDPE C 28.57 768.95 0.51 0.004 0 125 

# Parameters are taken from [55]. 

 

  



Table 6. Summarization of extrusion film casting processing parameters for all considered 

polymer samples taken from the open literature [18], [37] and [47]. 

Polymer 

sample 

Die 

Width, 

2L0  

(mm) 

Die 

Gap, 

2e0 

(mm) 

Air 

Gap, 

X 

(mm) 

Temperature, 

T 

(°C) 

Die Exit 

Velocity, 

u0 (mm/s) 

Draw 

Ratio, 

DR 

(1) 

NI* 

(1) 
Reference 

LDPE 

170A 
100 0.46 228 190 4.3 17.1 0.1537 [37] 

PE-A 600 0.80 160 320 46.6# 42.9## 0.2466 [47] 

PE-B 600 0.80 190 320 46.6# 42.9## 0.3275 [47] 

PE-C 600 0.80 220 320 46.6# 42.9## 0.5159 [47] 

LDPE C 250 0.95 90 190 5.1 65.2### 0.2973 [18] 

LDPE 

170A 
100 0.46 10 190 4.3 9.6 0.7867 [37] 

# Die exit velocity was determined based on the die width (2L0), die gap (2e0), melt density 

(ρ) and mass flow rate (MFR) as u0 = MFR/(ρ2L02e0), where MFR = 60 kg/h and melt 

density ρ = 745 kg/m3 [47]. 

## Draw ratio was determined from die exit velocity and take-up velocity as DR = u/u0. 

Take-up velocity is provided in [47] as u = 120 m/min. 

### Calculated based on a take-up velocity at the drawing drum. 

 

Table 7. Summarization of all parameters appearing in Eq. 31 for the normalized maximum 

attainable normalized neck-in (i.e. De, 
0

maxU,E,

3η

η
, 

UE,

PE,

η

η
 and −N2/N1) calculated by using 

modified Leonov model utilizing  material relaxation time, λ, mean extensional strain rate in 

the air gap, 
Mdx

du








, and shear rate at the die exit (corrected for the non-Newtonian behavior), 

CORγ , determined for processing conditions summarized for all samples in Table 6. 

Polymer 

sample 

λ 

(s) Mdx

du








 

(1/s) 

CORγ  

(1/s) 

De 

(1) 
−N2/N1 

(1) 
UE,

PE,

η

η
 (1) 

0

maxU,E,

3η

η
 (1) 

LDPE 170A 0.588 0.300 91.363 0.011 0.680 1.547 3.393 

PE-A 0.079 10.281 569.402 0.019 0.405 0.833 9.299 

PE-B 0.125 8.879 569.402 0.026 0.406 1.102 4.198 

PE-C 0.250 10.281 569.402 0.061 0.500 1.293 2.047 

LDPE C 3.149 3.638 52.469 0.178 0.017 0.825 10.096 

LDPE 170A 0.588 3.707 91.363 0.253 0.680 1.910 3.393 



9 FIGURES 

 

Fig. 1. Schematic visualization of the extrusion film casting process. 

  

 



 

Fig. 2. Neck-in and edge-beading phenomena during the extrusion film casing process. 

  



 

Fig. 3. Visualization of the flow type distribution in the post-die area during the extrusion film casting 

process. 

  



    

    

   

Fig. 4 The effect of die exit stress state (−N2/N1) on the normalized maximum attainable neck-in vs. 

)/ηsqrt(η UE,PE,  dependence for three different Deborah numbers (De = 0.01 – top, De = 0.05 – middle, 

De = 0.3 – bottom) and two virtual polymer melts having low (left) and high (right) uniaxial extensional 

strain hardening, 
0

maxU,E,

3η

η
, equal to 1.3 and 7.1, respectively. 



 

  

Fig. 5 The effect of die exit stress state (−N2/N1) on the critical Deborah number, above which, 5% deviation 

in normalized maximum attainable neck-in starts to occur. 5a) Role of uniaxial extensional strain hardening, 

0

max,U,E

3


, (keeping ratio of planar to uniaxial extensional strain hardening value, 

0

max,P,E

4


/

0

max,U,E

3


, the same, 

equal to one). 5b)-5d) Role of 
0

max,P,E

4


/

0

max,U,E

3


 (changing from 0.85 to 1.24) at fixed 

0

max,U,E

3


, equal to 1.3 

(top, right), 3.4 (bottom, left) and 7.1 (bottom, right). 

5b) 5a) 

5c) 5d) 



  

  

   

Fig. 6 The effect of Deborah number on the normalized maximum attainable neck-in vs. planar to uniaxial 

extensional viscosity ratio for virtual polymer melts having high (top), medium (middle) and low (bottom) 

level of uniaxial extensional strain hardening considering that die exit stress state, −N2/N1, is equal to 

0.001 (left) and 0.02 (right). Here, symbols and lines represent utilized viscoelastic 1D membrane model and 

simple approximate solution model (Eq. 31) predictions, respectively. 



  

  

   

Fig. 7 The effect of Deborah number on the normalized maximum attainable neck-in vs. planar to uniaxial 

extensional viscosity ratio for virtual polymer melts having high (top), medium (middle) and low (bottom) 

level of uniaxial extensional strain hardening  considering that die exit stress state, −N2/N1, is equal to 

0.2 (left) and 0.4 (right). Here, symbols and lines represent utilized viscoelastic 1D membrane model and 

simple approximate solution model (Eq. 31) predictions, respectively. 



  

  

   

Fig. 8 The effect of Deborah number on the normalized maximum attainable neck-in vs. planar to uniaxial 

extensional viscosity ratio for virtual polymer melts having high (top), medium (middle) and low (bottom) 

level of uniaxial extensional strain hardening  considering that die exit stress state, −N2/N1, is equal to 

0.6 (left) and 0.8 (right). Here, symbols and lines represent utilized viscoelastic 1D membrane model and 

simple approximate solution model (Eq. 31) predictions, respectively. 



  

  

   

Fig. 9 The effect of Deborah number on the normalized maximum attainable neck-in vs. planar to uniaxial 

extensional viscosity ratio for virtual polymer melts having high (top), medium (middle) and low (bottom) 

level of uniaxial extensional strain hardening  considering that die exit stress state, −N2/N1, is equal to 1 

(left) and 2 (right). Here, symbols and lines represent utilized viscoelastic 1D membrane model and simple 

approximate solution model (Eq. 31) predictions, respectively. 

 



        

        

Fig. 10 Comparison between experimental data for LDPE 170A (T = 150 °C) and given processing 

conditions (De = 0.253, X = 10 mm) taken from [37,38,40] and corresponding model predictions for five 

virtual materials with modified Leonov model parameters summarized in Table 2. (10a) LDPE 170A 

uniaxial extensional rheology, (10b) planar to uniaxial extensional viscosity ratio, (10c) second to first 

normal stress difference ratio, (10d) dimensionless final film half-width as the function of draw ratio. 

  

10a) 10b) 

10c) 10d) 



          

           

 

Fig. 11. Comparison between experimental data for deformation rate dependent uniaxial extensional 

viscosity taken from [47], [37,38,40] and [18], and corresponding single-mode modified Leonov model 

predictions for uniaxial as well as planar extensional viscosities. (11a) PE-A, T = 130 °C, (11b) PE-B, 

T = 130 °C, (11c) PE-C, T = 130 °C, (11d) LDPE 170A, T = 150 °C, (11e) LDPE C, T = 125 °C. 
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Fig. 12 Normalized maximum attainable neck-in value, NI*, as the function of Deborah number for 

LDPE 170A, PE-A, PE-B, PE-C, and LDPE C polymers for the processing conditions summarized in 

Table 6. Experimental data (taken from [37,38,40], [47] and [18]) and proposed analytical model predictions 

(Eq. 31) are given here by the open and filled symbols, respectively. (12a) −N2/N1 is given by the modified 

Leonov model predictions for particular die exit shear rates, which are provided in Table 7 for each 

individual case, (12b) −N2/N1 is considered to be constant, equal to 0.2. 

12a) 12b) 


