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ABSTRACT 

In this work, viscoelastic, isothermal extrusion film casting simulations have been 

performed utilizing a 1D membrane model and the viscoelastic modified Leonov model as 

the constitutive equation in order to elucidate the role of planar to uniaxial extensional 

viscosity ratio, extensional strain hardening and Deborah number on the neck-in 

phenomenon. Based on the performed theoretical parametric study, it has been found that 

neck-in can be correlated to all the above mentioned variables via a simple dimensionless 

analytical equation. This correlation can provide detailed view into the complicated 

relationship between polymer melt rheology, die design, process conditions and 

undesirable neck-in phenomenon. Obtained results have been validated against literature 

experimental data for different polyethylene melts and processing conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

 Extrusion film casting (EFC) is a continuous, high-speed manufacturing process 

during which a thin, highly oriented polymer film is produced [1,2]. In this widely used and 

dominant process, a molten polymer is extruded through a slit die with a narrow gap to form 

a thick sheet of polymer that is subsequently intensively stretched in the machine direction by 

means of a rotating take-up drum, whose linear velocity is higher than the extrusion one, 

providing the macromolecular orientation and reduction in the sheet thickness and finally the 

dimensions of the created thin film are fixed by cooling down on a chill roll. The intensity of 

film drawing is usually measured by means of draw ratio defined as a linear velocity at the 

take-up drum divided by polymer exit velocity at the extrusion die. 

 In the section where the formation of the thin film takes place, i.e. within the drawing 

length, the cross-sectional dimensions of the sheet decreases monotonically as it travels 

towards the cooling stage (except in the swell region near the die exit). Under certain 

processing conditions, several phenomena may be encountered in this region, which hamper 

the required production in film quality and quantity. One of them is called neck-in causing an 

undesirable reduction in film width (see Figure 1) and interrelated phenomenon of edge-

beads (also called dog-bone defect) making the edge portions of the film substantially thicker 

than its central part. Both of these steady state disruptions result in necessary post-production 

film trimming since only the central part of the film is uniform in thickness. From a practical 

viewpoint, it is of great importance, therefore, to understand the underlying mechanism of 

neck-in formation in order to minimize these unwanted effects. In addition, outside of the 

steady state processing window at high drawing rates, the transient disruption, called draw 

resonance, causing periodical variations in dimensions of the produced film as well as film 

brakeage itself may occur [3,4]. 



 Polymer sheet or filament drawing has been studied extensively over the past four 

decades both experimentally and theoretically due to its great importance in the polymer 

processing industry. Initial efforts were made on a  fiber spinning process for which the flow 

kinematics are similar from a mathematical point of view if considered as the one-

dimensional flow case, for Newtonian and Maxwell fluids by Gelder [5] and Fisher [6,7], 

respectively. Those studies were aimed on investigating the draw resonance phenomenon 

which was encountered for the first time by Christensen [8] and Miller [9], and who 

postulated that the nature of this phenomenon was not of viscoelastic nature because it could 

be observed in Newtonian fluids as well. Extending the process kinematics into two or three 

dimensions, the processes differ and one can observe phenomena in film casting that do not 

have a counterpart in fiber spinning, i.e. neck-in and edge-beading. The preliminary studies 

mentioned above provided the background for extended studies on EFC. Initial attempts to 

simulate EFC operations were dedicated to investigation of process stability and 

determination of draw resonance onset rather than to quantify the extent of neck-in 

phenomenon. The very first study on modeling of EFC process in this manner was carried out 

by Yeow [10] involving a Newtonian fluid with  simplified kinematics based on the 

assumption of infinite film width under isothermal conditions. In other words, the width of 

the film was deemed as a constant so that the model did not account for either neck-in or 

edge-bead defect. Aird and Yeow [11] continued on this equation background of 1D model 

and extended analysis for power-law fluids, and then Anturkar and Co [12] and Iyengar and 

Co [13,14] utilizing isothermal modified convected-Maxwell fluid and Giesekus constitutive 

equations for linear and non-linear analysis in simulations of viscoelastic fluids. First 

isothermal trials towards necking phenomena modeling were carried out by Sergent [15] and 

then by Cotto, Duffo and Barq [16–18] for non-isothermal conditions. 



 Another milestone work has been set by Dobroth and Erwin [19] who pointed out that 

the deformation flow in the drawing length comprises of two related regions and the extent of 

edge-beads and interrelated neck-in phenomenon is determined by the interplay between 

them through an edge stress effect. While the center of the film undergoes planar elongational 

deformation, the edge sections are subjected to uniaxial elongational one (see Figure 2). 

 In the case of fiber spinning, however, one can observe uniaxial elongational flow 

only. Some authors endeavoured to relate and quantify the gauge of the observed necking in 

terms of rheological parameters, such as shear, uniaxial and planar viscosity. Many authors 

reported that the strain hardening in uniaxial elongational viscosity may depress the extent of 

necking phenomena [20–23]. This idea was continued by Ito [24], who related the neck-in 

extent to rheological parameters such as the ratio of planar viscosities in axial and transverse 

directions, and derived an analytical equation for the edge line of a molten film of Newtonian 

and Maxwell fluid. Along the line of Dobroth and Erwin’s article [19], who as the first 

recognized deformation type in the drawing area, Shiromoto [25–27], recently, presented the 

idea that the extent of the necking should not have been described by uniaxial elongational 

viscosity only in addition to take-up length but as the ratio of planar and uniaxial elongational 

viscosities reflecting the deformation type in the central and edge portion of the film in the 

drawing section. Aside from performing non-isothermal viscoelastic simulations, they also 

proposed a theoretical model based on force balance and deformation type of a film in order 

to predict necking behavior.  

 More recently, a 2D membrane model was presented by d’Halewyu [28] and Debbaut 

[20] for Newtonian and viscoelastic fluids, respectively. This frequently used model was 

capable of predicting the dog-bone defect, i.e. development of edge-beads, under the 

stationary conditions. Silagy et al. [29] proceeded forward and enriched the membrane model 

by a supplementary kinematic hypothesis that was originally brought by 



Narayanaswamy [30] in his paper on float glass stretching, and carried out an extended 

isothermal study on the influence of processing conditions on film geometry, and stability 

analysis of EFC for Newtonian and Maxwell fluid using the UCM constitutive equation. 

Because of the assumptions used in flow kinematics, this model was able to cover film width 

reduction and thus predict the neck-in phenomenon but was still not able to predict edge-

beading. This limitation was removed in their succeeding work [31] where the 2D isothermal 

membrane model combined with PTT constitutive equation was developed and obtained 

steady and transient stability results compared with its 1D predecessor. In the following 

years, the 1D version of Sylagy’s membrane model was used in many studies and 

considerable amount of work has been done on EFC under non-isothermal conditions 

including crystallization effects by Lamberti et al. [32–35], Lamberti and Titomanlio [34,36–

38], and Lamberti [39]. A three dimensional model for EFC simulation was further developed 

by Sakaki et al. [40] and Zheng et al. [41] for isothermal and non-isothermal steady 

Newtonian fluid, respectively. 

 The influence of macromolecular architecture on the extent of necking phenomenon 

has been investigated by Ito et al. [24,42] (effects of draw ratio and take-up length on necking 

for LDPE, HDPE and mLLDPE) and Baird et al. [43,44] (effects of long chain branching and 

molecular weight distribution on necking for LDPE, mLLDPE and Ziegler-Natta catalyzed 

LLDPE). Recently, Pol et al. [45,46] and Chikhalikar et al. [47] have published a series of 

articles in which they have performed experimental and theoretical investigations of the 

effects of long chain branching and molecular weight distribution on the necking 

phenomenon extent. For this purpose, they utilized the 1D membrane model, originally 

proposed by Silagy [29], the multi-mode eXtended Pom-Pom constitutive equation and the 

multi-mode Rolie-Poly stretch constitutive equation, respectively, for the long chain branched 

(LDPE, PP) and the linear (HDPE, PP) polymers. Fixing the DR and TUL, they found that 



the extent of necking is lesser for HDPE with a broader molecular weight distribution than 

that for LLDPE with a narrower molecular weight distribution and further that long chain 

branched LDPE necks-in to lower extent than linear HDPE or LLDPE. In their latest work 

[48], they addressed the effects of the individual viscoelastic relaxation modes of a polymer 

melt on its behavior in polymer melt extrusion film casting process using UCM and PTT 

constitutive equations. They found that experimental data for long-chain branched LDPE was 

described better by UCM model, whereas PTT model provided better simulation results for 

the linear LLDPE experimental data. 

 Even though, the real EFC manufacturing process  involves complex kinematics and 

is considered as a 3D problem whose numerical simulation can be very demanding, it has 

been proven by many authors that the EFC 1D membrane model originally proposed by 

Silagy [29], if used in combination with appropriate constitutive equations, is capable of  

providing results that are in good agreement with experiment data. 

 In the present work, a theoretical study of the neck-in phenomenon under steady-state 

isothermal conditions is carried out utilizing the 1D membrane model together with 

viscoelastic modified Leonov constitutive equations. The influence of uniaxial extensional 

strain hardening, planar to uniaxial extensional viscosity ratio and Deborah number is 

systematically studied and the results are compared with corresponding experimental data 

taken from the open literature. 

MATHEMATICAL MODELING 

Modified Leonov Model 

This constitutive equation is based on heuristic thermodynamic arguments resulting from the 

theory of rubber elasticity [49–54]. In the model, fading memory of the melts is determined 



through an irreversible dissipation process driven by the dissipation term, b. Mathematically, 

it is relating the stress and elastic strain stored in the material as: 
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where   is the stress, and W, the elastic potential, which depends on the invariants I1,c and I2,c 

of the recoverable Finger tensor c , 
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where G denotes linear Hookean elastic modulus,  and n are numerical parameters. Leonov 

assumed that the dissipative process acts to produce an irreversible rate of strain ep  
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which spontaneously reduces the rate of elastic strain accumulation. Here,   is the unit tensor 

and b stands for dissipation function defined by Eq. 5. This elastic strain c  is related to the 

deformation rate tensor D  as follows 
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p
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where 


c  is the Jaumann (corotational) time derivative of the recoverable Finger strain tensor. 

In this work, the Mooney potential (i.e. n = 0 in Eq. 2), and the dissipation function b 

proposed in [55] (see Eq. 5) have been employed. 
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Here,  and  are adjustable model parameters.  
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Differentiating Eq. 2 with respect to the first and second invariant of the recoverable Finger 

tensor yields 
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Combination of Eq. 1 with Eqs. 10–11 leads to the following expression for the extra stress 

tensor. 
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Extrusion Film Casting Model 

In this work, the one-dimensional membrane model developed by Silagy et al. [29] was used 

to model the isothermal extrusion film casting process (see Figure 3). The model essentially 

features two hypotheses to facilitate the description of the stress and velocity field 

development in the film drawing. Firstly, the total stress in the film thickness direction is 

assumed to be equal to zero because this dimension is small compared to other dimensions 

and secondly, velocities in the width and thickness direction are allowed to vary linearly with 

y and z position, respectively, for the given x location, which represents a supplementary 

kinematic hypothesis (formerly adopted in the work of Narayanaswamy [30] for the modeling 

of glass manufacturing by the float process) in order to reduce the dimensionality of the task. 



As a result, all model variables are x-direction dependent only and the model can be 

considered as one-dimensional although lateral film width and thickness reduction can be 

modeled. Furthermore, the inertia, gravity, surface tension and aerodynamic drag are 

neglected in this model because they are usually much smaller in comparison with the 

stresses generated in the viscoelastic polymer melt. Finally, the process is treated here as an 

isothermal one, which can be justifiable for small enough drawing lengths and/or very high 

draw-down speeds [56]. The detailed description of the utilized model is provided below. 

 

Velocity field 

The Cartesian system axes are directed as follows (see Fig. 3): in-film-plane axes x and y, 

where x points in the streamwise direction and y is perpendicular onto it, and z axis is normal 

to the film xy plane with origin deployment in the  cross-sectional center of gravity at the die 

exit. The dimensions of the film are denoted as follows: take up length is X, initial film 

half-width is L0, and initial half-thickness is e0. The intensity of film drawing is expressed in 

terms of draw ratio (DR) that relates the final tangential velocity of the film at the chill roll, 

u(X), to the film velocity at the die exit, u0. The quantities without a zero subscript denotes 

non-initial corresponding dimensions at any given x position. The influence of extrudate 

swelling on the casting process is assumed to be negligible here. Using the symmetry of the 

problem and the kinematic hypothesis, the complexity of the velocity field involved in the 

film drawing is reduced, where each of the components is the function of all spatial and time 

variables. In the resulting form, the velocity field for steady solution is approximated as 

follows: 

 

)x(zg)z,x(ww

)x(yf)y,x(vv

)x(uu







 (13) 



where u, v and w are the velocity components in the machine, transverse, and thickness 

direction, respectively. The deformation rate tensor, which is based on Eq. 13, takes the 

following form: 
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Since the polymer flow in EFC is mainly extensional and in an effort to increase simplicity, 

the shear rate components can be neglected in favour of elongational ones in Eq. 14, which 

leads to the following final expression for the deformation rate tensor:  
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The film thickness is constant throughout the film width due to the assumed velocity field, 

where the v and w velocity components are dependent on x variable only and are allowed to 

vary linearly over the film width and thickness, respectively, due to the applied 

Narayanaswamy’s supplementary kinematic hypothesis as mentioned above. 

Continuity equation  

The continuity equation requires the conservation of mass at any given streamwise position 

and with the incompressibility hypothesis takes the following form. 

     0eLu
dx

d
eL

dt

d
  (16) 



Since the transient solution of the equation is not an objective of this study, the derivative 

with respect to time can be neglected. For steady state solution, the derivative with respect to 

time is 
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and thus, the volumetric flow rate at the die exit position and at any given streamwise 

position is given by Eq. 18 and Eq. 19, respectively.  
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It is important to mention that the volumetric flow rate Q here corresponds to 1/4th of the 

cross-section only due to the process symmetry as show in [57]. 

Momentum conservation equation 

Considering the membrane approximation for the thin film in the presence of a constant 

drawing force, the stresses are constant over the cross section of the film, which leads to the 

force balance having the following form 
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Neglecting gravity, inertia, aerodynamic friction and surface tension forces, the drawing force 

becomes x-direction independent, which is fully balanced by the stresses generated in the 

film. 

 LeconstF xx  (21) 

In this equation, xx  stands for the first diagonal component of the total stress tensor,   , 

which is defined via the extra stress tensor,  , as follows 
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where p stands for the isotropic pressure,   is the unity tensor. As it can be seen from Eq. 22, 

the diagonal components of the total stress tensor are defined as 
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The membrane approximation requires zero value of the thickness-wise component of total 

stress tensor, 0zz  , which leads to 

 zzp0   (24) 

i.e. 

 pzz   (25) 

Substituting Eq. 25 back into expression for stress components Eq. 23, the hydrostatic 

pressure term is eliminated, which leads to the following final expression for the diagonal 

components of the total stress tensor 
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After substitution of xx , which is given by Eq. 26, into Eq. 21, the final form of the force 

balance equation is obtained 

   FLezzxx   (27) 



The stress-free surface boundary condition 

Assuming the surface tension and air drag are negligible, the net force per unit surface at the 

film free surface is equal to zero: 

 0n   (28) 

where the n is the unit vector normal to the free film surface. This yields the following 

expression relating the stress state of the film with the film half-width at given x position: 
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The kinematic free-surface boundary condition 

The fluid is enclosed in the boundaries of the free surface, which can be expressed as 

 0nu   (30) 

where u is the tangential velocity at the film-air interface. Combination of Eq. 30 with the 

equation of continuity leads to  
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where  xf  and  xg  are components of the deformation rate tensor (see Eq. 15) in the width 

and thickness direction, respectively, which can simply be expressed as 
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Dimensionless transformation 

For the sake of simplicity and scaling purposes, the dimensionless transformation has been 

introduced into the previously derived equations (having similar form as in  [29]). 



Corresponding dimensionless quantities are denoted here with the overline symbol. 

Dimensionless transformation for the extra stress tensor and total stress tensor is defined here 

as 
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whereas the dimensionless spatial dimensions and streamwise velocity component are 
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Dimensionless numbers such as draw ratio, DR, Deborah number, De, aspect ratio, A and 

dimensionless force, E, are defined as follows 
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Introducing the dimensionless transformation into the continuity equation (Eq. 19) and 

momentum conservation equation (Eq. 27) leads to the following dimensionless implicit 

forms 
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Substitution of Eq. 45 into Eq. 46 gives 

   0uzzxx   (47) 

and differentiating Eq. 45 and Eq. 47 with respect to x variable, one can obtain 
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After rearrangement, the derivative of the dimensionless film half-thickness and axial 

velocity with respect to x are finally defined as 
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The dimensionless forms for f(x) and g(x) functions, which were derived from the kinematic 

free-surface boundary condition and appear in the deformation rate tensor, are the following 
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Finally, the dimensionless transformation for the x-direction derivative of the film half-width 

(arising from Eq. 26 and Eq. 29) yields 
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Extrusion film casting model for the modified Leonov model 

In order to combine the modified Leonov constitutive equation and the extrusion film casting 

model equations, it is necessary to derive the equation for particular stress development along 

the x axis. The relationship between the dimensionless stress and the recoverable strain, 

imposed from the modified Leonov model (Eqs. 1 and 12), can be described by the following 

formula (for the case of the Mooney potential, i.e. when n = 0 and β ≠ 0): 
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Differentiating this equation with respect to x leads to 
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where 
xd

dcii  stands for the x-direction derivative of the recoverable strain tensor. This term is 

defined by Eq. 4 and for each component of the recoverable strain tensor it takes the 

following form: 
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where b , iZ  and pX  are defined as  
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Combination of Eq. 51 and Eq. 56 leads to the dimensionless streamwise deformation rate, 

which takes the following form 
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Boundary conditions 

The complex and essential explicit model equations constituted in the previous section, 

namely Eqs. 50, 54, 63, 57, 58, 59 has to be solved with the appropriate set of the boundary 

conditions. Detailed description of the utilized boundary conditions is provided below.  

Upstream boundary conditions: 

Taking advantage of the dimensionless transformation, the initial half-width, half-thickness, 

and streamwise velocity are equal to one. 

   10u   (64) 

   10e   (65) 

   10L   (66) 

Since a viscoelastic constitutive equation is involved in this study, it is necessary to define 

initial boundary conditions for all three diagonal components of the extra stress tensor  0xx , 

 0yy  and  0zz  by using Eq. 55. To do that, diagonal components of the recoverable strain 

tensor at the die exit must be determined as the first by solving the following set of equations 
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Eq. 67 comes from the combination of Eqs. 47, 55 and 64 whereas Eq. 68 represents the 

incompressibility condition for the given flow situation. Eq. 69 represents normal stress 

difference ratio at the die exit, which is defined as the ratio of the secondary normal stress 

difference and primary normal stress difference 
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Note, that in this equation     100 zzxx   as the result of Eq. 47 and Eq. 64. As it can 

clearly be seen from Eq. 69, the N2/N1 ratio, which characterizes the polymer melt stress state 

at the die exit region, has to be provided in order to calculate the initial boundary conditions 

for the extra stress tensor.  

Downstream boundary conditions: 

Downstream boundary condition, draw ratio, is prescribed as the desired value that is 

satisfied by a priori unknown magnitude of the drawing force. 

   DRXu   (71) 

 

Numerical scheme 

The whole system of the first-order ordinary differential equations (namely Eqs. 50, 54, 63 

for film half-thickness, half-width and velocity as well as Eqs. 57–59 for the components of 

the recoverable elastic strain tensor cxx, cyy and czz) was numerically solved by the 4th order 

Runge-Kutta algorithm with adaptive step-size control. For the given take-up force value, it 



was necessary to determine the components of the recoverable elastic strain tensor in order to 

satisfy Eqs. 50, 54 and 63 along with the other boundary conditions for the die exit region, 

that are constant with the force, and thus do not require evaluation in every iteration (Eqs. 64, 

65, 66 and N2/N1 ratio). The value of the force was guessed for the first iteration and then 

increased or decreased throughout foregoing iterations in order to meet the DR boundary 

condition (convergence) by Newton-Raphson method. It was preferred to develop the solver 

itself in the C++ programming language, to avoid a black box effect, which could have 

appeared in the case of using a built-in solver in any other commercial mathematical-

modeling software. The equation evaluation was performed on the PC with the following 

hardware parameters: CPU Intel Core 2 Quad Q9650 (3.00 GHz), RAM 8 GB DDR2, GPU 

Sapphire Radeon HD 3870, SSD Crucial 256 GB. Typical computational time for one 

calculation was 2 minutes. A schematic representation of the utilized numerical scheme is 

provided in Figure 4. 

 

RESULTS AND DISCUSSION 

Film Casting Model Validation 

In order to validate the utilized film casting model, we have used  recent experimental and 

theoretical data provided in [45,46,48] for very well characterized LDPE 170A polymer 

(produced by The Dow Chemical Company, Freeport, TX, USA) having a flow activation 

energy 54 kJ/mol and molecular characteristics, which are provided in Table 1. 

In this work, the single-mode modified Leonov model was utilized to simplify the 

calculation. The model parameters were identified by using deformation rate dependent 

‘steady state’ uniaxial extensional viscosity experimental data taken from Fig. 2b in [46] (i.e. 

from the peaks appearing on the transient extensional viscosity curves for corresponding 

extensional strain rates). Obtained model parameters are provided in Tab. 2. Interestingly, the 



measured data can be represented by the single-mode modified Leonov model very well as 

shown in Fig. 5a). 

Modeled processing conditions for the film casting process were the same as described in 

[45,46], i.e. isothermal, die width=100 mm, gap size=0.46 mm, melt exit 

velocity=4.3 mm/s, and distance between the die and roll 230 mm. As it has already been 

mentioned, in the fully viscoelastic calculation based on the modified Leonov model, it is 

necessary to define the stress state at the end of the extrusion die, namely the ratio of the 

second normal stress difference, N2, and first normal stress difference, N1, which is given by 

the flow history inside the flat extrusion die. However, this rheological characteristic is not 

available for the given LDPE 170A from [45,46,48] and thus typical –N2/N1 = 0.2 value was 

taken from the open literature [58] to define the stress boundary condition at the die exit. 

Comparison between the film casting model predictions based on the single-mode modified 

Leonov model (this work), multi-mode XPP model and the corresponding experimental data 

(both taken from [45,46]) is provided in Fig. 5b–5d  and Fig. 6. In Fig. 5b–5d, the basic 

dimensionless variables such as film half-width, half-thickness and center-line velocity are 

provided as the function of dimensionless distance between the die ( 0x  ) and the chill roll (

1x  ) for high draw ratio (DR=16) and Deborah number (De=0.011) whereas Figure 6 

shows the effect of draw ratio on dimensionless final film half-width for low (0.011) and high 

(0.253) Deborah numbers. As it can be seen, the behavior of both models is comparable and 

the agreement with the experimental data is good for the given range of draw ratios and 

Deborah numbers. Such a reasonably good agreement with the experimental data justifies to 

use of the given film casting model with all applied assumptions together with even single-

mode Leonov model for detailed parametric study of the neck-in phenomenon. In order to 

understand the undesired neck-in phenomenon in more detail, the role of Deborah number 



and extensional rheology was systematically investigated via a theoretical parametric study, 

which is described in the next section. 

  



Theoretical analysis of neck-in phenomenon 

The role of extensional rheology 

With the aim to understand the role of extensional behaviour of polymer melts on the neck-in 

phenomenon, 3 groups of virtual materials were generated with high, middle and low level of 

uniaxial extensional strain hardening defined as 

 
0

max,U,E

3


 (72) 

         

Here, max,U,E  represents the maximum value in the steady uniaxial extensional viscosity and 

0  is the Newtonian viscosity. In each group, 5 virtual materials were generated having the 

same level of uniaxial extensional strain hardening but different level of planar extensional 

strain hardening defined as 

 
0

max,P,E

4


 (73) 

 

where max,P,E  represents the maximum value in the steady planar extensional viscosity. 

Modified Leonov model parameters for the 15 utilized virtual polymer melts (one of them, 

Melt3_Middle, has identical parameters as the LDPE 170A melt described in Model 

validation section) are provided in Table 3 whereas their extensional rheology is provided in 

Figure 7.  

 The title of each virtual melt contains information about the level of uniaxial 

extensional strain hardening (Low, Middle, and High) as well as about the level of planar 

extensional strain hardening (1 – the lowest, 2, 3, 4, and 5 – the highest). For example, the 

virtual samples entitled here as Melt1_High and Melt5_High means that both samples have 

different planar extensional strain hardening (i.e. the lowest in the first case and the highest in 



the second case) whereas their uniaxial extensional strain hardening is identical (high). 

Similarly, the virtual samples entitled as Melt1_High and Melt1_Low means that both 

samples have identical (the lowest) planar extensional strain hardening but different uniaxial 

extensional strain hardening (i.e. high and low in the first and second case, respectively). 

Each group of virtual materials (having the given level of uniaxial extensional strain 

hardening) can be then characterized by steady-state planar to uniaxial extensional viscosity 

ratio, 
U,E

P,E




, plotted as the function of extensional strain rate, as visualized on the left side of 

Figure 8. 

 In the next step, the dimensionless final film half-width as the function of draw ratio 

was calculated for all 15 virtual polymer melts by using the film casting model keeping the 

Deborah number and –N2/N1 ratio the same, equal to 0.07 and 0.2, respectively. Results are 

depicted on the right side of Figure 8. As it can be seen, if 
U,E

P,E




 increases or 

0

max,U,E

3


 

decreases, the intensity of neck-in phenomenon as well as its sensitivity to draw ratio 

increases. It is also visible that for the given conditions and virtual materials used, there is 

always a critical draw ratio above which the dimensionless final film width (i.e. also the 

neck-in) becomes constant and draw ratio independent. Under such flow conditions, the 

applied extensional strains are high enough to reach steady state values in uniaxial and planar 

extensional viscosities. It is important to mention that such high draw down ratios (DR>20) 

are typically achieved in  industrial high speed productions [1,2]. In order to follow industrial 

practice, our attention will focus on flow conditions at which the maximum draw ratio 

independent neck-in occurs. 

  



The role of Deborah number 

In order to understand the role of Deborah number on the maximum attainable neck-in, its 

value was varied from 0.01 to 0.1 in the film casting model for all 15 virtual polymer melts 

keeping the –N2/N1 ratio the same, equal to 0.2. For each simulation case, the draw ratio was 

adjusted high enough (typically equal to 40) in order to reach maximum and draw ratio 

independent neck-in value, NI. The maximum neck-in value was consequently normalized by 

the take-up length (stretching distance) X as follows 

 
X

NI
NI*   (74) 

 

Calculated maximum neck-in value 
*NI  as a function of the square root of planar to uniaxial 

extensional viscosity ratio,  U,EP,E /sqrt  , is provided in Figure 9a–9c for different Deborah 

numbers and uniaxial extensional strain hardening values. It is clear that an increase in the 

Deborah number increases both, the neck-in as well as its sensitivity to  U,EP,E /sqrt  .  

 

Simple approximate and analytical solution for NI* 

Closer analysis of numerical solutions depicted in Figures 9a–9c reveals that 
*NI  varies with 

 U,EP,E /sqrt   almost linearly for all considered uniaxial extensional strain hardening levels. 

In order to quantify all calculated data, let us consider the following linear relationship 

between these two variables, i.e.:   

 Q1kNI
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where k (the slope of the line) and Q (the NI* intercept) are constants for given De and 

0

max,U,E

3


. In order to capture the effect of De and 

0

max,U,E

3


 on both constants, let us assume 

the following relationships for k and Q parameters (motivated by the well-known Avrami 

equation): 
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   2Deexp1AaQQ 22S
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where A1, A2, α1, α2, φ1, φ2 represent constants whereas k* and Q* are the  reduced slope and 

reduced NI* intercept, respectively, and aS is the shift factor defined as 

 10

0

max,U,E

S
3

a



  (78) 

 

Eq. 75 was used to fit all numerical data provided in Figure 9a–9c in order to identify k 

and Q parameters for given Deborah numbers and 
0

max,U,E

3


 ratios. Both parameters were 

reduced by aS factor, plotted as the function of the Deborah number and finally fitted by 

Eqs. 76–77 to identify all model parameters, which are summarized in Table 4. Note that the 

fitting error was evaluated for both equations via the Root Mean Squared Error (RMSE) 

defined as 
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where ns is the number of points whereas jy  and jŷ  represent given and predicted points, 

respectively. Comparison between Deborah number dependent k* and Q* and model fits is 

provided in Figures 9d–9e. As it is shown, the suggested Eqs. 76–77 have the capability to 

describe k* and Q* parameters reasonably well.  

 If Eqs. 75–78 are combined together, the following expression for the normalized 

maximum neck-in is obtained 
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(80) 

 

This equation represents the final form of the simple analytical expression for the normalized 

and draw ratio independent neck-in value, which approximates the true numerical film 

casting model solution for the chosen range of Deborah numbers, 
0

max,U,E

3


 and 

U,E

P,E




 ratios. 

Comparison between the true numerical film casting model predictions and approximate 

solution (given by Eq. 80) for *NI  as a function of  U,EP,E /sqrt  , De and 
0

max,U,E

3


 is 

provided in Figure 10. Based on this figure, it can be stated that the simple approximate 

solution model (Eq. 80) is capable of representing 
*NI  predictions of the utilized 1D 

viscoelastic membrane model predictions very well. 

  



Behaviour of simple approximate solution for NI*at high Deborah numbers 

If the Deborah number in Eq. 80 becomes high enough, the expression for NI* is simplified to  
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As indicated from Table 4, A1 and A2 constants are very similar. This suggests that both 

constants could be considered to be the same. This can be justified by the very small increase 

in RMSE (from 0.00726 to 0.01506) when this assumption is applied to identify 

corresponding α2 and φ2 parameters via Eq. 77. Thus, considering that A2=A1=0.553,  Eq. 81 

simplifies to     
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Based on Eq. 82, it can be concluded that the maximum attainable NI*, which is given by the 

approximate solution at very high Deborah numbers, is a linear function of 
U,E

P,E




 with a 

slope of 

10

0

max,U,E

3

553.0




.  

   

Simple approximate solution for NI* vs. experimental data 

In this part, the validity of the simple approximate solution for NI*, which is given by Eq. 80 

and parameters provided in Table 4, is tested for the Dow LDPE 170A sample (see Table 1) 

as well as for three additional PE samples taken from [26], whose basic characteristics are 



provided in Table 5. Normalized maximum neck-in, NI*, together with the corresponding 

extrusion film casting processing parameters for each polymer sample are taken from [26,45] 

and they are summarized in Table 6. 

 In the first step, deformation rate dependent uniaxial extensional viscosity data were 

successfully fitted for each polymer melt at given temperature by the single mode modified 

Leonov model, as it can be seen in Figure 11. Model parameters for PE-A, PE-B and PE-C 

samples are provided in Table 7 for 130 °C. Note, that the Leonov model parameters for the 

Dow LDPE 170A sample have already been identified in the ‘Film Casting Model 

Validation’ section (see Figure 5a) and they are provided in Table 2. 

 In the second step, Leonov model relaxation times, which are provided in Table 2 and 

Table 7 for given polymer samples, were shifted to the particular processing temperature by 

using the Arrhenius shift factor and the flow activation energy, i.e. from 150 °C to 190 °C for 

LDPE 170A and from 130 °C to 320 °C for PE-A, PE-B and PE-C samples. This allows 

calculation of Deborah number according to Eq. 42 via shifted Leonov model relaxation time 

and process parameters u0 (die exit velocity) and X (air gap) provided in Table 6. In order to 

evaluate the average value of planar to uniaxial extensional viscosity ratio, 
U,E

P,E




, by using 

modified Leonov model, one needs to determine the mean value of deformation rate in the 

machine direction, du/dx. This variable was estimated here as the ratio of velocity difference 

between the die and roll (u–u0) and stretching distance X, which can be justifiable for linear 

velocity profiles typically occurring for LDPE polymer melts [45,46,48]. Uniaxial 

extensional strain hardening, 
0

max,U,E

3


, is simply given by the modified Leonov model for 

given material and processing temperature. All estimated parameters, which are needed to 

calculate the maximum normalized neck-in value, NI*, via the approximate model (Eq. 80), 

are summarized in Table 8 for the given materials and processing conditions. 



 Comparison between the measured NI* and approximate model predictions, utilizing 

parameters summarized in Table 8, is provided in Figure 12. As it can be seen, the simple 

approximate model can predict neck-in value NI* for the considered LDPE polymer melts and 

Deborah numbers very well.  Eq. 80 can thus be considered as a useful tool for optimization 

of process conditions and polymer melt rheology to minimize neck-in phenomena during thin 

flat film production under industrial processing conditions.   

 It is important to mention that utilization of Eqs. 80 requires experimental 

determination of the planar-to-uniaxial extensional viscosity ratio, which is one of the most 

challenging rheological tasks because generation and control of the extensional flow is 

difficult. Just recently, it has been shown that planar and uniaxial extensional viscosity can be 

measured in a wide temperature and deformation rate range by using a standard twin bore 

capillary rheometer, with novel rectangular and circular orifice (zero-length) dies and the 

Cogswell model [59]. 

  



CONCLUSIONS 

In this work, viscoelastic, isothermal extrusion film casting modeling utilizing a 1D 

membrane model and a single-mode modified Leonov model was performed in order to 

understand the role of uniaxial extensional strain hardening, planar-to-uniaxial extensional 

viscosity ratio and Deborah number on the neck-in phenomenon. For model validation 

purposes, basic dimensionless variables measured in [45,46,48] for LDPE polymer melt such 

as film half-width, half-thickness and center-line velocity as the function of stretching 

distance, DR and Deborah numbers were used. It was found that the film casting modeling by 

using multi-mode XPP model and modified Leonov model is comparable for the given LDPE 

polymer and processing conditions even though, surprisingly, a single-mode version of the 

Leonov model was used. The consequent parametric study revealed that firstly, if planar to 

uniaxial extensional viscosity ratio, 
U,E

P,E




, decreases or uniaxial extensional strain hardening 

increases, 
0

max,U,E

3


, intensity of neck-in phenomenon as well as its sensitivity to draw ratio 

decreases and secondly, an increase in the Deborah number increases both, the neck-in as 

well as its sensitivity to 
U,E

P,E




 . Obtained numerical solutions were successfully approximated 

by a simple dimensionless analytical equation relating maximum attainable neck-in value 

with 
0

max,U,E

3


, 

U,E

P,E




 and Deborah number. The validity of the suggested equation was tested 

by using experimental data taken from the open literature [26,45,46] for four different 

polyethylene melts, for which 061.0De011.0  , 293.1833.0
U,E

P,E





  and 

299.9
3

047.2
0

max,U,E





 . It was found that the proposed equation can describe for the given 



polymer melts and processing conditions the experimental data very well. Thus, it is believed 

that this simple model can be used for material, die design and process conditions 

optimization in order to minimize unwanted neck-in phenomenon in cast film production. 
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  Extra stress tensor Pa 

  Total stress tensor Pa 

W  Elastic potential Pa 

G  
Linear Hookean elastic modulus (Relaxation 

modulus) 
Pa 
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ii

c  Recoverable Finger tensor 1 

1
c


,
1

ii
c
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 Inverse recoverable Finger tensor 1 

c,1I  First invariant of recoverable Finger tensor 1 

c,2I  Second invariant of recoverable Finger tensor 1 

  Non-linear Leonov model parameter 1 

n  Non-linear Leonov model parameter 1 

p
e  Irreversible rate of strain tensor s-1 

b  Dissipation term s-1 

  Unit tensor (Kronecker delta) 1 

D  Deformation rate tensor s-1 

  Relaxation time s 

  Non-linear Leonov model parameter 1 

  Non-linear Leonov model parameter 1 

0

c  
Jaumann (corotational) time derivative of the 

recoverable Finger strain tensor 
s-1 

1N  First normal stress difference Pa 

2N  Second normal stress difference Pa 



xx  
Total normal stress in the axial direction 

(machine direction) 
Pa 

yy  Total normal stress in y-direction Pa 

zz  Total normal stress in z-direction Pa 

xx  
Normal stress in the axial direction (machine 

direction) 
Pa 

yy  
Normal stress in y-direction (transverse 

direction) 
Pa 

zz  
Normal stress in z-direction (thickness 

direction) 
Pa 

p  Isotropic pressure Pa 

xxc  
Component of the recoverable Finger tensor 

in x-direction 
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yyc  
Component of the recoverable Finger tensor 

in y-direction 
1 

zzc  
Component of the recoverable Finger tensor 

in z-direction 
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e  Half-thickness of the film at any x location mm 

L  Half-width of the film at any x location mm 

u  Axial velocity of the film at any x location mm·s-1 

)X(u  Chill roll speed mm·s-1 

F  Take-up force (stretching force) N 

E  Dimensionless force 1 

x  Position in x-direction m 

v  
Velocity of the film in y-direction at any x 

location 
mm·s-1 

w  Velocity of the film in z-direction at any x mm·s-1 



location 

f  Rate of deformation in y-direction s-1 

g  Rate of deformation in z-direction s-1 

0e  
Die half-gap (half-thickness of the film at the 

die exit) 
mm 

0L  
Half-width of the die (half-width of the film at 

the die exit) 
mm 

0u  
Axial velocity at the die exit (velocity in the 

machine direction) 
mm·s-1 

X  Take-up length (stretching distance) mm 

DR  Draw ratio 1 

A  Aspect ratio 1 

De  Deborah number 1 

x  Dimensionless position in x-direction 1 

e  
Dimensionless half-thickness of the film at 

any x location 
1 

L  
Dimensionless half-width of the film at any x 

location 
1 

u  
Dimensionless axial velocity of the film at 

any x location 
1 

xx  Dimensionless normal stress in x-direction 1 

yy  Dimensionless normal stress in y-direction 1 

zz  Dimensionless normal stress in z-direction 1 

f  
Dimensionless rate of deformation in 

y-direction 
1 

g  
Dimensionless rate of deformation in 

z-direction 
1 



b  Dimensionless dissipation term 1 

pzyx X,Z,Z,Z  Substitution variables 1 

u  The tangential velocity at film-air interface mm·s-1 

n  The normal vector to the free surface 1 

Q  Volumetric flow rate m3·s-1 

T  Melt temperature °C 

dieT  Melt temperature at the die °C 

rT  Reference temperature in the Arrhenius Law °C 

aE  Flow activation energy J·mol-1 

R  Gas constant J·K-1·mol-1 

i  Relaxation mode identification number 1 

j  Index j 1 

Sa  
Shift parameter for normalized necking 

prediction 
1 

z,y,x  Spatial coordinates 1 

t  Time coordinate s 

U,E  Steady uniaxial extensional viscosity Pa·s 

P,E  Steady planar extensional viscosity Pa·s 

0  Newtonian viscosity Pa·s 

max,U,E  Maximal steady uniaxial extensional viscosity Pa·s 

max,P,E  Maximal steady planar extensional viscosity Pa·s 

NI  Maximum neck-in mm 

*NI  Normalized maximum neck-in value 1 



  Arrhenius law parameter K 

k  Slope of the line 1 

Q  The 
*NI  intercept 1 

*k  Reduced slope of the line 1 

*Q  Reduced 
*NI  intercept 1 

Sa  Shift factor 1 

21 A,A  

21 ,  

21 ,  

Fitting parameters of analytical model 1 

sn  Number of samples (points) 1 

iy  Observed value 1 

iŷ  Predicted value 1 

wM  Mass average molar mass g·mol-1 

nM  Number average molar mass g·mol-1 

zM  Z average molar mass g·mol-1 

MFR  Mass flow rate kg·h-1 

hR  The hydrodynamic radius of a macromolecule nm 

PDI  Polydispersity index 1 

MFI  Mass flow index g/10 min 

  Polymer density g·cm-3 

 

 

 

 

 



Table 1. Molecular characteristics for Dow LDPE 170A with density 0.924 g/cm3 and MFI 

0.7 g/10 min (190 °C, 2.16 kg) [48]. 

 

Mn 

(g/mol) 
Mw 

(g/mol) 
Mz 

(g/mol) 
PDI 

(1) 

Newtonian 

viscosity 

at 150 °C 

(Pa·s) 

Rh 

(nm) 

LCB (per 

10000 C 

atoms) # 

Branched ≥6 

C atoms (per 

10000 C 

atoms) ## 

30 600 185 900 528 400 6.07 134 992.70 10.88 11 80 

 
# Data acquired from HT-GPC (High-temperature Gel Permeation Chromatography) 
## Data acquired from HT-NMR (High-temperature Nuclear Magnetic Resonance) 

PDI – Polydispersity Index 

LCB – Long Chain Branching 

 

 

Table 2.  Modified Leonov model parameters for T = 150 °C; LDPE 170A. 

λ (s) G (Pa) ξ (1) ν (1) β (1) 

1.57 85 982.61 1.816 0.174 0.4 

 

 

 

Table 3.  Modified Leonov model parameters for the utilized virtual polymer melts 

at 150 °C. 

 

Virtual Material Name λ (s) G (Pa) ξ (1) ν (1) β (1) 
0

max,U,E

3


 

0

max,P,E

4


 

Melt1_High 1.57 85 982.61 4.414 0.276 0.1 7.1 6.2 

Melt2_High 1.57 85 982.61 4.042 0.208 0.3 7.1 6.6 

Melt3_High 1.57 85 982.61 3.816 0.174 0.4 7.1 6.8 

Melt4_High 1.57 85 982.61 3.54 0.14 0.5 7.1 7.1 

Melt5_High 1.57 85 982.61 2.806 0.072 0.7 7.1 7.9 

Melt1_Middle 1.57 85 982.61 2.014 0.276 0.1 3.4 2.9 

Melt2_Middle 1.57 85 982.61 1.882 0.208 0.3 3.4 3.1 

Melt3_Middle 1.57 85 982.61 1.816 0.174 0.4 3.4 3.2 

Melt4_Middle 1.57 85 982.61 1.75 0.14 0.5 3.4 3.4 

Melt5_Middle 1.57 85 982.61 1.53 0.072 0.7 3.4 4.2 

Melt1_Low 1.57 85 982.61 0.338 0.276 0.1 1.3 1.10 

Melt2_Low 1.57 85 982.61 0.38 0.208 0.3 1.3 1.17 

Melt3_Low 1.57 85 982.61 0.4 0.174 0.4 1.3 1.22 

Melt4_Low 1.57 85 982.61 0.418 0.14 0.5 1.3 1.29 

Melt5_Low 1.57 85 982.61 0.426 0.072 0.7 1.3 1.53 

 

 



Table 4.  Parameters for Eqs. 76–77 defining k and Q values. 

f(De) j Aj αj φj RMSD 

Reduced slope 1 0.553 2 287.854 2.323 0.0255 

Reduced NI* intercept 2 0.512 66.712 1.087 0.00726 

 

Table 5. Basic characteristics for PE-A, PE-B and PE-C samples [26]. 

 Polymer 

sample 

MFI 

(g/10 min) 

Melt 

Tension 

(cN) 

Mw 

(kg/mol) 
Mw/Mn 

(1) 

Newtonian 

viscosity at 130 °C 

(Pa·s) 

Polymerization 

Process 

PE-A 6.7 2.1 163 9.1 16 220 Autoclave 

PE-B 4.1 3.3 102 6.6 37 720 Tubular 

PE-C 4.3 1.9 85 6.0 36 033 Tubular 

 

Flow activation energy, Ea, for all three samples is 49.887 kJ/mol. Note, that Ea was 

calculated here as Ea = α·R, where α is Arrhenius law parameter equal to 6000 K provided in 

[26] and R is the universal gas constant equal to 8.3144598 J/K/mol. 

 

 

Table 6. Extrusion film casting processing parameters for all considered polymer samples 

taken from the open literature. 

 

Polymer 

sample 

Die 

Width 

(mm) 

Die Gap 

(mm) 

Air 

Gap 

(mm) 

Temperature 

(°C) 

Die Exit 

Velocity 

(mm/s) 

Draw 

Ratio 

(1) 

NI* 

(1) 
Refer-

ence 

LDPE 

170A 
100 0.46 228 190 4.3 17.1 0.1537 [45] 

PE-A 600 0.80 160 320 46.6# 42.91## 0.2466 [26] 

PE-B 600 0.80 190 320 46.6# 42.91## 0.3275 [26] 

PE-C 600 0.80 220 320 46.6# 42.91## 0.5159 [26] 
# Die exit velocity was determined based on the die width (L0), die gap (e0), melt density (ρ) 

and mass flow rate (MFR) as u0=MFR/(ρL0e0), where MFR=60 kg/h and melt density 

ρ=745 kg/m3 [26]. 
## Draw ratio was determined from die exit velocity and take-up velocity as DR=u/u0. Take-

up velocity is provided in [26] as u=120 m/min.   

  



Table 7. Modified Leonov model parameters for PE-A, PE-B and PE-C polymer samples at 

130 °C. 

 

Polymer sample  λ (s) G (Pa) ξ (1) ν (1) β (1) 

PE-A 9.5 1 707.37 0.41 0.0015 0.4 

PE-B 15 2 514.67 0.29 0.0034 0.4 

PE-C 30 1 201.10 0.09 0.0013 0.5 

 

Table 8. Analytical model parameters for all considered polymer materials for the given 

processing parameters. 

 

Polymer sample 
λ 

(s) 
De 

(1) 
mean du/dx 

(1/s) 
U,E

P,E




 

0

max,U,E

3


 

LDPE 170A 0.588 0.011 0.300 1.280 3.393 

PE-A 0.079 0.019 10.281 0.833 9.299 

PE-B 0.125 0.026 8.879 1.102 4.198 

PE-C 0.250 0.061 10.281 1.293 2.047 

 

  



 
 

Figure 1. Neck-in phenomenon during the extrusion film casting process. 

 

 

 

 

 

 



 
 

 

Figure 2. Visualization of planar and uniaxial extensional flows during the extrusion film 

casting process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 3. Schematic of the extrusion film casting process kinematic. 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 4. Iteration scheme for the utilized viscoelastic film casting model. 
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Figure 5. Comparison between experimental data for LDPE 170A (T=150 °C) and given 

processing conditions (De=0.011, DR=16, X=230 mm) taken from the open literature [46] 

and corresponding model predictions considering that –N2/N1=0.2. 5a) LDPE 170A 

extensional rheology, 5b) Film half-width profile between die and roll, 5c) Film half-

thickness profile between die and roll, 5d) Velocity profile between die and roll.  

5a) 5b) 

5c) 5d) 



  
 

  
 

Figure 6. Comparison between experimental data for LDPE 170A taken from the open 

literature [45] for different Deborah numbers (top – De=0.253, X=10 mm, bottom – 

De=0.011, X=228 mm) and corresponding model predictions considering that –N2/N1=0.2. 

Left – dimensionless final film half-width vs. draw ratio, Right – dimensionless final film 

half-thickness vs. draw ratio. 



    
 

    
 

    
 

Figure 7. Uniaxial and planar extensional viscosities of different virtual polymer melts 

utilized in this work having high (top), medium (middle) and low (bottom) level of 

extensional strain hardening at T=130 °C. 



    
 

    
 

    
 

Figure 8. Effect of planar to uniaxial extensional viscosity ratio, E,P/E,U, on draw ratio 

dependent dimensionless final film half-width for high (top), medium (middle) and low 

(bottom) level of extensional strain hardening polymer melts considering that –N2/N1=0.2.  



  
 

  
 

           
 

Figure 9. The effect of Deborah number and square root of planar to uniaxial extensional 

viscosity ratio, sqrt(E,P/E,U), on the normalized neck-in for high (9a) medium (9b) and low 

(9c) level of extensional strain hardening polymer melts considering that –N2/N1=0.2. Figure 

9d and 9e shows Deborah number dependent reduced slope k* and the reduced NI* intercept 

Q* (both calculated from k and Q in Eq. 75), respectively, in comparison with the model 

fitting lines, which are given by Eqs. 76–77. 

9a) 
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Figure 10. The effect of Deborah number on the normalized neck-in vs. planar to uniaxial 

extensional viscosity ratio for virtual polymer melts having high (top), medium (middle) and 

low (bottom) level of extensional strain hardening. Here, symbols and lines represent utilized 

viscoelastic 1D membrane model and simple approximate solution model (Eq. 80) 

predictions, respectively. 



 

   
 

 

 
 

Figure 11. Comparison between experimentally determined deformation rate dependent 

uniaxial extensional viscosity data for different polymer samples at 130 °C taken from [26] 

and single mode modified Leonov model predictions. 11a) PE-A, 11b) PE-B, 11c) PE-C. 
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Figure 12. Normalized maximum and draw ratio independent neck-in value, NI*, as the 

function of Deborah number for LDPE 170A, PE-A, PE-B and PE-C polymer samples for the 

processing conditions summarized in Table 8. Experimental data (taken from [45] and [26]) 

are represented here by the open symbols whereas the predictions of the proposed analytical 

model, Eq. 80, are given by the filled symbols.   

 

 

 

 

 

 

 

 

 

 

 

 

 


